mirror of
https://github.com/meshtastic/firmware.git
synced 2026-01-25 03:07:44 +00:00
NRF52 - power management improvements (#9211)
* minor NRF52 test cleanup * detect USB power input on ProMicro boards * prevent booting on power failure detection * introduce PowerHAL layer * powerHAL basic implementation for NRF52 * prevent data saves on low power * remove comment * Update src/platform/nrf52/main-nrf52.cpp Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * Update src/power/PowerHAL.h Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * Update src/main.cpp Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * Merge missing voltage threshold comparison * add missing variable * add missing function declaration * remove debug strings --------- Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Ben Meadors <benmmeadors@gmail.com>
This commit is contained in:
194
src/Power.cpp
194
src/Power.cpp
@@ -1,11 +1,14 @@
|
||||
/**
|
||||
* @file Power.cpp
|
||||
* @brief This file contains the implementation of the Power class, which is responsible for managing power-related functionality
|
||||
* of the device. It includes battery level sensing, power management unit (PMU) control, and power state machine management. The
|
||||
* Power class is used by the main device class to manage power-related functionality.
|
||||
* @brief This file contains the implementation of the Power class, which is
|
||||
* responsible for managing power-related functionality of the device. It
|
||||
* includes battery level sensing, power management unit (PMU) control, and
|
||||
* power state machine management. The Power class is used by the main device
|
||||
* class to manage power-related functionality.
|
||||
*
|
||||
* The file also includes implementations of various battery level sensors, such as the AnalogBatteryLevel class, which assumes
|
||||
* the battery voltage is attached via a voltage-divider to an analog input.
|
||||
* The file also includes implementations of various battery level sensors, such
|
||||
* as the AnalogBatteryLevel class, which assumes the battery voltage is
|
||||
* attached via a voltage-divider to an analog input.
|
||||
*
|
||||
* This file is part of the Meshtastic project.
|
||||
* For more information, see: https://meshtastic.org/
|
||||
@@ -19,6 +22,7 @@
|
||||
#include "configuration.h"
|
||||
#include "main.h"
|
||||
#include "meshUtils.h"
|
||||
#include "power/PowerHAL.h"
|
||||
#include "sleep.h"
|
||||
|
||||
#if defined(ARCH_PORTDUINO)
|
||||
@@ -171,22 +175,12 @@ Power *power;
|
||||
|
||||
using namespace meshtastic;
|
||||
|
||||
#ifndef AREF_VOLTAGE
|
||||
#if defined(ARCH_NRF52)
|
||||
/*
|
||||
* Internal Reference is +/-0.6V, with an adjustable gain of 1/6, 1/5, 1/4,
|
||||
* 1/3, 1/2 or 1, meaning 3.6, 3.0, 2.4, 1.8, 1.2 or 0.6V for the ADC levels.
|
||||
*
|
||||
* External Reference is VDD/4, with an adjustable gain of 1, 2 or 4, meaning
|
||||
* VDD/4, VDD/2 or VDD for the ADC levels.
|
||||
*
|
||||
* Default settings are internal reference with 1/6 gain (GND..3.6V ADC range)
|
||||
*/
|
||||
#define AREF_VOLTAGE 3.6
|
||||
#else
|
||||
// NRF52 has AREF_VOLTAGE defined in architecture.h but
|
||||
// make sure it's included. If something is wrong with NRF52
|
||||
// definition - compilation will fail on missing definition
|
||||
#if !defined(AREF_VOLTAGE) && !defined(ARCH_NRF52)
|
||||
#define AREF_VOLTAGE 3.3
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* If this board has a battery level sensor, set this to a valid implementation
|
||||
@@ -233,7 +227,8 @@ static void battery_adcDisable()
|
||||
#endif
|
||||
|
||||
/**
|
||||
* A simple battery level sensor that assumes the battery voltage is attached via a voltage-divider to an analog input
|
||||
* A simple battery level sensor that assumes the battery voltage is attached
|
||||
* via a voltage-divider to an analog input
|
||||
*/
|
||||
class AnalogBatteryLevel : public HasBatteryLevel
|
||||
{
|
||||
@@ -311,7 +306,8 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
|
||||
#ifndef BATTERY_SENSE_SAMPLES
|
||||
#define BATTERY_SENSE_SAMPLES \
|
||||
15 // Set the number of samples, it has an effect of increasing sensitivity in complex electromagnetic environment.
|
||||
15 // Set the number of samples, it has an effect of increasing sensitivity in
|
||||
// complex electromagnetic environment.
|
||||
#endif
|
||||
|
||||
#ifdef BATTERY_PIN
|
||||
@@ -341,7 +337,8 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
battery_adcDisable();
|
||||
|
||||
if (!initial_read_done) {
|
||||
// Flush the smoothing filter with an ADC reading, if the reading is plausibly correct
|
||||
// Flush the smoothing filter with an ADC reading, if the reading is
|
||||
// plausibly correct
|
||||
if (scaled > last_read_value)
|
||||
last_read_value = scaled;
|
||||
initial_read_done = true;
|
||||
@@ -350,8 +347,8 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
last_read_value += (scaled - last_read_value) * 0.5; // Virtual LPF
|
||||
}
|
||||
|
||||
// LOG_DEBUG("battery gpio %d raw val=%u scaled=%u filtered=%u", BATTERY_PIN, raw, (uint32_t)(scaled), (uint32_t)
|
||||
// (last_read_value));
|
||||
// LOG_DEBUG("battery gpio %d raw val=%u scaled=%u filtered=%u",
|
||||
// BATTERY_PIN, raw, (uint32_t)(scaled), (uint32_t) (last_read_value));
|
||||
}
|
||||
return last_read_value;
|
||||
#endif // BATTERY_PIN
|
||||
@@ -420,7 +417,8 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
/**
|
||||
* return true if there is a battery installed in this unit
|
||||
*/
|
||||
// if we have a integrated device with a battery, we can assume that the battery is always connected
|
||||
// if we have a integrated device with a battery, we can assume that the
|
||||
// battery is always connected
|
||||
#ifdef BATTERY_IMMUTABLE
|
||||
virtual bool isBatteryConnect() override { return true; }
|
||||
#elif defined(ADC_V)
|
||||
@@ -441,10 +439,10 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
virtual bool isBatteryConnect() override { return getBatteryPercent() != -1; }
|
||||
#endif
|
||||
|
||||
/// If we see a battery voltage higher than physics allows - assume charger is pumping
|
||||
/// in power
|
||||
/// On some boards we don't have the power management chip (like AXPxxxx)
|
||||
/// so we use EXT_PWR_DETECT GPIO pin to detect external power source
|
||||
/// If we see a battery voltage higher than physics allows - assume charger is
|
||||
/// pumping in power On some boards we don't have the power management chip
|
||||
/// (like AXPxxxx) so we use EXT_PWR_DETECT GPIO pin to detect external power
|
||||
/// source
|
||||
virtual bool isVbusIn() override
|
||||
{
|
||||
#ifdef EXT_PWR_DETECT
|
||||
@@ -461,8 +459,12 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
}
|
||||
// if it's not HIGH - check the battery
|
||||
#endif
|
||||
#elif defined(MUZI_BASE)
|
||||
return NRF_POWER->USBREGSTATUS & POWER_USBREGSTATUS_VBUSDETECT_Msk;
|
||||
|
||||
// technically speaking this should work for all(?) NRF52 boards
|
||||
// but needs testing across multiple devices. NRF52 USB would not even work if
|
||||
// VBUS was not properly connected and detected by the CPU
|
||||
#elif defined(MUZI_BASE) || defined(PROMICRO_DIY_TCXO)
|
||||
return powerHAL_isVBUSConnected();
|
||||
#endif
|
||||
return getBattVoltage() > chargingVolt;
|
||||
}
|
||||
@@ -485,8 +487,9 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
#else
|
||||
#if HAS_TELEMETRY && !MESHTASTIC_EXCLUDE_ENVIRONMENTAL_SENSOR && !defined(DISABLE_INA_CHARGING_DETECTION)
|
||||
if (hasINA()) {
|
||||
// get current flow from INA sensor - negative value means power flowing into the battery
|
||||
// default assuming BATTERY+ <--> INA_VIN+ <--> SHUNT RESISTOR <--> INA_VIN- <--> LOAD
|
||||
// get current flow from INA sensor - negative value means power flowing
|
||||
// into the battery default assuming BATTERY+ <--> INA_VIN+ <--> SHUNT
|
||||
// RESISTOR <--> INA_VIN- <--> LOAD
|
||||
LOG_DEBUG("Using INA on I2C addr 0x%x for charging detection", config.power.device_battery_ina_address);
|
||||
#if defined(INA_CHARGING_DETECTION_INVERT)
|
||||
return getINACurrent() > 0;
|
||||
@@ -502,8 +505,8 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
}
|
||||
|
||||
private:
|
||||
/// If we see a battery voltage higher than physics allows - assume charger is pumping
|
||||
/// in power
|
||||
/// If we see a battery voltage higher than physics allows - assume charger is
|
||||
/// pumping in power
|
||||
|
||||
/// For heltecs with no battery connected, the measured voltage is 2204, so
|
||||
// need to be higher than that, in this case is 2500mV (3000-500)
|
||||
@@ -512,7 +515,8 @@ class AnalogBatteryLevel : public HasBatteryLevel
|
||||
const float noBatVolt = (OCV[NUM_OCV_POINTS - 1] - 500) * NUM_CELLS;
|
||||
// Start value from minimum voltage for the filter to not start from 0
|
||||
// that could trigger some events.
|
||||
// This value is over-written by the first ADC reading, it the voltage seems reasonable.
|
||||
// This value is over-written by the first ADC reading, it the voltage seems
|
||||
// reasonable.
|
||||
bool initial_read_done = false;
|
||||
float last_read_value = (OCV[NUM_OCV_POINTS - 1] * NUM_CELLS);
|
||||
uint32_t last_read_time_ms = 0;
|
||||
@@ -654,7 +658,8 @@ bool Power::analogInit()
|
||||
#ifdef CONFIG_IDF_TARGET_ESP32S3
|
||||
// ESP32S3
|
||||
else if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP_FIT) {
|
||||
LOG_INFO("ADC config based on Two Point values and fitting curve coefficients stored in eFuse");
|
||||
LOG_INFO("ADC config based on Two Point values and fitting curve "
|
||||
"coefficients stored in eFuse");
|
||||
}
|
||||
#endif
|
||||
else {
|
||||
@@ -662,13 +667,7 @@ bool Power::analogInit()
|
||||
}
|
||||
#endif // ARCH_ESP32
|
||||
|
||||
#ifdef ARCH_NRF52
|
||||
#ifdef VBAT_AR_INTERNAL
|
||||
analogReference(VBAT_AR_INTERNAL);
|
||||
#else
|
||||
analogReference(AR_INTERNAL); // 3.6V
|
||||
#endif
|
||||
#endif // ARCH_NRF52
|
||||
// NRF52 ADC init moved to powerHAL_init in nrf52 platform
|
||||
|
||||
#ifndef ARCH_ESP32
|
||||
analogReadResolution(BATTERY_SENSE_RESOLUTION_BITS);
|
||||
@@ -779,7 +778,8 @@ void Power::reboot()
|
||||
HAL_NVIC_SystemReset();
|
||||
#else
|
||||
rebootAtMsec = -1;
|
||||
LOG_WARN("FIXME implement reboot for this platform. Note that some settings require a restart to be applied");
|
||||
LOG_WARN("FIXME implement reboot for this platform. Note that some settings "
|
||||
"require a restart to be applied");
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -789,9 +789,12 @@ void Power::shutdown()
|
||||
#if HAS_SCREEN
|
||||
if (screen) {
|
||||
#ifdef T_DECK_PRO
|
||||
screen->showSimpleBanner("Device is powered off.\nConnect USB to start!", 0); // T-Deck Pro has no power button
|
||||
screen->showSimpleBanner("Device is powered off.\nConnect USB to start!",
|
||||
0); // T-Deck Pro has no power button
|
||||
#elif defined(USE_EINK)
|
||||
screen->showSimpleBanner("Shutting Down...", 2250); // dismiss after 3 seconds to avoid the banner on the sleep screen
|
||||
screen->showSimpleBanner("Shutting Down...",
|
||||
2250); // dismiss after 3 seconds to avoid the
|
||||
// banner on the sleep screen
|
||||
#else
|
||||
screen->showSimpleBanner("Shutting Down...", 0); // stays on screen
|
||||
#endif
|
||||
@@ -830,7 +833,8 @@ void Power::readPowerStatus()
|
||||
int32_t batteryVoltageMv = -1; // Assume unknown
|
||||
int8_t batteryChargePercent = -1;
|
||||
OptionalBool usbPowered = OptUnknown;
|
||||
OptionalBool hasBattery = OptUnknown; // These must be static because NRF_APM code doesn't run every time
|
||||
OptionalBool hasBattery = OptUnknown; // These must be static because NRF_APM
|
||||
// code doesn't run every time
|
||||
OptionalBool isChargingNow = OptUnknown;
|
||||
|
||||
if (batteryLevel) {
|
||||
@@ -843,9 +847,10 @@ void Power::readPowerStatus()
|
||||
if (batteryLevel->getBatteryPercent() >= 0) {
|
||||
batteryChargePercent = batteryLevel->getBatteryPercent();
|
||||
} else {
|
||||
// If the AXP192 returns a percentage less than 0, the feature is either not supported or there is an error
|
||||
// In that case, we compute an estimate of the charge percent based on open circuit voltage table defined
|
||||
// in power.h
|
||||
// If the AXP192 returns a percentage less than 0, the feature is either
|
||||
// not supported or there is an error In that case, we compute an
|
||||
// estimate of the charge percent based on open circuit voltage table
|
||||
// defined in power.h
|
||||
batteryChargePercent = clamp((int)(((batteryVoltageMv - (OCV[NUM_OCV_POINTS - 1] * NUM_CELLS)) * 1e2) /
|
||||
((OCV[0] * NUM_CELLS) - (OCV[NUM_OCV_POINTS - 1] * NUM_CELLS))),
|
||||
0, 100);
|
||||
@@ -853,12 +858,12 @@ void Power::readPowerStatus()
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: IMO we shouldn't be littering our code with all these ifdefs. Way better instead to make a Nrf52IsUsbPowered subclass
|
||||
// (which shares a superclass with the BatteryLevel stuff)
|
||||
// that just provides a few methods. But in the interest of fixing this bug I'm going to follow current
|
||||
// practice.
|
||||
#ifdef NRF_APM // Section of code detects USB power on the RAK4631 and updates the power states. Takes 20 seconds or so to detect
|
||||
// changes.
|
||||
// FIXME: IMO we shouldn't be littering our code with all these ifdefs. Way
|
||||
// better instead to make a Nrf52IsUsbPowered subclass (which shares a
|
||||
// superclass with the BatteryLevel stuff) that just provides a few methods. But
|
||||
// in the interest of fixing this bug I'm going to follow current practice.
|
||||
#ifdef NRF_APM // Section of code detects USB power on the RAK4631 and updates
|
||||
// the power states. Takes 20 seconds or so to detect changes.
|
||||
|
||||
nrfx_power_usb_state_t nrf_usb_state = nrfx_power_usbstatus_get();
|
||||
// LOG_DEBUG("NRF Power %d", nrf_usb_state);
|
||||
@@ -932,8 +937,9 @@ void Power::readPowerStatus()
|
||||
|
||||
#endif
|
||||
|
||||
// If we have a battery at all and it is less than 0%, force deep sleep if we have more than 10 low readings in
|
||||
// a row. NOTE: min LiIon/LiPo voltage is 2.0 to 2.5V, current OCV min is set to 3100 that is large enough.
|
||||
// If we have a battery at all and it is less than 0%, force deep sleep if we
|
||||
// have more than 10 low readings in a row. NOTE: min LiIon/LiPo voltage
|
||||
// is 2.0 to 2.5V, current OCV min is set to 3100 that is large enough.
|
||||
//
|
||||
|
||||
if (batteryLevel && powerStatus2.getHasBattery() && !powerStatus2.getHasUSB()) {
|
||||
@@ -955,8 +961,8 @@ int32_t Power::runOnce()
|
||||
readPowerStatus();
|
||||
|
||||
#ifdef HAS_PMU
|
||||
// WE no longer use the IRQ line to wake the CPU (due to false wakes from sleep), but we do poll
|
||||
// the IRQ status by reading the registers over I2C
|
||||
// WE no longer use the IRQ line to wake the CPU (due to false wakes from
|
||||
// sleep), but we do poll the IRQ status by reading the registers over I2C
|
||||
if (PMU) {
|
||||
|
||||
PMU->getIrqStatus();
|
||||
@@ -998,7 +1004,8 @@ int32_t Power::runOnce()
|
||||
PMU->clearIrqStatus();
|
||||
}
|
||||
#endif
|
||||
// Only read once every 20 seconds once the power status for the app has been initialized
|
||||
// Only read once every 20 seconds once the power status for the app has been
|
||||
// initialized
|
||||
return (statusHandler && statusHandler->isInitialized()) ? (1000 * 20) : RUN_SAME;
|
||||
}
|
||||
|
||||
@@ -1006,10 +1013,12 @@ int32_t Power::runOnce()
|
||||
* Init the power manager chip
|
||||
*
|
||||
* axp192 power
|
||||
DCDC1 0.7-3.5V @ 1200mA max -> OLED // If you turn this off you'll lose comms to the axp192 because the OLED and the
|
||||
axp192 share the same i2c bus, instead use ssd1306 sleep mode DCDC2 -> unused DCDC3 0.7-3.5V @ 700mA max -> ESP32 (keep this
|
||||
on!) LDO1 30mA -> charges GPS backup battery // charges the tiny J13 battery by the GPS to power the GPS ram (for a couple of
|
||||
days), can not be turned off LDO2 200mA -> LORA LDO3 200mA -> GPS
|
||||
DCDC1 0.7-3.5V @ 1200mA max -> OLED // If you turn this off you'll lose
|
||||
comms to the axp192 because the OLED and the axp192 share the same i2c bus,
|
||||
instead use ssd1306 sleep mode DCDC2 -> unused DCDC3 0.7-3.5V @ 700mA max ->
|
||||
ESP32 (keep this on!) LDO1 30mA -> charges GPS backup battery // charges the
|
||||
tiny J13 battery by the GPS to power the GPS ram (for a couple of days), can
|
||||
not be turned off LDO2 200mA -> LORA LDO3 200mA -> GPS
|
||||
*
|
||||
*/
|
||||
bool Power::axpChipInit()
|
||||
@@ -1054,9 +1063,10 @@ bool Power::axpChipInit()
|
||||
|
||||
if (!PMU) {
|
||||
/*
|
||||
* In XPowersLib, if the XPowersAXPxxx object is released, Wire.end() will be called at the same time.
|
||||
* In order not to affect other devices, if the initialization of the PMU fails, Wire needs to be re-initialized once,
|
||||
* if there are multiple devices sharing the bus.
|
||||
* In XPowersLib, if the XPowersAXPxxx object is released, Wire.end() will
|
||||
* be called at the same time. In order not to affect other devices, if the
|
||||
* initialization of the PMU fails, Wire needs to be re-initialized once, if
|
||||
* there are multiple devices sharing the bus.
|
||||
* * */
|
||||
#ifndef PMU_USE_WIRE1
|
||||
w->begin(I2C_SDA, I2C_SCL);
|
||||
@@ -1073,8 +1083,8 @@ bool Power::axpChipInit()
|
||||
PMU->enablePowerOutput(XPOWERS_LDO2);
|
||||
|
||||
// oled module power channel,
|
||||
// disable it will cause abnormal communication between boot and AXP power supply,
|
||||
// do not turn it off
|
||||
// disable it will cause abnormal communication between boot and AXP power
|
||||
// supply, do not turn it off
|
||||
PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
|
||||
// enable oled power
|
||||
PMU->enablePowerOutput(XPOWERS_DCDC1);
|
||||
@@ -1101,7 +1111,8 @@ bool Power::axpChipInit()
|
||||
PMU->setChargeTargetVoltage(XPOWERS_AXP192_CHG_VOL_4V2);
|
||||
} else if (PMU->getChipModel() == XPOWERS_AXP2101) {
|
||||
|
||||
/*The alternative version of T-Beam 1.1 differs from T-Beam V1.1 in that it uses an AXP2101 power chip*/
|
||||
/*The alternative version of T-Beam 1.1 differs from T-Beam V1.1 in that it
|
||||
* uses an AXP2101 power chip*/
|
||||
if (HW_VENDOR == meshtastic_HardwareModel_TBEAM) {
|
||||
// Unuse power channel
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC2);
|
||||
@@ -1136,8 +1147,8 @@ bool Power::axpChipInit()
|
||||
// t-beam s3 core
|
||||
/**
|
||||
* gnss module power channel
|
||||
* The default ALDO4 is off, you need to turn on the GNSS power first, otherwise it will be invalid during
|
||||
* initialization
|
||||
* The default ALDO4 is off, you need to turn on the GNSS power first,
|
||||
* otherwise it will be invalid during initialization
|
||||
*/
|
||||
PMU->setPowerChannelVoltage(XPOWERS_ALDO4, 3300);
|
||||
PMU->enablePowerOutput(XPOWERS_ALDO4);
|
||||
@@ -1187,7 +1198,8 @@ bool Power::axpChipInit()
|
||||
// disable all axp chip interrupt
|
||||
PMU->disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
|
||||
|
||||
// Set the constant current charging current of AXP2101, temporarily use 500mA by default
|
||||
// Set the constant current charging current of AXP2101, temporarily use
|
||||
// 500mA by default
|
||||
PMU->setChargerConstantCurr(XPOWERS_AXP2101_CHG_CUR_500MA);
|
||||
|
||||
// Set up the charging voltage
|
||||
@@ -1253,11 +1265,12 @@ bool Power::axpChipInit()
|
||||
PMU->getPowerChannelVoltage(XPOWERS_BLDO2));
|
||||
}
|
||||
|
||||
// We can safely ignore this approach for most (or all) boards because MCU turned off
|
||||
// earlier than battery discharged to 2.6V.
|
||||
// We can safely ignore this approach for most (or all) boards because MCU
|
||||
// turned off earlier than battery discharged to 2.6V.
|
||||
//
|
||||
// Unfortanly for now we can't use this killswitch for RAK4630-based boards because they have a bug with
|
||||
// battery voltage measurement. Probably it sometimes drops to low values.
|
||||
// Unfortunately for now we can't use this killswitch for RAK4630-based boards
|
||||
// because they have a bug with battery voltage measurement. Probably it
|
||||
// sometimes drops to low values.
|
||||
#ifndef RAK4630
|
||||
// Set PMU shutdown voltage at 2.6V to maximize battery utilization
|
||||
PMU->setSysPowerDownVoltage(2600);
|
||||
@@ -1276,10 +1289,12 @@ bool Power::axpChipInit()
|
||||
attachInterrupt(
|
||||
PMU_IRQ, [] { pmu_irq = true; }, FALLING);
|
||||
|
||||
// we do not look for AXPXXX_CHARGING_FINISHED_IRQ & AXPXXX_CHARGING_IRQ because it occurs repeatedly while there is
|
||||
// no battery also it could cause inadvertent waking from light sleep just because the battery filled
|
||||
// we don't look for AXPXXX_BATT_REMOVED_IRQ because it occurs repeatedly while no battery installed
|
||||
// we don't look at AXPXXX_VBUS_REMOVED_IRQ because we don't have anything hooked to vbus
|
||||
// we do not look for AXPXXX_CHARGING_FINISHED_IRQ & AXPXXX_CHARGING_IRQ
|
||||
// because it occurs repeatedly while there is no battery also it could cause
|
||||
// inadvertent waking from light sleep just because the battery filled we
|
||||
// don't look for AXPXXX_BATT_REMOVED_IRQ because it occurs repeatedly while
|
||||
// no battery installed we don't look at AXPXXX_VBUS_REMOVED_IRQ because we
|
||||
// don't have anything hooked to vbus
|
||||
PMU->enableIRQ(pmuIrqMask);
|
||||
|
||||
PMU->clearIrqStatus();
|
||||
@@ -1395,8 +1410,8 @@ class LipoCharger : public HasBatteryLevel
|
||||
bool result = PPM->init(Wire, I2C_SDA, I2C_SCL, BQ25896_ADDR);
|
||||
if (result) {
|
||||
LOG_INFO("PPM BQ25896 init succeeded");
|
||||
// Set the minimum operating voltage. Below this voltage, the PPM will protect
|
||||
// PPM->setSysPowerDownVoltage(3100);
|
||||
// Set the minimum operating voltage. Below this voltage, the PPM will
|
||||
// protect PPM->setSysPowerDownVoltage(3100);
|
||||
|
||||
// Set input current limit, default is 500mA
|
||||
// PPM->setInputCurrentLimit(800);
|
||||
@@ -1419,7 +1434,8 @@ class LipoCharger : public HasBatteryLevel
|
||||
PPM->enableMeasure();
|
||||
|
||||
// Turn on charging function
|
||||
// If there is no battery connected, do not turn on the charging function
|
||||
// If there is no battery connected, do not turn on the charging
|
||||
// function
|
||||
PPM->enableCharge();
|
||||
} else {
|
||||
LOG_WARN("PPM BQ25896 init failed");
|
||||
@@ -1454,7 +1470,8 @@ class LipoCharger : public HasBatteryLevel
|
||||
virtual int getBatteryPercent() override
|
||||
{
|
||||
return -1;
|
||||
// return bq->getChargePercent(); // don't use BQ27220 for battery percent, it is not calibrated
|
||||
// return bq->getChargePercent(); // don't use BQ27220 for battery percent,
|
||||
// it is not calibrated
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -1576,7 +1593,8 @@ bool Power::meshSolarInit()
|
||||
|
||||
#else
|
||||
/**
|
||||
* The meshSolar battery level sensor is unavailable - default to AnalogBatteryLevel
|
||||
* The meshSolar battery level sensor is unavailable - default to
|
||||
* AnalogBatteryLevel
|
||||
*/
|
||||
bool Power::meshSolarInit()
|
||||
{
|
||||
|
||||
46
src/main.cpp
46
src/main.cpp
@@ -10,6 +10,7 @@
|
||||
#include "ReliableRouter.h"
|
||||
#include "airtime.h"
|
||||
#include "buzz.h"
|
||||
#include "power/PowerHAL.h"
|
||||
|
||||
#include "FSCommon.h"
|
||||
#include "Led.h"
|
||||
@@ -332,6 +333,43 @@ __attribute__((weak, noinline)) bool loopCanSleep()
|
||||
void lateInitVariant() __attribute__((weak));
|
||||
void lateInitVariant() {}
|
||||
|
||||
// NRF52 (and probably other platforms) can report when system is in power failure mode
|
||||
// (eg. too low battery voltage) and operating it is unsafe (data corruption, bootloops, etc).
|
||||
// For example NRF52 will prevent any flash writes in that case automatically
|
||||
// (but it causes issues we need to handle).
|
||||
// This detection is independent from whatever ADC or dividers used in Meshtastic
|
||||
// boards and is internal to chip.
|
||||
|
||||
// we use powerHAL layer to get this info and delay booting until power level is safe
|
||||
|
||||
// wait until power level is safe to continue booting (to avoid bootloops)
|
||||
// blink user led in 3 flashes sequence to indicate what is happening
|
||||
void waitUntilPowerLevelSafe()
|
||||
{
|
||||
|
||||
#ifdef LED_PIN
|
||||
pinMode(LED_PIN, OUTPUT);
|
||||
#endif
|
||||
|
||||
while (powerHAL_isPowerLevelSafe() == false) {
|
||||
|
||||
#ifdef LED_PIN
|
||||
|
||||
// 3x: blink for 300 ms, pause for 300 ms
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
digitalWrite(LED_PIN, LED_STATE_ON);
|
||||
delay(300);
|
||||
digitalWrite(LED_PIN, LED_STATE_OFF);
|
||||
delay(300);
|
||||
}
|
||||
#endif
|
||||
|
||||
// sleep for 2s
|
||||
delay(2000);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Print info as a structured log message (for automated log processing)
|
||||
*/
|
||||
@@ -342,6 +380,14 @@ void printInfo()
|
||||
#ifndef PIO_UNIT_TESTING
|
||||
void setup()
|
||||
{
|
||||
|
||||
// initialize power HAL layer as early as possible
|
||||
powerHAL_init();
|
||||
|
||||
// prevent booting if device is in power failure mode
|
||||
// boot sequence will follow when battery level raises to safe mode
|
||||
waitUntilPowerLevelSafe();
|
||||
|
||||
#if defined(R1_NEO)
|
||||
pinMode(DCDC_EN_HOLD, OUTPUT);
|
||||
digitalWrite(DCDC_EN_HOLD, HIGH);
|
||||
|
||||
@@ -26,6 +26,7 @@
|
||||
#include <algorithm>
|
||||
#include <pb_decode.h>
|
||||
#include <pb_encode.h>
|
||||
#include <power/PowerHAL.h>
|
||||
#include <vector>
|
||||
|
||||
#ifdef ARCH_ESP32
|
||||
@@ -1418,6 +1419,14 @@ void NodeDB::loadFromDisk()
|
||||
bool NodeDB::saveProto(const char *filename, size_t protoSize, const pb_msgdesc_t *fields, const void *dest_struct,
|
||||
bool fullAtomic)
|
||||
{
|
||||
|
||||
// do not try to save anything if power level is not safe. In many cases flash will be lock-protected
|
||||
// and all writes will fail anyway. Device should be sleeping at this point anyway.
|
||||
if (!powerHAL_isPowerLevelSafe()) {
|
||||
LOG_ERROR("Error: trying to saveProto() on unsafe device power level.");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool okay = false;
|
||||
#ifdef FSCom
|
||||
auto f = SafeFile(filename, fullAtomic);
|
||||
@@ -1444,6 +1453,14 @@ bool NodeDB::saveProto(const char *filename, size_t protoSize, const pb_msgdesc_
|
||||
|
||||
bool NodeDB::saveChannelsToDisk()
|
||||
{
|
||||
|
||||
// do not try to save anything if power level is not safe. In many cases flash will be lock-protected
|
||||
// and all writes will fail anyway.
|
||||
if (!powerHAL_isPowerLevelSafe()) {
|
||||
LOG_ERROR("Error: trying to saveChannelsToDisk() on unsafe device power level.");
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef FSCom
|
||||
spiLock->lock();
|
||||
FSCom.mkdir("/prefs");
|
||||
@@ -1454,6 +1471,14 @@ bool NodeDB::saveChannelsToDisk()
|
||||
|
||||
bool NodeDB::saveDeviceStateToDisk()
|
||||
{
|
||||
|
||||
// do not try to save anything if power level is not safe. In many cases flash will be lock-protected
|
||||
// and all writes will fail anyway. Device should be sleeping at this point anyway.
|
||||
if (!powerHAL_isPowerLevelSafe()) {
|
||||
LOG_ERROR("Error: trying to saveDeviceStateToDisk() on unsafe device power level.");
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef FSCom
|
||||
spiLock->lock();
|
||||
FSCom.mkdir("/prefs");
|
||||
@@ -1466,6 +1491,14 @@ bool NodeDB::saveDeviceStateToDisk()
|
||||
|
||||
bool NodeDB::saveNodeDatabaseToDisk()
|
||||
{
|
||||
|
||||
// do not try to save anything if power level is not safe. In many cases flash will be lock-protected
|
||||
// and all writes will fail anyway. Device should be sleeping at this point anyway.
|
||||
if (!powerHAL_isPowerLevelSafe()) {
|
||||
LOG_ERROR("Error: trying to saveNodeDatabaseToDisk() on unsafe device power level.");
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef FSCom
|
||||
spiLock->lock();
|
||||
FSCom.mkdir("/prefs");
|
||||
@@ -1478,6 +1511,14 @@ bool NodeDB::saveNodeDatabaseToDisk()
|
||||
|
||||
bool NodeDB::saveToDiskNoRetry(int saveWhat)
|
||||
{
|
||||
|
||||
// do not try to save anything if power level is not safe. In many cases flash will be lock-protected
|
||||
// and all writes will fail anyway. Device should be sleeping at this point anyway.
|
||||
if (!powerHAL_isPowerLevelSafe()) {
|
||||
LOG_ERROR("Error: trying to saveToDiskNoRetry() on unsafe device power level.");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool success = true;
|
||||
#ifdef FSCom
|
||||
spiLock->lock();
|
||||
@@ -1533,6 +1574,14 @@ bool NodeDB::saveToDiskNoRetry(int saveWhat)
|
||||
bool NodeDB::saveToDisk(int saveWhat)
|
||||
{
|
||||
LOG_DEBUG("Save to disk %d", saveWhat);
|
||||
|
||||
// do not try to save anything if power level is not safe. In many cases flash will be lock-protected
|
||||
// and all writes will fail anyway. Device should be sleeping at this point anyway.
|
||||
if (!powerHAL_isPowerLevelSafe()) {
|
||||
LOG_ERROR("Error: trying to saveToDisk() on unsafe device power level.");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool success = saveToDiskNoRetry(saveWhat);
|
||||
|
||||
if (!success) {
|
||||
|
||||
@@ -5,6 +5,25 @@
|
||||
//
|
||||
// defaults for NRF52 architecture
|
||||
//
|
||||
|
||||
/*
|
||||
* Internal Reference is +/-0.6V, with an adjustable gain of 1/6, 1/5, 1/4,
|
||||
* 1/3, 1/2 or 1, meaning 3.6, 3.0, 2.4, 1.8, 1.2 or 0.6V for the ADC levels.
|
||||
*
|
||||
* External Reference is VDD/4, with an adjustable gain of 1, 2 or 4, meaning
|
||||
* VDD/4, VDD/2 or VDD for the ADC levels.
|
||||
*
|
||||
* Default settings are internal reference with 1/6 gain (GND..3.6V ADC range)
|
||||
* Some variants overwrite it.
|
||||
*/
|
||||
#ifndef AREF_VOLTAGE
|
||||
#define AREF_VOLTAGE 3.6
|
||||
#endif
|
||||
|
||||
#ifndef BATTERY_SENSE_RESOLUTION_BITS
|
||||
#define BATTERY_SENSE_RESOLUTION_BITS 10
|
||||
#endif
|
||||
|
||||
#ifndef HAS_BLUETOOTH
|
||||
#define HAS_BLUETOOTH 1
|
||||
#endif
|
||||
|
||||
@@ -9,12 +9,12 @@
|
||||
#define NRFX_WDT_ENABLED 1
|
||||
#define NRFX_WDT0_ENABLED 1
|
||||
#define NRFX_WDT_CONFIG_NO_IRQ 1
|
||||
#include <nrfx_wdt.c>
|
||||
#include <nrfx_wdt.h>
|
||||
|
||||
#include "nrfx_power.h"
|
||||
#include <assert.h>
|
||||
#include <ble_gap.h>
|
||||
#include <memory.h>
|
||||
#include <nrfx_wdt.c>
|
||||
#include <nrfx_wdt.h>
|
||||
#include <stdio.h>
|
||||
// #include <Adafruit_USBD_Device.h>
|
||||
#include "NodeDB.h"
|
||||
@@ -23,6 +23,7 @@
|
||||
#include "main.h"
|
||||
#include "meshUtils.h"
|
||||
#include "power.h"
|
||||
#include <power/PowerHAL.h>
|
||||
|
||||
#include <hal/nrf_lpcomp.h>
|
||||
|
||||
@@ -30,6 +31,21 @@
|
||||
#include "BQ25713.h"
|
||||
#endif
|
||||
|
||||
// WARNING! THRESHOLD + HYSTERESIS should be less than regulated VDD voltage - which depends on board
|
||||
// and is 3.0 or 3.3V. Also VDD likes to read values like 2.9999 so make sure you account for that
|
||||
// otherwise board will not boot at all. Before you modify this part - please triple read NRF52840 power design
|
||||
// section in datasheet and you understand how REG0 and REG1 regulators work together.
|
||||
#ifndef SAFE_VDD_VOLTAGE_THRESHOLD
|
||||
#define SAFE_VDD_VOLTAGE_THRESHOLD 2.7
|
||||
#endif
|
||||
|
||||
// hysteresis value
|
||||
#ifndef SAFE_VDD_VOLTAGE_THRESHOLD_HYST
|
||||
#define SAFE_VDD_VOLTAGE_THRESHOLD_HYST 0.2
|
||||
#endif
|
||||
|
||||
uint16_t getVDDVoltage();
|
||||
|
||||
// Weak empty variant initialization function.
|
||||
// May be redefined by variant files.
|
||||
void variant_shutdown() __attribute__((weak));
|
||||
@@ -38,12 +54,95 @@ void variant_shutdown() {}
|
||||
static nrfx_wdt_t nrfx_wdt = NRFX_WDT_INSTANCE(0);
|
||||
static nrfx_wdt_channel_id nrfx_wdt_channel_id_nrf52_main;
|
||||
|
||||
// This is a public global so that the debugger can set it to false automatically from our gdbinit
|
||||
// @phaseloop comment: most part of codebase, including filesystem flash driver depend on softdevice
|
||||
// methods so disabling it may actually crash thing. Proceed with caution.
|
||||
|
||||
bool useSoftDevice = true; // Set to false for easier debugging
|
||||
|
||||
static inline void debugger_break(void)
|
||||
{
|
||||
__asm volatile("bkpt #0x01\n\t"
|
||||
"mov pc, lr\n\t");
|
||||
}
|
||||
|
||||
// PowerHAL NRF52 specific function implementations
|
||||
bool powerHAL_isVBUSConnected()
|
||||
{
|
||||
return NRF_POWER->USBREGSTATUS & POWER_USBREGSTATUS_VBUSDETECT_Msk;
|
||||
}
|
||||
|
||||
bool powerHAL_isPowerLevelSafe()
|
||||
{
|
||||
|
||||
static bool powerLevelSafe = true;
|
||||
|
||||
uint16_t threshold = SAFE_VDD_VOLTAGE_THRESHOLD * 1000; // convert V to mV
|
||||
uint16_t hysteresis = SAFE_VDD_VOLTAGE_THRESHOLD_HYST * 1000;
|
||||
|
||||
if (powerLevelSafe) {
|
||||
if (getVDDVoltage() < threshold) {
|
||||
powerLevelSafe = false;
|
||||
}
|
||||
} else {
|
||||
// power level is only safe again when it raises above threshold + hysteresis
|
||||
if (getVDDVoltage() >= (threshold + hysteresis)) {
|
||||
powerLevelSafe = true;
|
||||
}
|
||||
}
|
||||
|
||||
return powerLevelSafe;
|
||||
}
|
||||
|
||||
void powerHAL_platformInit()
|
||||
{
|
||||
|
||||
// Enable POF power failure comparator. It will prevent writing to NVMC flash when supply voltage is too low.
|
||||
// Set to some low value as last resort - powerHAL_isPowerLevelSafe uses different method and should manage proper node
|
||||
// behaviour on its own.
|
||||
|
||||
// POFWARN is pretty useless for node power management because it triggers only once and clearing this event will not
|
||||
// re-trigger it again until voltage rises to safe level and drops again. So we will use SAADC routed to VDD to read safely
|
||||
// voltage.
|
||||
|
||||
// @phaseloop: I disable POFCON for now because it seems to be unreliable or buggy. Even when set at 2.0V it
|
||||
// triggers below 2.8V and corrupts data when pairing bluetooth - because it prevents filesystem writes and
|
||||
// adafruit BLE library triggers lfs_assert which reboots node and formats filesystem.
|
||||
// I did experiments with bench power supply and no matter what is set to POFCON, it always triggers right below
|
||||
// 2.8V. I compared raw registry values with datasheet.
|
||||
|
||||
NRF_POWER->POFCON =
|
||||
((POWER_POFCON_THRESHOLD_V22 << POWER_POFCON_THRESHOLD_Pos) | (POWER_POFCON_POF_Enabled << POWER_POFCON_POF_Pos));
|
||||
|
||||
// remember to always match VBAT_AR_INTERNAL with AREF_VALUE in variant definition file
|
||||
#ifdef VBAT_AR_INTERNAL
|
||||
analogReference(VBAT_AR_INTERNAL);
|
||||
#else
|
||||
analogReference(AR_INTERNAL); // 3.6V
|
||||
#endif
|
||||
}
|
||||
|
||||
// get VDD voltage (in millivolts)
|
||||
uint16_t getVDDVoltage()
|
||||
{
|
||||
// we use the same values as regular battery read so there is no conflict on SAADC
|
||||
analogReadResolution(BATTERY_SENSE_RESOLUTION_BITS);
|
||||
|
||||
// VDD range on NRF52840 is 1.8-3.3V so we need to remap analog reference to 3.6V
|
||||
// let's hope battery reading runs in same task and we don't have race condition
|
||||
analogReference(AR_INTERNAL);
|
||||
|
||||
uint16_t vddADCRead = analogReadVDD();
|
||||
float voltage = ((1000 * 3.6) / pow(2, BATTERY_SENSE_RESOLUTION_BITS)) * vddADCRead;
|
||||
|
||||
// restore default battery reading reference
|
||||
#ifdef VBAT_AR_INTERNAL
|
||||
analogReference(VBAT_AR_INTERNAL);
|
||||
#endif
|
||||
|
||||
return voltage;
|
||||
}
|
||||
|
||||
bool loopCanSleep()
|
||||
{
|
||||
// turn off sleep only while connected via USB
|
||||
@@ -72,22 +171,6 @@ void getMacAddr(uint8_t *dmac)
|
||||
dmac[0] = src[5] | 0xc0; // MSB high two bits get set elsewhere in the bluetooth stack
|
||||
}
|
||||
|
||||
static void initBrownout()
|
||||
{
|
||||
auto vccthresh = POWER_POFCON_THRESHOLD_V24;
|
||||
|
||||
auto err_code = sd_power_pof_enable(POWER_POFCON_POF_Enabled);
|
||||
assert(err_code == NRF_SUCCESS);
|
||||
|
||||
err_code = sd_power_pof_threshold_set(vccthresh);
|
||||
assert(err_code == NRF_SUCCESS);
|
||||
|
||||
// We don't bother with setting up brownout if soft device is disabled - because during production we always use softdevice
|
||||
}
|
||||
|
||||
// This is a public global so that the debugger can set it to false automatically from our gdbinit
|
||||
bool useSoftDevice = true; // Set to false for easier debugging
|
||||
|
||||
#if !MESHTASTIC_EXCLUDE_BLUETOOTH
|
||||
void setBluetoothEnable(bool enable)
|
||||
{
|
||||
@@ -106,7 +189,6 @@ void setBluetoothEnable(bool enable)
|
||||
if (!initialized) {
|
||||
nrf52Bluetooth = new NRF52Bluetooth();
|
||||
nrf52Bluetooth->startDisabled();
|
||||
initBrownout();
|
||||
initialized = true;
|
||||
}
|
||||
return;
|
||||
@@ -120,9 +202,6 @@ void setBluetoothEnable(bool enable)
|
||||
LOG_DEBUG("Init NRF52 Bluetooth");
|
||||
nrf52Bluetooth = new NRF52Bluetooth();
|
||||
nrf52Bluetooth->setup();
|
||||
|
||||
// We delay brownout init until after BLE because BLE starts soft device
|
||||
initBrownout();
|
||||
}
|
||||
// Already setup, apparently
|
||||
else
|
||||
@@ -192,9 +271,24 @@ extern "C" void lfs_assert(const char *reason)
|
||||
delay(500); // Give the serial port a bit of time to output that last message.
|
||||
// Try setting GPREGRET with the SoftDevice first. If that fails (perhaps because the SD hasn't been initialize yet) then set
|
||||
// NRF_POWER->GPREGRET directly.
|
||||
if (!(sd_power_gpregret_clr(0, 0xFF) == NRF_SUCCESS && sd_power_gpregret_set(0, NRF52_MAGIC_LFS_IS_CORRUPT) == NRF_SUCCESS)) {
|
||||
NRF_POWER->GPREGRET = NRF52_MAGIC_LFS_IS_CORRUPT;
|
||||
|
||||
// TODO: this will/can crash CPU if bluetooth stack is not compiled in or bluetooth is not initialized
|
||||
// (regardless if enabled or disabled) - as there is no live SoftDevice stack
|
||||
// implement "safe" functions detecting softdevice stack state and using proper method to set registers
|
||||
|
||||
// do not set GPREGRET if POFWARN is triggered because it means lfs_assert reports flash undervoltage protection
|
||||
// and not data corruption. Reboot is fine as boot procedure will wait until power level is safe again
|
||||
|
||||
if (!NRF_POWER->EVENTS_POFWARN) {
|
||||
if (!(sd_power_gpregret_clr(0, 0xFF) == NRF_SUCCESS &&
|
||||
sd_power_gpregret_set(0, NRF52_MAGIC_LFS_IS_CORRUPT) == NRF_SUCCESS)) {
|
||||
NRF_POWER->GPREGRET = NRF52_MAGIC_LFS_IS_CORRUPT;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: this should not be done when SoftDevice is enabled as device will not boot back on soft reset
|
||||
// as some data is retained in RAM which will prevent re-enabling bluetooth stack
|
||||
// Google what Nordic has to say about NVIC_* + SoftDevice
|
||||
NVIC_SystemReset();
|
||||
}
|
||||
|
||||
|
||||
19
src/power/PowerHAL.cpp
Normal file
19
src/power/PowerHAL.cpp
Normal file
@@ -0,0 +1,19 @@
|
||||
|
||||
#include "PowerHAL.h"
|
||||
|
||||
void powerHAL_init()
|
||||
{
|
||||
return powerHAL_platformInit();
|
||||
}
|
||||
|
||||
__attribute__((weak, noinline)) void powerHAL_platformInit() {}
|
||||
|
||||
__attribute__((weak, noinline)) bool powerHAL_isPowerLevelSafe()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
__attribute__((weak, noinline)) bool powerHAL_isVBUSConnected()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
26
src/power/PowerHAL.h
Normal file
26
src/power/PowerHAL.h
Normal file
@@ -0,0 +1,26 @@
|
||||
|
||||
/*
|
||||
|
||||
Power Hardware Abstraction Layer. Set of API calls to offload power management, measurements, reboots, etc
|
||||
to the platform and variant code to avoid #ifdef spaghetti hell and limitless device-based edge cases
|
||||
in the main firmware code
|
||||
|
||||
Functions declared here (with exception of powerHAL_init) should be defined in platform specific codebase.
|
||||
Default function body does usually nothing.
|
||||
|
||||
*/
|
||||
|
||||
// Initialize HAL layer. Call it as early as possible during device boot
|
||||
// do not overwrite it as it's not declared with "weak" attribute.
|
||||
void powerHAL_init();
|
||||
|
||||
// platform specific init code if needed to be run early on boot
|
||||
void powerHAL_platformInit();
|
||||
|
||||
// Return true if current battery level is safe for device operation (for example flash writes).
|
||||
// This should be reported by power failure comparator (NRF52) or similar circuits on other platforms.
|
||||
// Do not use battery ADC as improper ADC configuration may prevent device from booting.
|
||||
bool powerHAL_isPowerLevelSafe();
|
||||
|
||||
// return if USB voltage is connected
|
||||
bool powerHAL_isVBUSConnected();
|
||||
Reference in New Issue
Block a user