cc @mc-hamster. In some cases storeForwardPluginRadio can be null ;-)
~/development/meshtastic/meshtastic-esp32$ bin/exception_decoder.py -e .pio/build/tbeam/firmware.elf ex
stack:
0x401db467: StoreForwardPluginRadio::sendPayload(unsigned int, bool) at /home/kevinh/development/meshtastic/meshtastic-esp32/src/plugins/esp32/StoreForwardPlugin.cpp:235
0x400e7cbd: StoreForwardPlugin::runOnce() at /home/kevinh/development/meshtastic/meshtastic-esp32/src/plugins/esp32/StoreForwardPlugin.cpp:225
0x400d4cca: concurrency::OSThread::run() at /home/kevinh/development/meshtastic/meshtastic-esp32/src/concurrency/OSThread.cpp:45
0x400f015d: ThreadController::runOrDelay() at /home/kevinh/development/meshtastic/meshtastic-esp32/.pio/libdeps/tbeam/Thread/ThreadController.cpp:153
0x400da070: loop() at /home/kevinh/development/meshtastic/meshtastic-esp32/src/main.cpp:621
0x400ff709: loopTask(void*) at /home/kevinh/.platformio/packages/framework-arduinoespressif32/cores/esp32/main.cpp:19
Signed-off-by: Kevin Hester <kevinh@geeksville.com>
Instead of holding onto only the last measurement, hold onto a copy of the last MeshPacket containing a measurement
This will make it easier to display the last time received
make DHT sensor reads more reliable
user preference for Farenheit vs Celsius
specifying a tag/commit/etc (I haven't tried specifying a branch?)
Without specifying the hash, the build breaks for anyone who already had
a repo (the CI build doesn't see this because it always pulls from scratch)
cc @crossan007 & @mc-hamster
@mc-hamster seems to work pretty good for me, so I'll send a PR to you
for the dev-http branch.
I'll push out an android alpha build later today (once the build is
complete). Once this new device load is out in the field _future_
device builds will support updating spiffs from android. (i.e. device
loads older than 1.1.9 must be updated to 1.1.9 or later before spiffs
support is implemented on the device side - so some users might need to
update twice before the new spiffs contents will appear on their device)
Typo fixed. I placed the latest javascript library files into the static folder. Updated the root file handler to be able to serve both compressed and uncompressed files.
+ // NOTE: The phone app needs to know the ls_secs value so it can properly expect sleep behavior.
+ // So even if we internally use 0 to represent 'use default' we still need to send the value we are
+ // using to the app (so that even old phone apps work with new device loads).
+#define MAX_POWER 27
// if we use 20 we are limited to 1% duty cycle or hw might overheat. For continuous operation set a limit of 17
+// In theory up to 27 dBm is possible, but the modules installed in most radios can cope with a max of 20. So BIG WARNING
+// if you set power to something higher than 17 or 20 you might fry your board.
Could cause hangs on the way into sleep (and enormous power consumption).
Instead of checking for rx packet length (which only changes at completion)
check if we've received preamble bits but haven't yet received a completed
packet interrupt.
notes:
wait to sleep loop problem
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
Can not send yet, busyRx
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
vs normal run
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
radio wait to sleep, txEmpty=0
Starting low level send (id=0x53fe1dd0 Fr0xe5 To0xff, WantAck0, HopLim3 encrypted)
Completed sending (id=0x53fe1dd0 Fr0xe5 To0xff, WantAck0, HopLim3 encrypted)
bogus wakes on TBEAMS because the USB->SERIAL chip pulls the RX input
to ground. This feature is no longer needed because in !isRouter
nodes we force the node to never sleep anyways when on USB power.
// this doesn't work on TBEAMs when the USB is depowered (causes bogus interrupts)
// So we disable this "wake on serial" feature - because now when a TBEAM (only) has power connected it
// never tries to go to sleep if the user is using the API
// gpio_wakeup_enable((gpio_num_t)SERIAL0_RX_GPIO, GPIO_INTR_LOW_LEVEL);
Sample usage:
First configure device to use @mc-hamster's new wifi stuff:
meshtastic --set wifi_ssid mylanname --set wifi_password mylanpassword
Then reboot the device (so wifi starts up).
(assuming device was assigned addr 192.168.81.45)
meshtastic --info --host 192.168.81.45
(See the usual device info you previously had to get over USB)
Caveats:
* Currently we are limiting to one active TCP connection open at once, if
you open a new session the old one is closed automatically
* There are no access controls/authentication needed to open a TCP
connection to the device
* Currently main.cpp is kinda dumb about how we should schedule work and
we rely on too many helper loop() functions. Very soon in my queue
(related to all the other cleanup) is to add a basic notion of coroutines,
so that we can get away from freertos threads and this old school arduino
loop function. Once that cleanup happens we can the a) have much lower
battery consumption (always) and b) super fast response for all operations.
btw - from my read of the NMEA, the lowest value that means 'has a valid
position' is 1 not 2. But I only know this because you pointed me at
it ;-)
Thanks!
oh - I think I found the problem (probably)! we were isolating gpio12 (which isn't used on other boards) to save power during sleep. gpio12 is the button for this board. @thomslik would you mind pulling this commit and seeing if it works better?
inexpensive GPS mesh radios as an extensible, super long battery life mesh GPS communicator. These radios are great for hiking, skiing, paragliding -
essentially any hobby where you don't have reliable internet access. Each member of your private mesh can always see the location and distance of all other
members and any text messages sent to your group chat.
@@ -25,13 +25,19 @@ We currently support three models of radios.
- TTGO T-Beam (usually the recommended choice)
- [T-Beam V1.1 w/ NEO-6M - special Meshtastic version](https://www.aliexpress.com/item/4001178678568.html) (Includes built-in OLED display and they have **preinstalled** the meshtastic software)
- [T-Beam V0.7 w/ NEO-6M](https://www.aliexpress.com/item/4000574335430.html) (will work but **you must use the tbeam0.7 firmware ** - but the T-Beam V1.0 or later are better!)
Note: The GPS and LoRa stock antennas should be placed in a way, that the GPS antenna faces the sky and the LoRa antenna radiates 360 degrees horizontally. For better GPS reception you might want to [upgrade the GPS antenna](https://meshtastic.discourse.group/t/the-importance-of-gps-antennas-and-request-to-3d-case-documentation-people/1505) and to properly align the antennas you might want to upgrade to a LoRa antenna that can be adjusted to radiate into the right directions.
**Make sure to get the frequency for your country**
@@ -100,10 +109,10 @@ Hard resetting via RTS pin...
```
5. cd into the directory where the release zip file was expanded.
6. Install the correct firmware for your board with `device-install.sh firmware-_board_-_country_.bin`.
Note: If you have previously installed meshtastic, you don't need to run this full script instead just run `esptool.py --baud 921600 write_flash 0x10000 firmware-_board_-_country_-_version_.bin`. This will be faster, also all of your current preferences will be preserved.
inexpensive (\$30 ish) GPS radios as an extensible, long battery life, secure, mesh GPS communicator. These radios are great for hiking, skiing, paragliding - essentially any hobby where you don't have reliable internet access. Each member of your private mesh can always see the location and distance of all other members and any text messages sent to your group chat.
The radios automatically create a mesh to forward packets as needed, so everyone in the group can receive messages from even the furthest member. The radios will optionally work with your phone, but no phone is required.
Note: Questions after reading this? See our new [forum](https://meshtastic.discourse.group/).
### Uses
## Uses
- Outdoor sports where cellular coverage is limited. (Hiking, Skiing, Boating, Paragliding, Gliders etc..)
- Applications where closed source GPS communicators just won't cut it (it is easy to add features for glider pilots etc...)
@@ -17,7 +17,7 @@ Note: Questions after reading this? See our new [forum](https://meshtastic.disco
[](https://www.youtube.com/watch?v=WlNbMbVZlHI "Meshtastic early demo")
### Features
## Features
Not all of these features are fully implemented yet - see **important** disclaimers below. But they should be in by the time we decide to call this project beta (three months?)
@@ -39,11 +39,17 @@ This software is 100% open source and developed by a group of hobbyist experimen
For an detailed walk-through aimed at beginners, we recommend [meshtastic.letstalkthis.com](https://meshtastic.letstalkthis.com/).
### Related Groups
Telegram group for **Italy**-based users [t.me/meshtastic_italia](http://t.me/meshtastic_italia) (Italian language, unofficial).<br/>
Telegram group for **Russian**-based users [t.me/meshtastic_russia](https://t.me/meshtastic_russia) (Russian language, unofficial).
# Updates
Note: Updates are happening almost daily, only major updates are listed below. For more details see our forum.
- 06/24/2020 - 0.7.x Now with over 1000 android users, over 600 people using the radios and translated into 13 languages. Fairly stable and we are working through bugs to get to 1.0.
- 09/14/2020 - 1.0.0 Now with over 1700 android users, over 2000 nodes and translated into 15 languages. This project will always be a "beta" experiment, but now quite usable. We are currently selecting 1.1 features in our discussion forum.
- 06/24/2020 - 0.7.x Now with over 1000 android users, over 600 people using the radios and translated into 22 languages. Fairly stable and we are working through bugs to get to 1.0.
- 06/04/2020 - 0.6.7 Beta releases of both the application and the device code are released. Features are fairly solid now with a sizable number of users.
- 04/28/2020 - 0.6.0 [Python API](https://pypi.org/project/meshtastic/) released. Makes it easy to use meshtastic devices as "zero config / just works" mesh transport adapters for other projects.
- 04/20/2020 - 0.4.3 Pretty solid now both for the android app and the device code. Many people have donated translations and code. Probably going to call it a beta soon.
@@ -76,11 +82,15 @@ Make sure to buy the frequency range which is legal for your country. For the US
Instructions for installing prebuilt firmware can be found [here](https://github.com/meshtastic/Meshtastic-esp32/blob/master/README.md).
For a nice printable cases:
For a nice looking cases:
1. TTGO T-Beam V0 see this [design](https://www.thingiverse.com/thing:3773717) by [bsiege](https://www.thingiverse.com/bsiege).
2. TTGO T_Beam V1 see this [design](https://www.thingiverse.com/thing:3830711) by [rwanrooy](https://www.thingiverse.com/rwanrooy) or this [remix](https://www.thingiverse.com/thing:3949330) by [8ung](https://www.thingiverse.com/8ung)
3. Heltec Lora32 see this [design](https://www.thingiverse.com/thing:3125854) by [ornotermes](https://www.thingiverse.com/ornotermes).
- 3D printable cases
1. TTGO T-Beam V0 see this [design](https://www.thingiverse.com/thing:3773717) by [bsiege](https://www.thingiverse.com/bsiege).
2. TTGO T_Beam V1 (SMA) see this [design](https://www.thingiverse.com/thing:3830711) by [rwanrooy](https://www.thingiverse.com/rwanrooy) or this [remix](https://www.thingiverse.com/thing:3949330) by [8ung](https://www.thingiverse.com/8ung)
3. TTGO T_Beam V1 (IPEX) see this [design](https://www.thingiverse.com/thing:4587297) by [drewsed](https://www.thingiverse.com/drewsed)
4. Heltec Lora32 see this [design](https://www.thingiverse.com/thing:3125854) by [ornotermes](https://www.thingiverse.com/ornotermes).
- Laser-cut cases
1. TTGO T_Beam V1 (SMA) see this [design](https://www.thingiverse.com/thing:4552771) by [jefish](https://www.thingiverse.com/jefish)
We use the same channel maps as LoRaWAN (though this is not LoRaWAN).


See [this site](https://www.rfwireless-world.com/Tutorials/LoRa-channels-list.html) for more information.
## LoRaWAN Europe Frequency Band
The maximum power allowed is +14dBM.
The maximum power allowed is +14dBm ERP (Effective Radiated Power, see [this site](https://en.wikipedia.org/wiki/Effective_radiated_power) for more information).
### 433 MHz
@@ -24,7 +24,82 @@ Channel zero starts at 865.20 MHz
LoRaWAN defines 64, 125 kHz channels from 902.3 to 914.9 MHz increments.
The maximum output power for North America is +30 dBM.
The maximum output power for North America is +30 dBm ERP.
The band is from 902 to 928 MHz. It mentions channel number and its respective channel frequency. All the 13 channels are separated by 2.16 MHz with respect to the adjacent channels.
Channel zero starts at 903.08 MHz center frequency.
Channel zero starts at 903.08 MHz center frequency.
## Data-rates
### About
Various data-rates are selectable when configuring a channel and are inversely proportional to the theoretical range of the devices.
Considerations:
* Spreading Factor - How much we "spread" our data over time.
* * Each step up in Spreading Factor dobules the airtime to transmit.
* * Each step up in Spreading Factor adds about 2.5db extra link budget.
* Bandwidth - How big of a slice of the spectrum we use.
* * Each doubling of the bandwidth is almost 3db less link budget.
* * Bandwidths less than 31 may be unstable unless you have a high quality Crystal Ossilator.
* Coding Rate - How much redundency we encode to resist noise.
* * Increasing coding rate increases reliability while decrasing data-rate.
* * 4/5 - 1.25x overhead
* * 4/6 - 1.5x overhead
* * 4/7 - 1.75x overhead
* * 4/8 - 2x overhead
### Pre-Defined
We have four predefined channels. These are the most common settings and have been proven to work well:
| Channel setting | Alt Channel Name | Data-rate | SF / Symbols | Coding Rate | Bandwidth | Link Budget |
| Short range (but fast) | Short Fast | 21.875 kbps | 7 / 128 | 4/5 | 125 | 134dB |
| Medium range (but fast) | Medium | 5.469 kbps | 7 / 128 | 4/5 | 500 | 140dB |
| Long range (but slower) | Long Alt | 0.275 kbps | 9 / 512 | 4/8 | 31 | 153dB |
| Very long range (but slow) | Long Slow | 0.183 kbps (default) | 12 / 4096 | 4/8 | 125 | 154dB |
The link budget used by these calculations assumes a transmit power of 17dBm and an antenna with 0dB gain. Adjust your link budget assumptions based on your actual devices.
### Custom Settings
You may want to select other channels for your usage. The other settings can be set by using the Python API.
After applying the settings, you will need to restart the device. After your device is restarted, it will generate a new crypto key and you will need to share the newly generated QR Code or URL to all your other devices.
Some example settings:
| Data-rate | SF / Symbols | Coding Rate | Bandwidth | Link Budget | Note |
| 0.073 kbps | 12 / 4096 | 4/5 | 31 | 160dB | Twice the range and/or coverage of "Long Slow", low resliance to noise |
| 0.046 kbps | 12 / 4096 | 4/8 | 31 | 160dB | Twice the range and/or coverage of "Long Slow", high resliance to noise |
The link budget used by these calculations assumes a transmit power of 17dBm and an antenna with 0dB gain. Adjust your link budget assumptions based on your actual devices.
These channel settings may have not been tested. Use at your own discression. Share on https://meshtastic.discourse.group with your successes or failure.
## Cryptography
The preshared key used by the devices can be modified.
* 0 = No crypto
* 1 = Default channel key
* 2 - 10 = The default channel key, except with 1 through 9 added to the last byte
Use of cryptography can also be modified. To disable cryptography (maybe useful if you have HAM radio license):
* DONE turn off bluetooth interface ENTIRELY while using serial API (was python client times out on connect sometimes)
* DONE gps assistance from phone not working?
* DONE test latest firmware update with is_router
* DONE firmware OTA updates of is_router true nodes fails?
* DONE add UI in android app to reset to defaults https://github.com/meshtastic/Meshtastic-Android/issues/263
* DONE TEST THIS! changing channels requires a reboot to take effect https://github.com/meshtastic/Meshtastic-device/issues/752
* DONE bug report with remote info request timing out
* DONE retest channel changing in android (using sim?)
* DONE move remote admin doc from forum into git
* DONE check crashlytics
* DONE ask for a documentation czar
* DONE timestamps on oled screen are wrong - don't seem to be updating based on message rx (actually: this is expected behavior when no node on the mesh has GPS time)
* DONE add ch-del
* DONE channel hash suffixes are wrong on android
* DONE before next relase: test empty channel sets on android
* DONE channel sharing in android
* DONE test 1.0 firmware update on android
* DONE test 1.1 firmware update on android
* DONE test 1.2.10 firmware update on android
* DONE test link sharing on android
* FIXED? luxon bug report - seeing rx acks for nodes that are not on the network
* DONE release py
* DONE show GPS time only if we know what global time is
* DONE android should always provide time to nodes - so that it is easier for the mesh to learn the current time
## MQTT
## Multichannel support
* DONE cleanup the external notification and serial plugins
* non ack version of stress test fails sometimes!
* tx fault test has a bug #734 - * turn off fault 8: https://github.com/meshtastic/Meshtastic-device/issues/734
* DONE move device types into an enum in nodeinfo
* DONE fix android to use new device types for firmware update
* nrf52 should preserve local time across reset
* cdcacm bug on nrf52: emittx thinks it emitted but client sees nothing. works again later
* nrf52: segger logs have errors in formatting that should be impossible (because not going through serial, try stalling on segger)
* DONE call RouterPlugin for *all* packets - not just Router packets
* DONE generate channel hash from the name of the channel+the psk (not just one or the other)
* DONE send a hint that can be used to select which channel to try and hash against with each message
* DONE remove deprecated
* DONE fix setchannel in phoneapi.cpp
* DONE set mynodeinfo.max_channels
* DONE set mynodeinfo.num_bands (formerly num_channels)
* DONE fix sniffing of non Routing packets
* DONE enable remote setttings access by moving settings operations into a regular plugin (move settings ops out of PhoneAPI)
* DONE move portnum up?
* DONE remove region specific builds from the firmware
* DONE test single channel without python
* DONE Use "default" for name if name is empty
* DONE fix python data packet receiving (nothing showing in log?)
* DONE use get channels & get settings from android
* DONE use set-channel from python
* DONE make settings changes from python work
* DONE pthon should stop fetching channels once we've reached our first empty channel definition (hasSettings == true)
* DONE add check for old devices with new API library
* DONE release python api
* DONE release protobufs
* DONE release to developers
* DONE fix setch-fast in python tool
* age out pendingrequests in the python API
* DONE stress test channel download from python, sometimes it seems like we don't get all replies, bug was due to simultaneous android connection
* DONE combine acks and responses in a single message if possible (do routing plugin LAST and drop ACK if someone else has already replied)
* DONE don't send packets we received from the phone BACK TOWARDS THE PHONE (possibly use fromnode 0 for packets the phone sends?)
* DONE fix 1.1.50 android debug panel display
* DONE test android channel setting
* DONE release to users
* DONE warn in android app about unset regions
* DONE use set-channel from android
* DONE add gui in android app for setting region
* DONE clean up python channel usage
* DONE use bindToChannel to limit admin access for remote nodes
* DONE move channels and radio config out of device settings
* DONE test remote info and remote settings changes
* make python tests more exhaustive
* DONE pick default random admin key
* exclude admin channels from URL?
* make a way to share just secondary channels via URL
* generalize the concept of "shortstrings" use it for both PSKs and well known channel names. Possibly use a ShortString class.
* use single byte 'well known' channel names for admin, gpio, etc...
* use presence of gpio channel to enable gpio ops, same for serial etc...
* DONE restrict gpio & serial & settings operations to the admin channel (unless local to the current node)
* DONE add channel restrictions for plugins (and restrict routing plugin to the "control" channel)
* stress test multi channel
* DONE investigate @mc-hamster report of heap corruption
* DONE use set-user from android
* untrusted users should not be allowed to provide bogus times (via position broadcasts) to the rest of the mesh. Invent a new lowest quality notion of UntrustedTime.
* use portuino TCP connection to debug with python API
* document the relationship between want_response (indicating remote node received it) and want_ack (indicating that this message should be sent reliably - and also get acks from the first rx node and naks if it is never delivered)
* DONE android should stop fetching channels once we've reached our first empty channel definition (hasSettings == true)
* DONE warn in python api if we are too new to talk to the device code
* DONE make a post warning about 1.2, telling how to stay on old android & python clients. link to this from the android dialog message and python version warning.
* DONE "FIXME - move the radioconfig/user/channel READ operations into SettingsMessage as well"
* DONE scrub protobufs to make sure they are absoloute minimum wiresize (in particular Data, ChannelSets and positions)
* DONE change syncword (now ox2b)
* allow chaning packets in single transmission - to increase airtime efficiency and amortize packet overhead
* DONE move most parts of meshpacket into the Data packet, so that we can chain multiple Data for sending when they all have a common destination and key.
* when selecting a MeshPacket for transmit, scan the TX queue for any Data packets we can merge together as a WirePayload. In the low level send/rx code expand that into multiple MeshPackets as needed (thus 'hiding' from MeshPacket that over the wire we send multiple datapackets
* DONE confirm we are still calling the plugins for messages inbound from the phone (or generated locally)
* DONE confirm we are still multi hop routing flood broadcasts
* DONE confirm we are still doing resends on unicast reliable packets
* add history to routed packets: https://meshtastic.discourse.group/t/packet-source-tracking/2764/2
* add support for full DSR unicast delivery
* DONE move acks into routing
* DONE make all subpackets different versions of data
* DONE move routing control into a data packet
* have phoneapi done via plugin (will allow multiple simultaneous API clients - stop disabling BLE while using phone API)
* use reference counting and dynamic sizing for meshpackets.
* let multiple PhoneAPI endpoints work at once
* allow multiple simultaneous bluetooth connections (create the bluetooth phoneapi instance dynamically based on client id)
* DONE figure out how to add micro_delta to position, make it so that phone apps don't need to understand it?
* only send battery updates a max of once a minute
* DONE add python channel selection for sending
* DONE record recevied channel in meshpacket
* test remote settings operations (confirm it works 3 hops away)
* DONE make a primaryChannel global and properly maintain it when the phone sends setChannel
* DONE move setCrypto call into packet send and packet decode code
* implement 'small location diffs' change
* move battery level out of position?
* consider "A special exception (FIXME, not sure if this is a good idea) - packets that arrive on the local interface
are allowed on any channel (this lets the local user do anything)." Probably by adding a "secure_local_interface" settings bool.
* DOUBLE CHECK android app can still upgrade 1.1 and 1.0 loads
For app cleanup:
* use structured logging to kep logs in ram. Also send logs as packets to api clients
* DONE writeup nice python options docs (common cases, link to protobuf docs)
* have android app link to user manual
* DONE only do wantReplies once per packet type, if we change network settings force it again
* update positions and nodeinfos based on packets we just merely witness on the mesh. via isPromsciousPort bool, remove sniffing
* DONE make device build always have a valid version
* DONE do fixed position bug https://github.com/meshtastic/Meshtastic-device/issues/536
* DONE have python tool check max packet size before sending to device
* DONE if request was sent reliably, send reply reliably
* DONE require a recent python api to talk to these new device loads
* DONE require a recent android app to talk to these new device loads
* DONE fix handleIncomingPosition
* DONE move want_replies handling into plugins
* DONE on android for received positions handle either old or new positions / user messages
* DONE on android side send old or new positions as needed / user messages
* DONE test python side handle new position/user messages
* DONE make a gpio example. --gpiowrb 4 1, --gpiord 0x444, --gpiowatch 0x3ff
* DONE fix position sending to use new plugin
* DONE Add SinglePortNumPlugin - as the new most useful baseclass
* DONE move positions into regular data packets (use new app framework)
* DONE move user info into regular data packets (use new app framework)
* DONE test that positions, text messages and user info still work
* DONE test that position, text messages and user info work properly with new android app and old device code
* DONE do UDP tunnel
* DONE fix the RTC drift bug
* move python ping functionality into device, reply with rxsnr info
* use channels for gpio security https://github.com/meshtastic/Meshtastic-device/issues/104
* MeshPackets for sending should be reference counted so that API clients would have the option of checking sent status (would allow removing the nasty 30 sec timer in gpio watch sending)
For high speed/lots of devices/short range tasks:
- When guessing numhops for sending: if I've heard from many local (0 hop neighbors) decrease hopcount by 2 rather than 1.
This should nicely help 'router' nodes do the right thing when long range, or if there are many local nodes for short range.
- fix timeouts/delays to be based on packet length at current radio settings
* update protocol description per cyclomies email thread
* update faq with antennas https://meshtastic.discourse.group/t/range-test-ideas-requested/738/2
* update faq on recommended android version and phones
* add help link inside the app, reference a page on the wiki
* turn on amazon reviews support
* add a tablet layout (with map next to messages) in the android app
# Completed
## eink 1.0
* DONE check email of reported issues
* DONE turn off vbus driving (in bootloader)
* new battery level sensing
* current draw no good
* DONE: fix backlight
* DONE - USB is busted because of power enable mode?
* test CPU voltage? something is bad with RAM (removing eink module does not help)
If you've landed here that means your android application is too old for the running device firmware. Usually our updates are backwards compatible, but about once a year we have a "major protocol update" which requires all apps and devices to update to keep working with that version. Version 1.2 in March 2021 was one of those updates.
If you have problems/questions please post in our [forum](https://meshtastic.discourse.group) and some nice person will probably help.
This project uses the simple PlatformIO build system. PlatformIO is an extension to Microsoft VSCode.
This project uses the simple PlatformIO build system. PlatformIO is an extension to Microsoft VSCode. Workflows from building from the GUI or from the commandline are listed below.
If you encounter any problems, please post a question in [our forum](meshtastic.discourse.group). And when you learn a fix, update these instructions for the next person (i.e. edit this file and send in a [pull-request](https://opensource.com/article/19/7/create-pull-request-github) which we will eagerly merge).
## GUI
1. Purchase a suitable [radio](https://github.com/meshtastic/Meshtastic-device/wiki/Hardware-Information).
3.Click the PlatformIO icon on the side bar. 
4.Under `Quick Access, Miscellaneous, Clone Git Project` enter the URL of the Meshtastic repo found [here](https://github.com/meshtastic/Meshtastic-device). 
5.Select a file location to save the repo.
6.Once loaded, open the `platformio.ini` file.
7.At the line `default_envs` you can change it to the board type you are building for ie. `tlora-v2, tlora-v1, tlora-v2-1-1.6, tbeam, heltec, tbeam0.7` (boards are listed further down in the file).
8.Click the PlatformIO icon on the side bar. Under `Project Tasks` you can now build or upload.
6.Click the PlatformIO icon on the side bar. 
7.Under `Quick Access, Miscellaneous, Clone Git Project` enter the URL of the Meshtastic repo found [here](https://github.com/meshtastic/Meshtastic-device). 
8.Select a file location to save the repo.
9. Once loaded, open the `platformio.ini` file.
10. At the line `default_envs` you can change it to the board type you are building for ie. `tlora-v2, tlora-v1, tlora-v2-1-1.6, tbeam, heltec, tbeam0.7` (boards are listed further down in the file).
11. The hardware can be configured for different countries by adding a definition to the `configuration.h` file. `#define HW_VERSION_US` or `HW_VERSION_EU433, HW_VERSION_EU865, HW_VERSION_CN, HW_VERSION_JP`. Other country settings can be found in `MeshRadio.h`. The default is `HW_VERSION_US`.
12. Click the PlatformIO icon on the side bar. Under `Project Tasks` you can now build or upload.
Note - To get a clean build you may have to delete the auto-generated file `./.vscode/c_cpp_properties.json`, close and re-open Visual Studio and WAIT until the file is auto-generated before compiling again.
## Command Line
1. Purchase a suitable [radio](https://github.com/meshtastic/Meshtastic-device/wiki/Hardware-Information).
Version 1.2 of the software adds support for "multiple (simultaneous) channels". The idea behind this feature is that a mesh can allow multiple users/groups to be share common mesh infrastructure. Even including routing messages for others when no one except that subgroup of users has the encryption keys for their private channel.
### What is the PRIMARY channel
The way this works is that each node keeps a list of channels it knows about. One of those channels (normally the first 1) is labelled as the "PRIMARY" channel. The primary channel is the **only** channel that is used to set radio parameters. i.e. this channel controls things like spread factor, coding rate, bandwidth etc... Indirectly this channel also is used to select the specific frequency that all members of this mesh are talking over.
This channel may or may not have a PSK (encryption). If you are providing mesh to 'the public' we recommend that you always leave this channel with its default psk. The default PSK is technically encrypted (and random users sniffing the ether would have to use meshtastic to decode it), but the key is included in the github source code and you should assume any 'attacker' would have it. But for a 'public' mesh you want this, because it allows anyone using meshtastic in your area to send packets through 'your' mesh.
Note: Older meshtastic applications that don't yet understand multi-channel support will only show the user this channel.
### How to use SECONDARY channels
Any channel you add after that PRIMARY channel is SECONDARY. Secondary channels are used only for encyryption and (in the case of some special applications) security. If you would like to have a private channel over a more public mesh, you probably want to create a SECONDARY channel. When sharing that URL with your private group you will share the "Complete URL". The complete URL includes your secondary channel (for encryption) and the primary channel (to provide radio/mesh access).
Secondary channels **must** have a PSK (encryption).
@@ -13,7 +13,7 @@ the project developers are not cryptography experts. Therefore we ask two things
Based on comments from reviewers (see below), here's some tips for usage of these radios. So you can know the level of protection offered:
* It is pretty likely that the AES256 security is implemented 'correctly' and an observer will not be able to decode your messages.
* Warning: If an attacker is able to get one of the radios in their position, they could either a) extract the channel key from that device or b) use that radio to listen to new communications.
* Warning: If an attacker is able to get one of the radios in their posession, they could either a) extract the channel key from that device or b) use that radio to listen to new communications.
* Warning: If an attacker is able to get the "Channel QR code/URL" that you share with others - that attacker could then be able to read any messages sent on the channel (either tomorrow or in the past - if they kept a raw copy of those broadcast packets)
Possible future areas of work (if there is enough interest - post in our [forum](https://meshtastic.discourse.group) if you want this):
@@ -48,4 +48,4 @@ I'm assuming that meshtastic is being used to hike in places where someone capab
* I think the bigger encryption question is "what does the encryption need to do"? As it stands, an attacker who has yet to capture any of the devices cannot reasonably capture text or location data. An attacker who captures any device in the channel/mesh can read everything going to that device, everything stored on that device, and any other communication within the channel that they captured in encrypted form. If that capability basically matches your expectations, it is suitable for whatever adventures this was intended for, then, based on information publicly available or widely disclosed, the encryption is good. If those properties are distressing (like, device history is deliberately limited and you don't want a device captured today to endanger the information sent over the channel yesterday) we could talk about ways to achieve that (most likely synchronizing time and replacing the key with its own SHA256 every X hours, and ensuring the old key is not retained unnecessarily).
* Two other things to keep in mind are that AES-CTR does not itself provide authenticity (e.g. an attacker can flip bits in replaying data and scramble the resulting plaintext), and that the current scheme gives some hints about transmission in the size. So, if you worry about an adversary deliberately messing-up messages or knowing the length of a text message, it looks like those might be possible.
I'm guessing that the network behaves somewhat like a store-and-forward network - or, at least, that the goal is to avoid establishing a two-way connection to transmit data. I'm afraid I haven't worked with mesh networks much, but remember studying them briefly in school about ten years ago.
I'm guessing that the network behaves somewhat like a store-and-forward network - or, at least, that the goal is to avoid establishing a two-way connection to transmit data. I'm afraid I haven't worked with mesh networks much, but remember studying them briefly in school about ten years ago.
(This document describes the protocol for external API clients using our devices. If you are interested in running your own code on the device itself, see the [on-device](plugin-api.md) documentation instead)
The Device API is design to have only a simple stream of ToRadio and FromRadio packets and all polymorphism comes from the flexible set of Google Protocol Buffers which are sent over the wire. We use protocol buffers extensively both for the bluetooth API and for packets inside the mesh or when providing packets to other applications on the phone.
@@ -42,7 +44,6 @@ Expected sequence for initial download:
- Read a RadioConfig from "radio" - used to get the channel and radio settings
- Read a User from "user" - to get the username for this node
- Read a MyNodeInfo from "mynode" to get information about this local device
- Write an empty record to "nodeinfo" to restart the nodeinfo reading state machine
- Read a series of NodeInfo packets to build the phone's copy of the current NodeDB for the mesh
- Read a endConfig packet that indicates that the entire state you need has been sent.
- Read a series of MeshPackets until it returns empty to get any messages that arrived for this node while the phone was away
@@ -112,6 +113,7 @@ Characteristics
| e272ebac-d463-4b98-bc84-5cc1a39ee517 | write | data, variable sized, recommended 512 bytes, write one for each block of file |
| 4826129c-c22a-43a3-b066-ce8f0d5bacc6 | write | crc32, write last - writing this will complete the OTA operation, now you can read result |
| 5e134862-7411-4424-ac4a-210937432c77 | read,notify | result code, readable but will notify when the OTA operation completes |
| 5e134862-7411-4424-ac4a-210937432c67 | write | sets the region for programming, currently only 0 (app) or 100 (spiffs) are defined, if not set app is assumed |
| GATT_UUID_SW_VERSION_STR/0x2a28 | read | We also implement these standard GATT entries because SW update probably needs them: |
- [Rejected idea: RAW UDP](#rejected-idea-raw-udp)
- [Development plan](#development-plan)
- [Work items](#work-items)
- [Enhancements in following releases](#enhancements-in-following-releases)
## Abstract
This is a mini-doc/RFC sketching out a development plan to satisfy a number of 1.1 goals.
- [MQTT](https://opensource.com/article/18/6/mqtt) internet accessible API. Issue #[369](https://github.com/meshtastic/Meshtastic-device/issues/169)
- An open API to easily run custom mini-apps on the devices
- A text messaging bridge when a node in the mesh can gateway to the internet. Issue #[353](https://github.com/meshtastic/Meshtastic-device/issues/353) and this nicely documented [android issue](https://github.com/meshtastic/Meshtastic-Android/issues/2).
- An easy way to let desktop app developers remotely control GPIOs. Issue #[182](https://github.com/meshtastic/Meshtastic-device/issues/182)
- We want a clean API for novice developers to write mini "apps" that run **on the device** with the existing messaging/location "apps".
- We want the ability to have a gateway web service, so that if any node in the mesh can connect to the internet (via its connected phone app or directly) then that node will provide bidirectional messaging between nodes and the internet.
- We want an easy way for novice developers to remotely read and control GPIOs (because this is an often requested use case), without those developers having to write any device code.
- We want a way to gateway text messaging between our current private meshes and the broader internet (when that mesh is able to connect to the internet)
- We want a way to remotely set any device/channel parameter on a node. This is particularly important for administering physically inaccessible router nodes. Ideally this mechanism would also be used for administering the local node (so one common mechanism for both cases).
- This work should be independent of our current (semi-custom) LoRa transport, so that in the future we can swap out that transport if we wish (to QMesh or Reticulum?)
- Our networks are (usually) very slow and low bandwidth, so the messaging must be very airtime efficient.
## Long term goals
- Store and forward messaging should be supported, so apps can send messages that might be delivered to their destination in **hours** or **days** if a node/mesh was partitioned.
## Multiple Channel support / Security
Mini-apps API can bind to particular channels. They will only see messages sent on that channel.
During the 1.0 timeframe only one channel was supported per node. Starting in the 1.1 tree we will do things like "remote admin operations / channel settings etc..." are on the "Control" channel and only especially trusted users should have the keys to access that channel.
FIXME - explain this more, talk about how useful for users and security domains.
- add channels as security
## On device API
For information on the related on-device API see [here](device-api.md).
## MQTT transport
Any gateway-device will contact the MQTT broker.
### Topics
The "mesh/crypt/CHANNELID/NODEID/PORTID" [topic](https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/) will be used for messages sent from/to a mesh.
Gateway nodes will foward any MeshPacket from a local mesh channel with uplink_enabled. The packet (encapsulated in a ServiceEnvelope) will remain encrypted with the key for the specified channel.
For any channels in the local node with downlink_enabled, the gateway node will forward packets from MQTT to the local mesh. It will do this by subscribing to mesh/crypt/CHANNELID/# and forwarding relevant packets.
If the channelid 'well known'/public it could be decrypted by a web service (if the web service was provided with the associated channel key), in which case it will be decrypted by a web service and appear at "mesh/clear/CHANNELID/NODEID/PORTID". Note: This is not in the initial deliverable.
FIXME, discuss how text message global mirroring could scale (or not)
FIXME, possibly don't global mirror text messages - instead rely on matrix/riot?
FIXME, discuss possible attacks by griefers and how they can be prvented
#### Service Envelope
The payload published on mesh/... will always be wrapped in a [ServiceEnvelope protobuf](https://github.com/meshtastic/Meshtastic-protobufs/blob/master/docs/docs.md#.ServiceEnvelope).
ServiceEnvelope will include the message, and full information about arrival time, who forwarded it, source channel, source mesh id, etc...
#### NODEID
The unique ID for a node. A hex string that starts with a ! symbol.
#### USERID
A user ID string. This string is either a user ID if known or a nodeid to simply deliver the message to whoever the local user is of a particular device (i.e. person who might see the screen). FIXME, see what riot.im uses and perhaps use that convention? Or use the signal +phone number convention? Or the email addr?
#### CHANNELID
FIXME, figure out how channelids work
### Gateway nodes
Any meshtastic node that has a direct connection to the internet (either via a helper app or installed wifi/4G/satellite hardware) can function as a "Gateway node".
Gateway nodes (via code running in the phone) will contain two tables to whitelist particular traffic to either be delivered toward the internet, or down toward the mesh. Users that are developing custom apps will be able to customize these filters/subscriptions.
Since multiple gateway nodes might be connected to a single mesh, it is possible that duplicate messages will be published on any particular topic. Therefore subscribers to these topics should
deduplicate if needed by using the packet ID of each message.
### Optional web services
#### Public MQTT broker service
An existing public [MQTT broker](https://mosquitto.org/) will be the default for this service, but clients can use any MQTT broker they choose.
FIXME - figure out how to avoid impersonation (because we are initially using a public mqtt server with no special security options). FIXME, include some ideas on this in the ServiceEnvelope documentation.
#### Riot.im messaging bridge
@Geeksville will run a riot.im bridge that talks to the public MQTT broker and sends/receives into the riot.im network.
There is apparently [already](https://github.com/derEisele/tuple) a riot.im [bridge](https://matrix.org/bridges/) for MQTT. That will possibly need to be customized a bit. But by doing this, we should be able to let random riot.im users send/receive messages to/from any meshtastic device. (FIXME ponder security). See this [issue](https://github.com/meshtastic/Meshtastic-Android/issues/2#issuecomment-645660990) with discussion with the dev.
### Deprecated concepts
You can ignore these for now...
#### MESHID (deprecated)
Earlier drafts of this document included the concept of a MESHID. That concept has been removed for now, but might be useful in the future. The old idea is listed below:
A unique ID for this mesh. There will be some sort of key exchange process so that the mesh ID can not be impersonated by other meshes.
#### DESTCLASS (deprecated)
Earlier drafts of this document included the concept of a DESTCLASS. That concept has been removed for now, but might be useful in the future. The old idea is listed below:
The type of DESTID this message should be delivered to. A short one letter sequence:
| A | an application specific message, ID will be an APP ID |
| S | SMS gateway, DESTID is a phone number to reach via Twilio.com |
| E | Emergency message, see bug #fixme for more context |
#### DESTID (deprecated)
Earlier drafts of this document included the concept of a DESTCLASS. That concept has been removed for now, but might be useful in the future. The old idea is listed below:
Can be...
- an internet username: kevinh@geeksville.com
- ^ALL for anyone
- An app ID (to allow apps out in the web to receive arbitrary binary data from nodes or simply other apps using meshtastic as a transport). They would connect to the MQTT broker and subscribe to their topic
## Rejected idea: RAW UDP
A number of commenters have requested/proposed using UDP for the transport. We've considered this option and decided to use MQTT instead for the following reasons:
- Most UDP uses cases would need to have a server anyways so that nodes can reach each other from anywhere (i.e. if most gateways will be behind some form of NAT which would need to be tunnelled)
- Raw UDP is dropped **very** agressively by many cellular providers. MQTT from the gateway to a broker can be done over a TCP connection for this reason.
- MQTT provides a nice/documented/standard security model to build upon
- MQTT is fairly wire efficient with multiple broker implementations/providers and numerous client libraries for any language. The actual implementation of MQTT is quite simple.
## Development plan
Given the previous problem/goals statement, here's the initial thoughts on the work items required. As this idea becomes a bit more fully baked we should add details
on how this will be implemented and guesses at approximate work items.
### Work items
- Change nodeIDs to be base64 instead of eight hex digits.
- DONE Refactor the position features into a position "mini-app". Use only the new public on-device API to implement this app.
- DONE Refactor the on device texting features into a messaging "mini-app". (Similar to the position mini-app)
- Add new multi channel concept
- Send new channels to python client
- Let python client add channels
- Add portion of channelid to the raw lora packet header
- Confirm that we can now forward encrypted packets without decrypting at each node
- Use a channel named "remotehw" to secure the GPIO service. If that channel is not found, don't even start the service. Document this as the standard method for securing services.
- Add first cut of the "gateway node" code (i.e. MQTT broker client) to the python API (very little code needed for this component)
- Confirm that texting works to/from the internet
- Confirm that positions are optionally sent to the internet
- Add the first cut of the "gateway node" code to the android app (very little code needed for this component)
### Enhancements in following releases
The initial gateway will be added to the python tool. But the gateway implementation is designed to be fairly trivial/dumb. After the initial release the actual gateway code can be ported to also run inside of the android app. In fact, we could have ESP32 based nodes include a built-in "gateway node" implementation.
Store and forward could be added so that nodes on the mesh could deliver messages (i.e. text messages) on an "as possible" basis. This would allow things like "hiker sends a message to friend - mesh can not currently reach friend - eventually (days later) mesh can somehow reach friend, message gets delivered"
- at boot we are starting our message IDs at 1, rather we should start them at a random number. also, seed random based on timer. this could be the cause of our first message not seen bug.
- add a NEMA based GPS driver to test GPS
- add a NMEA based GPS driver to test GPS
- DONE use "variants" to get all gpio bindings
- DONE plug in correct variants for the real board
- turn on DFU assistance in the appload using the nordic DFU helper lib call
These are **preliminary** notes on support for Meshtastic in the Pinetab.
A RF95 is connected via a CS341 USB-SPI chip.
A RF95 is connected via a CH341 USB-SPI chip.
Pin assignments:
CS0 from RF95 goes to CS0 on CS341
DIO0 from RF95 goes to INT on CS341
RST from RF95 goes to RST on CS341
CS0 from RF95 goes to CS0 on CH341
DIO0 from RF95 goes to INT on CH341
RST from RF95 goes to RST on CH341
This linux driver claims to provide USB-SPI support: https://github.com/gschorcht/spi-ch341-usb
Notes here on using that driver: https://www.linuxquestions.org/questions/linux-hardware-18/ch341-usb-to-spi-adaptor-driver-doesn%27t-work-4175622736/
Or if **absolutely** necessary could bitbang: https://www.cnx-software.com/2018/02/16/wch-ch341-usb-to-serial-chip-gets-linux-driver-to-control-gpios-over-usb/
## Portduino tasks
* How to access spi devices via ioctl (spidev): https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md#:~:text=Troubleshooting-,Overview,bus)%2C%20UARTs%2C%20etc.
* Port meshtastic to build (under platformio) for a poxix target. spec: no screen, no gpios, sim network interface, posix threads, posix semaphores & queues, IO to the console only
This is a tutorial on how to write small plugins which run on the device. Plugins are bits regular 'arduino' code that can send and receive packets to other nodes/apps/PCs using our mesh.
## Key concepts
All plugins should be subclasses of MeshPlugin. By inheriting from this class and creating an instance of your new plugin your plugin will be automatically registered to receive packets.
Messages are sent to particular port numbers (similar to UDP networking). Your new plugin should eventually pick its own port number (see below), but at first you can simply use PRIVATE_APP (which is the default).
Packets can be sent/received either as raw binary structures or as [Protobufs](https://developers.google.com/protocol-buffers).
### Class heirarchy
The relevant bits of the class heirarchy are as follows
* [MeshPlugin](/src/mesh/MeshPlugin.h) (in src/mesh/MeshPlugin.h) - you probably don't want to use this baseclass directly
* [SinglePortPlugin](/src/mesh/SinglePortPlugin.h) (in src/mesh/SinglePortPlugin.h) - for plugins that send/receive from a single port number (the normal case)
* [ProtobufPlugin](/src/mesh/ProtobufPlugin.h) (in src/mesh/ProtobufPlugin.h) - for plugins that send/receive a single particular Protobuf type. Inherit from this if you are using protocol buffers in your plugin.
You will typically want to inherit from either SinglePortPlugin (if you are just sending/receiving raw bytes) or ProtobufPlugin (if you are sending/receiving protobufs). You'll implement your own handleReceived/handleReceivedProtobuf - probably based on the example code.
If your plugin needs to perform any operations at startup you can override and implement the setup() method to run your code.
If you need to send a packet you can call service.sendToMesh with code like this (from the examples):
```
MeshPacket *p = allocReply();
p->to = dest;
service.sendToMesh(p);
```
## Example plugins
A number of [key services](/src/plugins) are implemented using the plugin API, these plugins are as follows:
* [TextMessagePlugin](/src/plugins/TextMessagePlugin.h) - receives text messages and displays them on the LCD screen/stores them in the local DB
* [NodeInfoPlugin](/src/plugins/NodeInfoPlugin.h) - receives/sends User information to other nodes so that usernames are available in the databases
* [RemoteHardwarePlugin](/src/plugins/RemoteHardwarePlugin.h) - a plugin that provides easy remote access to device hardware (for things like turning GPIOs on or off). Intended to be a more extensive example and provide a useful feature of its own. See [remote-hardware](remote-hardware.md) for details.
* [ReplyPlugin](/src/plugins/ReplyPlugin.h) - a simple plugin that just replies to any packet it receives (provides a 'ping' service).
## Getting started
The easiest way to get started is:
* [Build and install](build-instructions.md) the standard codebase from github.
* Copy [src/plugins/ReplyPlugin.*](/src/plugins/ReplyPlugin.cpp) into src/plugins/YourPlugin.*. Then change the port number from *PortNum_REPLY_APP* to *PortNum_PRIVATE_APP*.
* Edit plugins/Plugins.cpp:setupPlugins() to add a call to create an instance of your plugin (see comment at head of that function)
* Rebuild with your new messaging goodness and install on the device
* Use the [meshtastic commandline tool](https://github.com/meshtastic/Meshtastic-python) to send a packet to your board, for example "*meshtastic --dest 1234 --sendping*", where *1234* is another mesh node to send the ping to.
## Threading
It is very common that you would like your plugin to be invoked periodically.
We use a crude/basic cooperative threading system to allow this on any of our supported platforms. Simply inherit from OSThread and implement runOnce(). See the OSThread [documentation](/src/concurrency/OSThread.h) for more details. For an example consumer of this API see RemoteHardwarePlugin::runOnce.
## Sending messages
If you would like to proactively send messages (rather than just responding to them), just call service.sendToMesh(). For an example of this see [NodeInfoPlugin::sendOurNodeInfo(...)](/src/plugins/NodeInfoPlugin.cpp).
## Picking a port number
For any new 'apps' that run on the device or via sister apps on phones/PCs they should pick and use a unique 'portnum' for their application.
If you are making a new app using meshtastic, please send in a pull request to add your 'portnum' to [the master list](https://github.com/meshtastic/Meshtastic-protobufs/blob/master/portnums.proto). PortNums should be assigned in the following range:
* **0-63** Core Meshtastic use; do not use for third party apps
* **64-127** Registered 3rd party apps. Send in a pull request that adds a new entry to portnums.proto to register your application
* **256-511** Use one of these portnums for your private applications that you don't want to register publically
* **1024-66559** Are reserved for use by IP tunneling (see *FIXME* for more information)
All other values are reserved.
## How to add custom protocol buffers
If you would like to use protocol buffers to define the structures you send over the mesh (recommended), here's how to do that.
* Create a new .proto file in the protos directory. You can use the existing [remote_hardware.proto](https://github.com/meshtastic/Meshtastic-protobufs/blob/master/remote_hardware.proto) file as an example.
* Run "bin/regen-protos.sh" to regenerate the C code for accessing the protocol buffers. If you don't have the required nanopb tool, follow the instructions printed by the script to get it.
* Done! You can now use your new protobuf just like any of the existing protobufs in meshtastic.
The ExternalNotification Plugin will allow you to connect a speaker, LED or other device to notify you when a message has been received from the mesh network.
# Configuration
These are the settings that can be configured.
ext_notification_plugin_enabled
Is the plugin enabled?
0 = Disabled (Default)
1 = Enabled
ext_notification_plugin_active
Is your external circuit triggered when our GPIO is low or high?
0 = Active Low (Default)
1 = Active High
ext_notification_plugin_alert_message
Do you want to be notified on an incoming message?
0 = Disabled (Default)
1 = Alert when a text message comes
ext_notification_plugin_alert_bell
Do you want to be notified on an incoming bell?
0 = Disabled (Default)
1 = Alert when the bell character is received
ext_notification_plugin_output
What GPIO is your external circuit attached?
GPIO of the output. (Default = 13)
ext_notification_plugin_output_ms
How long do you want us to trigger your external circuit?
Amount of time in ms for the alert. Default is 1000.
# Usage Notes
For basic usage, start with:
ext_notification_plugin_enabled = 1
ext_notification_plugin_alert_message = 1
Depending on how your external cirtcuit configured is configured, you may need to set the active state to true.
ext_notification_plugin_active = 1
## Alert Types
We support being alerted on two events:
1) Incoming Text Message
2) Incoming Text Message that contains the ascii bell character. At present, only the Python API can send an ascii bell character, but more support may be added in the future.
### Bell Character
The bell character is ASCII 0x07. Include 0x07 anywhere in the text message and with ext_notification_plugin_alert_bell enabled, we will issue an external notification.
# External Hardware
Be mindful of the max current sink and source of the esp32 GPIO. The easiest devices to interface with would be either an LED or Active Buzzer.
Ideas for external hardware:
* LED
* Active Buzzer
* Flame thrower
* Strobe Light
* Siren
# Known Problems
* This won't directly support an passive (normal) speaker as it does not generate any audio wave forms.
* This currently only supports the esp32. Other targets may be possible, I just don't have to test with.
* This plugin only monitors text messages. We won't trigger on any other packet types.
# Need more help?
Go to the Meshtastic Discourse Group if you have any questions or to share how you have used this.
The RangeTest Plugin will help you perform range and coverage tests.
# Configuration
These are the settings that can be configured.
range_test_plugin_enabled
Is the plugin enabled?
0 = Disabled (Default)
1 = Enabled
range_test_plugin_save
If enabled, we will save a log of all received messages to /static/rangetest.csv which you can access from the webserver. We will abort
writing if there is less than 50k of space on the filesystem to prevent filling up the storage.
0 = Disabled (Default)
1 = Enabled
range_test_plugin_sender
Number of seconds to wait between sending packets. Using the long_slow channel configuration, it's best not to go more frequent than once every 60 seconds. You can be more agressive with faster settings. 0 is default which disables sending messages.
# Usage Notes
For basic usage, you will need two devices both with a GPS. A device with a paired phone with GPS may work, I have not tried it.
The first thing to do is to turn on the plugin. With the plugin turned on, the other settings will be available:
range_test_plugin_enabled = 1
If you want to send a message every 60 seconds:
range_test_plugin_sender = 60
To save a log of the messages:
range_test_plugin_save = 1
Recommended settings for a sender at different radio settings:
Long Slow ... range_test_plugin_sender = 60
Long Alt ... range_test_plugin_sender = 30
Medium ... range_test_plugin_sender = 15
Short Fast ... range_test_plugin_sender = 15
## Python API Examples
### Sender
meshtastic --set range_test_plugin_enabled 1
meshtastic --set range_test_plugin_sender 60
### Receiver
meshtastic --set range_test_plugin_enabled 1
meshtastic --set range_test_plugin_save 1
## Other things to keep in mind
Be sure to turn off either the plugin configured as a sender or the device where the plugin setup as sender when not in use. This will use a lot of time on air and will spam your channel.
Also be mindful of your space usage on the file system. It has protections from filling up the space but it's best to delete old range test results.
# Application Examples
## Google Integration
@jfirwin on our forum [meshtastic.discourse.org](https://meshtastic.discourse.group/t/new-plugin-rangetestplugin/2591/49?u=mc-hamster) shared how to integrate the resulting csv file with Google Products.
### Earth
Steps:
1. [Download](https://www.google.com/earth/versions/#download-pro) 1 and open Google Earth
1. Select File > Import
2. Select CSV
3. Select Delimited, Comma
4. Make sure the button that states “This dataset does not contain latitude/longitude information, but street addresses” is unchecked
5. Select “rx lat” & “rx long” for the appropriate lat/lng fields
6. Click finish
2. When it prompts you to create a style template, click yes.
1. Set the name field to whichever column you want to be displayed on the map (don’t worry about this too much, when you click on an icon, all the relavant data appears)
2. select a color, icon, etc. and hit ok.
Your data will load onto the map, make sure to click the checkbox next to your dataset in the sidebar to view it.
### My Maps
You can use [My Maps](http://mymaps.google.com/). It takes CSVs and the whole interface is much easier to work with.
Google has instructions on how to do that [here](https://support.google.com/mymaps/answer/3024836?co=GENIE.Platform%3DDesktop&hl=en#zippy=%2Cstep-prepare-your-info%2Cstep-import-info-into-the-map).
You can style the ranges differently based on the values, so you can have the pins be darker the if the SNR or RSSI (if that gets added) is higher.
# Known Problems
* If turned on, using mesh network will become unwieldly because messages are sent over the same channel as the other messages. See TODO below.
# TODO
* Right now range test messages go over the TEXT_MESSAGE_APP port. We need a toggle to switch to optionally send over RANGE_TEST_APP.
# FAQ
Q: Where is rangetest.csv saved?
A: Turn on the WiFi on your device as either a WiFi client or a WiFi AP. Once you can connect to your device, go to /static and you will see rangetest.csv.
Q: Do I need to have WiFi turned on for the file to be saved?
A: Nope, it'll just work.
Q: Do I need a phone for this plugin?
A: There's no need for a phone.
Q: Can I use this as a message logger?
A: While it's not the intended purpose, sure, why not. Do it!
Q: What will happen if I run out of space on my device?
A: We have a protection in place to keep you from completly filling up your device. This will make sure that other device critical functions will continue to work. We will reserve at least 50k of free space.
Q: What do I do with the rangetest.csv file when I'm done?
A: Go to /static and delete the file.
Q: Can I use this as a sender while on battery power?
A: Yes, but your battery will run down quicker than normal. While sending, we tell the device not to go into low-power mode since it needs to keep to a fairly strict timer.
Q: Why is this operating on incoming messages instead of the existing location discovery protocol?
A: This plugin is still young and currently supports monitoring just one port at a time. I decided to use the existing message port because that is easy to test with. A future version will listen to multiple ports to be more promiscuous.
# Need more help?
Go to the Meshtastic Discourse Group if you have any questions or to share how you have used this.
This is a work in progress and is not yet available.
The Store Forward Plugin is an implementation of a Store and Forward system to enable resilient messaging in the event that a client device is disconnected from the main network.
Because of the increased network traffic for this overhead, it's not adviced to use this if you are duty cycle limited for your airtime usage nor is it adviced to use this for SF12 (Long range but Slow).
# Requirements
Initial Requirements:
* Must be installed on a router node.
* * This is an artificial limitation, but is in place to enforce best practices.
* * Router nodes are intended to be always online. If this plugin misses any messages, the reliability of the stored messages will be reduced
* Esp32 Processor based device with external PSRAM. (tbeam v1.0 and tbeamv1.1, maybe others)
# Implementation timeline
Not necessarily in this order:
UC 1) MVP - automagically forward packets to a client that may have missed packets.
UC 2) Client Interface (Web, Android, Python or iOS when that happens) to optionally request packets be resent. This is to support the case where Router has not detected that the client was away. This is because the router will only know you're away if you've been gone for a period of time but will have no way of knowing if you were offline for a short number of minutes. This will cover the case where you have ducked into a cave or you're swapping out your battery.
UC 3) router sends a periodic “heartbeat” to let the clients know they’re part of the main mesh
UC 4) support for a mesh to have multiple routers that have the store & forward functionality (for redundancy)
UC 5) Support for "long term" delayed messages and "short term" delayed messages. Handle the cases slightly different to improve user expierence. A short term delayed message would be a message that was resent becaue a node was not heard from for <5 minutes. A long term delayed message is a message that has not been delivered in >5 minutes.
UC 6) Eventually we could add a "want_store_and_forward" bit to MeshPacket and that could be nicer than whitelists in this plugin. Initially we'd only set that bit in text messages (and any other plugin messages that can cope with this). This change would be backward wire compatible so can add easily later.
UC 7) Currently the way we allocate messages in the device code is super inefficient. It always allocates the worst case message size. Really we should dynamically allocate just the # of bytes we need. This would allow many more MeshPackets to be kept in RAM.
UC 8) We'll want a "delayed" bit in MeshPacket. This will indicate that the message was not received in real time.
# Things to consider
Not all these cases will be initially implemented. It's just a running stream of thoughts to be considered.
## Main Mesh Network with Router
The store and forward plugin is intended to be enabled on a router that designates your "main" mesh network.
## Store and Forward on Multiple Routers
If multiple routers with the plugin are enabled, they should be able to share their stored database amongst each other. This enable resilliancy from one router going offline.
## Fragmented networks - No router
In this case, the mesh network has been fragmented by two client devices leaving the main network.
If two Meshtastic devices walk away from the main mesh, they will be able to message each other but not message the main network. When they return to the main network, they will receive the messages they have missed from the main mesh network.
## Fragmented network - With routers
In this case, we have two routers separate by a great distance, each serving multiple devices. One of the routers have gone offline. This has now created two physically seaprated mesh networks using the same channel configuration.
Q: How do we rejoin both fragmented networks? Do we care about messages that were unrouted between fagments?
## Identifing Delayed Messages
When a message is replayed for a node, identify the packet as "Delayed". This will indicate that the message was not received in real time.
# Router Data Structures
Structure of received messages:
receivedMessages
Port_No
packetID
to
from
rxTimeMsec
data
Structure of nodes and last time we heard from them. This is a record of any packet type.
receivedRecord
From
rxTimeMillis
# General Operation for UC1 - automagically forward packets to a client that may have missed packets
On every handled packet
* Record the sender from and the time we heard from that sender into senderRecord.
On every handled packet
* If the packet is a message, save the messsage into receivedMessages
On every handled packet, if we have not heard from that sender in a period of time greater than timeAway, let's assume that they have been away from the network.
* In this case, we will resend them all the messages they have missed since they were gone
## Expected problems this implementation
* If the client has been away for less than 5 minutes and has received the previously sent message, the client will gracefully ignore it. This is thanks to PacketHistory::wasSeenRecently in PacketHistory.cpp.
* * If the client has been away for more than 5 minutes and we resend packets that they have already received, it's possible they will see duplicate messages. This should be unlikely but is still possible.
# Designed limitations
The Store and Forward plugin will subscribe to specific packet types and channels and only save those. This will both reduce the amount of data we will need to store and reduce the overhead on the network. Eg: There's no need to replay ACK packets nor is there's no need to replay old location packets.
@@ -32,21 +32,25 @@ From lower to higher power consumption.
onEntry: setBluetoothOn(true)
onExit:
- full on (ON) - Everything is on
onEntry: setBluetoothOn(true), screen.setOn(true)
onExit: screen.setOn(false)
- serial API usage (SERIAL) - Screen is on, device doesn't sleep, bluetooth off
onEntry: setBluetooth off, screen on
onExit:
- full on (ON) - Everything is on, can eventually timeout and lower to a lower power state
onEntry: setBluetoothOn(true), screen.setOn(true)
onExit: screen->setOn(false)
- has power (POWER) - Screen is on, device doesn't sleep, bluetooth on, will stay in this state as long as we have power
onEntry: setBluetooth off, screen on
onExit:
## Behavior
### events that increase CPU activity
- At cold boot: The initial state (after setup() has run) is DARK
- While in DARK: if we receive EVENT_BOOT, transition to ON (and show the bootscreen). This event will be sent if we detect we woke due to reset (as opposed to deep sleep)
- While in LS: Once every position_broadcast_secs (default 15 mins) - the unit will wake into DARK mode and broadcast a "networkPing" (our position) and stay alive for wait_bluetooth_secs (default 30 seconds). This allows other nodes to have a record of our last known position if we go away and allows a paired phone to hear from us and download messages.
- While in LS: Once every position_broadcast_secs (default 15 mins) - the unit will wake into DARK mode and broadcast a "networkPing" (our position) and stay alive for wait_bluetooth_secs (default 60 seconds). This allows other nodes to have a record of our last known position if we go away and allows a paired phone to hear from us and download messages.
- While in LS: Every send*owner_interval (defaults to 4, i.e. one hour), when we wake to send our position we \_also* broadcast our owner. This lets new nodes on the network find out about us or correct duplicate node number assignments.
- While in LS/NB/DARK: If the user presses a button (EVENT_PRESS) we go to full ON mode for screen_on_secs (default 30 seconds). Multiple presses keeps resetting this timeout
- While in LS/NB/DARK: If we receive new text messages (EVENT_RECEIVED_TEXT_MSG), we go to full ON mode for screen_on_secs (same as if user pressed a button)
@@ -56,9 +60,11 @@ From lower to higher power consumption.
- While in NB/DARK/ON: If we receive EVENT_NODEDB_UPDATED we transition to ON (so the new screen can be shown)
- While in DARK: While the phone talks to us over BLE (EVENT_CONTACT_FROM_PHONE) reset any sleep timers and stay in DARK (needed for bluetooth sw update and nice user experience if the user is reading/replying to texts)
- while in LS/NB/DARK: if SERIAL_CONNECTED, go to serial
- while in any state: if we have AC power, go to POWER
### events that decrease cpu activity
- While in POWER: if lose AC go to ON
- While in SERIAL: if SERIAL_DISCONNECTED, go to NB
- While in ON: If PRESS event occurs, reset screen_on_secs timer and tell the screen to handle the pess
- While in ON: If it has been more than screen_on_secs since a press, lower to DARK
This is the first documentation for how to use the [multiple channels](channels.md) feature to enable remote adminstration of meshtastic nodes. i.e. let you talk through the mesh to some far away node and change that nodes settings. This is an advanced feature that (currently) few users would need. Also, keep in mind it is possible (if you are not careful) to assign settings to that remote node that cause it to completely drop off of your mesh.
Btw: I promised to document how multi-channel is now used to secure remote GPIO/serial access. But probably best to debug these instructions first, so I'll wait on that. If you **do** need to use remote GPIO/serial now, just follow these instructions but name your new channel "gpio" or "serial".
## Creating the "admin" channel
Okay - now that we've summarized what multiple-channel support is, we can move on to using it to provide remote administrative access to a node.
By default, nodes will **only** respond to adminstrative commands via the local USB/bluetooth/TCP interface. This provides basic security to prevent unauthorized access. This is actually how 'normal' administration and settings changes work. The only difference for the remote case is that we are sending those commands over the mesh.
Before a node will allow remote admin access, it must find a channel
Complete URL (includes all channels): https://www.meshtastic.org/d/#CgUYAyIBAQopIiAdbsTecxuI1u-voyGwOicsKaPt5ICG23ONsjH-vk5CaCoFYWRtaW4
```
Notice that now we have a new secondary channel. Also, the "--info" option prints out TWO URLs. The "complete URL" includes all of the channels this node understands. You should consider this URL something you should be very cautious about sharing. In the case of remote adminstration, you only need the node you want to adminster and the node you are locally connected to know this new "admin" channel.
## Sharing the admin channel with other nodes
I'm going to assume you've already created the admin channel on your "local node" i.e. the meshtastic node sitting on your desk at your home. But now you want to enable access on the "remote node" you want to eventually have far away from you.
For this step you need physical access to both the nodes.
1. Create the "admin" channel on the "local node" using the instructions above.
2. Copy the "Complete URL" someplace for permanent reference/access.
3. Connect meshtastic-python to the "remote node" over the USB port.
4. For the "remote node" type "meshtastic --seturl the-url-from-step-2".
5. Run "meshtastic --info" and confirm that the "Complete URL" is the same for both of the nodes.
6. Done!
At this point you can take your remote node and install it far away and still be able to change any of its settings.
## Remotely administering your node
Now that both your local node and the remote node contain your secret admin channel key, you can do things like this:
Note: you can change **any** parameter, add channels or get info from the remote node. Here's an example of setting ls_secs and printing the complete device info from the remote node.
Complete URL (includes all channels): https://www.meshtastic.org/d/#CgUYAyIBAQopIiAdbsTecxuI1u-voyGwOicsKaPt5ICG23ONsjH-vk5CaCoFYWRtaW4
```
## Areas for future development
In the future we will add a "deadman timer" to this feature so that the remote node will revert any changes if you fail to send a special "commit changes" command. This will protect against sending bad settings to nodes that you can't physically access. Instead if the node does not receive a commit message within 10 minutes it will revert all changes and (hopefully) rejoin the mesh.
FIXME - the following are a collection of notes moved from elsewhere. We need to refactor these notes into actual documentation on the remote-hardware/gpio service.
### 1.7.2. New 'no-code-IOT' mini-app
Add a new 'remote GPIO/serial port/SPI/I2C access' mini-app. This new standard app would use the MQTT messaging layer to let users (developers that don't need to write device code) do basic (potentially dangerous) operations remotely.
#### 1.7.2.1. Supported operations in the initial release
Initially supported features for no-code-IOT.
- Set any GPIO
- Read any GPIO
#### 1.7.2.2. Supported operations eventually
General ideas for no-code IOT.
- Subscribe for notification of GPIO input status change (i.e. when pin goes low, send my app a message)
- Write/read N bytes over I2C/SPI bus Y (as one atomic I2C/SPI transaction)
- Send N bytes out serial port Z
- Subscribe for notification for when regex X matches the bytes that were received on serial port Z
This is a mini design doc for developing the meshtastic software.
* [Build instructions](build-instructions.md)
* [On device plugin API](plugin-api.md) - a tutorial on how to write small Plugins which run on the device and can message other nodes.
* [TODO](TODO.md) - read this if you are looking for things to do (or curious about currently missing features)
* Our [project board](https://github.com/orgs/meshtastic/projects/1) - shows what things we are currently working on and remaining work items for the current release.
* [Power Management](power.md)
* [Mesh algorithm](mesh-alg.md)
* [Bluetooth API](bluetooth-api.md) and porting guide for new clients (iOS, python, etc...)
* [Channels](channels.md) - documentation on how multiple simultaneous channels are used
* [Remote adminstration](remote-admin.md)
* [External client API](device-api.md) and porting guide for new clients (iOS, python, etc...)
* TODO: how to port the device code to a new device.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.