For $\star$ to be transitive, then for any set of 3 elements $(x_1,x_2)$, $(y_1,y_2)$, and $(z_1,z_2)$ where $(x_1,x_2)\star(y_1,y_2)$ and $(y_1,y_2)\star(z_1,z_2)$ are both true, then $(x_1,x_2)\star(z_1,z_2)$ must also be true.
Consider a set of 3 elements $(x_1,x_2)$, $(y_1,y_2)$, and $(z_1,z_2)$ where $(x_1,x_2)\star(y_1,y_2)$ and $(y_1,y_2)\star(z_1,z_2)$ are both true. This means that $x_1y_2=x_2y_1$ and $y_1z_2=y_2z_1$. From this, it can be found that $y_1=\frac{y_2 z_1}{z_2}=\frac{x_1 y_2}{x_2}$. This can be simplified to