Files
firmware/.github/workflows/models_pr_triage.yml
Ben Meadors d0562e1ee6 Add model workflows (#9462)
* Add GitHub workflows for issue completeness, duplicate detection, onboarding, and contribution quality checks

* Fix indentation

* Refactor GitHub workflows for issue handling

* Consolidate to two triage workflows

* Update .github/workflows/models_pr_triage.yml

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2026-01-28 10:50:56 -06:00

139 lines
7.3 KiB
YAML

name: PR Triage (Models)
on:
pull_request_target:
types: [opened]
permissions:
pull-requests: write
issues: write
models: read
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number }}
cancel-in-progress: true
jobs:
triage:
if: ${{ github.repository == 'meshtastic/firmware' && github.event.pull_request.user.type != 'Bot' }}
runs-on: ubuntu-latest
steps:
# ─────────────────────────────────────────────────────────────────────────
# Step 1: Check if PR already has automation/type labels (skip if so)
# ─────────────────────────────────────────────────────────────────────────
- name: Check existing labels
uses: actions/github-script@v8
id: check-labels
with:
script: |
const skipLabels = new Set(['automation']);
const typeLabels = new Set(['bugfix', 'hardware-support', 'enhancement', 'dependencies', 'submodules', 'github_actions', 'trunk', 'cleanup']);
const prLabels = context.payload.pull_request.labels.map(l => l.name);
const shouldSkipAll = prLabels.some(l => skipLabels.has(l));
const hasTypeLabel = prLabels.some(l => typeLabels.has(l));
core.setOutput('skip_all', shouldSkipAll ? 'true' : 'false');
core.setOutput('has_type_label', hasTypeLabel ? 'true' : 'false');
# ─────────────────────────────────────────────────────────────────────────
# Step 2: Quality check (spam/AI-slop detection)
# ─────────────────────────────────────────────────────────────────────────
- name: Detect spam or low-quality content
if: steps.check-labels.outputs.skip_all != 'true'
uses: actions/ai-inference@v2
id: quality
continue-on-error: true
with:
max-tokens: 20
prompt: |
Is this GitHub pull request spam, AI-generated slop, or low quality?
Title: ${{ github.event.pull_request.title }}
Body: ${{ github.event.pull_request.body }}
Respond with exactly one of: spam, ai-generated, needs-review, ok
system-prompt: You detect spam and low-quality contributions. Be conservative - only flag obvious spam or AI slop.
model: openai/gpt-4o-mini
- name: Apply quality label if needed
if: steps.check-labels.outputs.skip_all != 'true' && steps.quality.outputs.response != '' && steps.quality.outputs.response != 'ok'
uses: actions/github-script@v8
id: quality-label
env:
QUALITY_LABEL: ${{ steps.quality.outputs.response }}
with:
script: |
const label = (process.env.QUALITY_LABEL || '').trim().toLowerCase();
const labelMeta = {
'spam': { color: 'd73a4a', description: 'Possible spam' },
'ai-generated': { color: 'fbca04', description: 'Possible AI-generated low-quality content' },
'needs-review': { color: 'f9d0c4', description: 'Needs human review' },
};
const meta = labelMeta[label];
if (!meta) return;
// Ensure label exists
try {
await github.rest.issues.getLabel({ owner: context.repo.owner, repo: context.repo.repo, name: label });
} catch (e) {
if (e.status !== 404) throw e;
await github.rest.issues.createLabel({ owner: context.repo.owner, repo: context.repo.repo, name: label, color: meta.color, description: meta.description });
}
// Apply label
await github.rest.issues.addLabels({ owner: context.repo.owner, repo: context.repo.repo, issue_number: context.payload.pull_request.number, labels: [label] });
core.setOutput('is_spam', 'true');
# ─────────────────────────────────────────────────────────────────────────
# Step 3: Auto-label PR type (bugfix/hardware-support/enhancement)
# ─────────────────────────────────────────────────────────────────────────
- name: Classify PR for labeling
if: steps.check-labels.outputs.skip_all != 'true' && steps.check-labels.outputs.has_type_label != 'true' && (steps.quality.outputs.response == 'ok' || steps.quality.outputs.response == '')
uses: actions/ai-inference@v2
id: classify
continue-on-error: true
with:
max-tokens: 30
prompt: |
Classify this pull request into exactly one category.
Return exactly one of: bugfix, hardware-support, enhancement
Use bugfix if it fixes a bug, crash, or incorrect behavior.
Use hardware-support if it adds or improves support for a specific hardware device/variant.
Use enhancement if it adds a new feature, improves performance, or refactors code.
Title: ${{ github.event.pull_request.title }}
Body: ${{ github.event.pull_request.body }}
system-prompt: You classify pull requests into categories. Be conservative and pick the most appropriate single label.
model: openai/gpt-4o-mini
- name: Apply type label
if: steps.check-labels.outputs.skip_all != 'true' && steps.check-labels.outputs.has_type_label != 'true' && steps.classify.outputs.response != ''
uses: actions/github-script@v8
env:
TYPE_LABEL: ${{ steps.classify.outputs.response }}
with:
script: |
const label = (process.env.TYPE_LABEL || '').trim().toLowerCase();
const labelMeta = {
'bugfix': { color: 'd73a4a', description: 'Bug fix' },
'hardware-support': { color: '0e8a16', description: 'Hardware support addition or improvement' },
'enhancement': { color: 'a2eeef', description: 'New feature or enhancement' },
};
const meta = labelMeta[label];
if (!meta) return;
// Ensure label exists
try {
await github.rest.issues.getLabel({ owner: context.repo.owner, repo: context.repo.repo, name: label });
} catch (e) {
if (e.status !== 404) throw e;
await github.rest.issues.createLabel({ owner: context.repo.owner, repo: context.repo.repo, name: label, color: meta.color, description: meta.description });
}
// Apply label
await github.rest.issues.addLabels({ owner: context.repo.owner, repo: context.repo.repo, issue_number: context.payload.pull_request.number, labels: [label] });