Files
firmware/src/graphics/draw/ClockRenderer.cpp

473 lines
16 KiB
C++

#include "configuration.h"
#if HAS_SCREEN
#include "ClockRenderer.h"
#include "gps/RTC.h"
#include "graphics/ScreenFonts.h"
#include "graphics/SharedUIDisplay.h"
#include "graphics/draw/UIRenderer.h"
#include "graphics/images.h"
#include "main.h"
#if !MESHTASTIC_EXCLUDE_BLUETOOTH
#include "nimble/NimbleBluetooth.h"
#endif
namespace graphics
{
namespace ClockRenderer
{
// Segment bitmaps for numerals 0-9 stored in flash to save RAM.
// Each row is a digit, each column is a segment state (1 = on, 0 = off).
// Segment layout reference:
//
// ___1___
// 6 | | 2
// |_7___|
// 5 | | 3
// |___4_|
//
// Segment order: [1, 2, 3, 4, 5, 6, 7]
//
static const uint8_t PROGMEM digitSegments[10][7] = {
{1, 1, 1, 1, 1, 1, 0}, // 0
{0, 1, 1, 0, 0, 0, 0}, // 1
{1, 1, 0, 1, 1, 0, 1}, // 2
{1, 1, 1, 1, 0, 0, 1}, // 3
{0, 1, 1, 0, 0, 1, 1}, // 4
{1, 0, 1, 1, 0, 1, 1}, // 5
{1, 0, 1, 1, 1, 1, 1}, // 6
{1, 1, 1, 0, 0, 1, 0}, // 7
{1, 1, 1, 1, 1, 1, 1}, // 8
{1, 1, 1, 1, 0, 1, 1} // 9
};
void drawSegmentedDisplayColon(OLEDDisplay *display, int x, int y, float scale)
{
uint16_t segmentWidth = SEGMENT_WIDTH * scale;
uint16_t segmentHeight = SEGMENT_HEIGHT * scale;
uint16_t cellHeight = (segmentWidth * 2) + (segmentHeight * 3) + 8;
uint16_t topAndBottomX = x + static_cast<uint16_t>(4 * scale);
uint16_t quarterCellHeight = cellHeight / 4;
uint16_t topY = y + quarterCellHeight;
uint16_t bottomY = y + (quarterCellHeight * 3);
display->fillRect(topAndBottomX, topY, segmentHeight, segmentHeight);
display->fillRect(topAndBottomX, bottomY, segmentHeight, segmentHeight);
}
void drawSegmentedDisplayCharacter(OLEDDisplay *display, int x, int y, uint8_t number, float scale)
{
// Read 7-segment pattern for the digit from flash
uint8_t seg[7];
for (uint8_t i = 0; i < 7; i++) {
seg[i] = pgm_read_byte(&digitSegments[number][i]);
}
uint16_t segmentWidth = SEGMENT_WIDTH * scale;
uint16_t segmentHeight = SEGMENT_HEIGHT * scale;
// Precompute segment positions
uint16_t segmentOneX = x + segmentHeight + 2;
uint16_t segmentOneY = y;
uint16_t segmentTwoX = segmentOneX + segmentWidth + 2;
uint16_t segmentTwoY = segmentOneY + segmentHeight + 2;
uint16_t segmentThreeX = segmentTwoX;
uint16_t segmentThreeY = segmentTwoY + segmentWidth + 2 + segmentHeight + 2;
uint16_t segmentFourX = segmentOneX;
uint16_t segmentFourY = segmentThreeY + segmentWidth + 2;
uint16_t segmentFiveX = x;
uint16_t segmentFiveY = segmentThreeY;
uint16_t segmentSixX = x;
uint16_t segmentSixY = segmentTwoY;
uint16_t segmentSevenX = segmentOneX;
uint16_t segmentSevenY = segmentTwoY + segmentWidth + 2;
// Draw only the active segments
if (seg[0])
drawHorizontalSegment(display, segmentOneX, segmentOneY, segmentWidth, segmentHeight);
if (seg[1])
drawVerticalSegment(display, segmentTwoX, segmentTwoY, segmentWidth, segmentHeight);
if (seg[2])
drawVerticalSegment(display, segmentThreeX, segmentThreeY, segmentWidth, segmentHeight);
if (seg[3])
drawHorizontalSegment(display, segmentFourX, segmentFourY, segmentWidth, segmentHeight);
if (seg[4])
drawVerticalSegment(display, segmentFiveX, segmentFiveY, segmentWidth, segmentHeight);
if (seg[5])
drawVerticalSegment(display, segmentSixX, segmentSixY, segmentWidth, segmentHeight);
if (seg[6])
drawHorizontalSegment(display, segmentSevenX, segmentSevenY, segmentWidth, segmentHeight);
}
void drawHorizontalSegment(OLEDDisplay *display, int x, int y, int width, int height)
{
int halfHeight = height / 2;
// draw central rectangle
display->fillRect(x, y, width, height);
// draw end triangles
display->fillTriangle(x, y, x, y + height - 1, x - halfHeight, y + halfHeight);
display->fillTriangle(x + width, y, x + width + halfHeight, y + halfHeight, x + width, y + height - 1);
}
void drawVerticalSegment(OLEDDisplay *display, int x, int y, int width, int height)
{
int halfHeight = height / 2;
// draw central rectangle
display->fillRect(x, y, height, width);
// draw end triangles
display->fillTriangle(x + halfHeight, y - halfHeight, x + height - 1, y, x, y);
display->fillTriangle(x, y + width, x + height - 1, y + width, x + halfHeight, y + width + halfHeight);
}
void drawDigitalClockFrame(OLEDDisplay *display, OLEDDisplayUiState *state, int16_t x, int16_t y)
{
display->clear();
display->setTextAlignment(TEXT_ALIGN_LEFT);
// === Set Title, Blank for Clock
const char *titleStr = "";
// === Header ===
graphics::drawCommonHeader(display, x, y, titleStr, true, true);
uint32_t rtc_sec = getValidTime(RTCQuality::RTCQualityDevice, true); // Display local timezone
char timeString[16];
int hour = 0;
int minute = 0;
int second = 0;
if (rtc_sec > 0) {
long hms = rtc_sec % SEC_PER_DAY;
hms = (hms + SEC_PER_DAY) % SEC_PER_DAY;
hour = hms / SEC_PER_HOUR;
minute = (hms % SEC_PER_HOUR) / SEC_PER_MIN;
second = (hms % SEC_PER_HOUR) % SEC_PER_MIN; // or hms % SEC_PER_MIN
}
bool isPM = hour >= 12;
if (config.display.use_12h_clock) {
hour %= 12;
if (hour == 0) {
hour = 12;
}
snprintf(timeString, sizeof(timeString), "%d:%02d", hour, minute);
} else {
snprintf(timeString, sizeof(timeString), "%02d:%02d", hour, minute);
}
// Format seconds string
char secondString[8];
snprintf(secondString, sizeof(secondString), "%02d", second);
static bool scaleInitialized = false;
static float scale = 0.75f;
static float segmentWidth = SEGMENT_WIDTH * 0.75f;
static float segmentHeight = SEGMENT_HEIGHT * 0.75f;
if (!scaleInitialized) {
float screenwidth_target_ratio = 0.80f; // Target 80% of display width (adjustable)
float max_scale = 3.5f; // Safety limit to avoid runaway scaling
float step = 0.05f; // Step increment per iteration
float target_width = display->getWidth() * screenwidth_target_ratio;
float target_height =
display->getHeight() -
(isHighResolution
? 46
: 33); // Be careful adjusting this number, we have to account for header and the text under the time
float calculated_width_size = 0.0f;
float calculated_height_size = 0.0f;
while (true) {
segmentWidth = SEGMENT_WIDTH * scale;
segmentHeight = SEGMENT_HEIGHT * scale;
calculated_width_size = segmentHeight + ((segmentWidth + (segmentHeight * 2) + 4) * 4);
calculated_height_size = segmentHeight + ((segmentHeight + (segmentHeight * 2) + 4) * 2);
if (calculated_width_size >= target_width || calculated_height_size >= target_height || scale >= max_scale) {
break;
}
scale += step;
}
// If we overshot width, back off one step and recompute segment sizes
if (calculated_width_size > target_width || calculated_height_size > target_height) {
scale -= step;
segmentWidth = SEGMENT_WIDTH * scale;
segmentHeight = SEGMENT_HEIGHT * scale;
}
scaleInitialized = true;
}
// calculate hours:minutes string width
size_t len = strlen(timeString);
uint16_t timeStringWidth = len * 5;
for (size_t i = 0; i < len; i++) {
char character = timeString[i];
if (character == ':') {
timeStringWidth += segmentHeight;
} else {
timeStringWidth += segmentWidth + (segmentHeight * 2) + 4;
}
}
uint16_t hourMinuteTextX = (display->getWidth() / 2) - (timeStringWidth / 2);
uint16_t startingHourMinuteTextX = hourMinuteTextX;
uint16_t hourMinuteTextY = (display->getHeight() / 2) - (((segmentWidth * 2) + (segmentHeight * 3) + 8) / 2) + 2;
// iterate over characters in hours:minutes string and draw segmented characters
for (size_t i = 0; i < len; i++) {
char character = timeString[i];
if (character == ':') {
drawSegmentedDisplayColon(display, hourMinuteTextX, hourMinuteTextY, scale);
hourMinuteTextX += segmentHeight + 6;
if (scale >= 2.0f) {
hourMinuteTextX += (uint16_t)(4.5f * scale);
}
} else {
drawSegmentedDisplayCharacter(display, hourMinuteTextX, hourMinuteTextY, character - '0', scale);
hourMinuteTextX += segmentWidth + (segmentHeight * 2) + 4;
}
hourMinuteTextX += 5;
}
// draw seconds string + AM/PM
display->setFont(FONT_SMALL);
int xOffset = (isHighResolution) ? 0 : -1;
if (hour >= 10) {
xOffset += (isHighResolution) ? 32 : 18;
}
if (config.display.use_12h_clock) {
display->drawString(startingHourMinuteTextX + xOffset, (display->getHeight() - hourMinuteTextY) - 1, isPM ? "pm" : "am");
}
#ifndef USE_EINK
xOffset = (isHighResolution) ? 18 : 10;
if (scale >= 2.0f) {
xOffset -= (int)(4.5f * scale);
}
display->drawString(startingHourMinuteTextX + timeStringWidth - xOffset, (display->getHeight() - hourMinuteTextY) - 1,
secondString);
#endif
graphics::drawCommonFooter(display, x, y);
}
// Draw an analog clock
void drawAnalogClockFrame(OLEDDisplay *display, OLEDDisplayUiState *state, int16_t x, int16_t y)
{
display->setTextAlignment(TEXT_ALIGN_LEFT);
// === Set Title, Blank for Clock
const char *titleStr = "";
// === Header ===
graphics::drawCommonHeader(display, x, y, titleStr, true, true);
// clock face center coordinates
int16_t centerX = display->getWidth() / 2;
int16_t centerY = display->getHeight() / 2;
// clock face radius
int16_t radius = (std::min(display->getWidth(), display->getHeight()) / 2) * 0.9;
#ifdef T_WATCH_S3
radius = (display->getWidth() / 2) * 0.8;
#endif
// noon (0 deg) coordinates (outermost circle)
int16_t noonX = centerX;
int16_t noonY = centerY - radius;
// second hand radius and y coordinate (outermost circle)
int16_t secondHandNoonY = noonY + 1;
// tick mark outer y coordinate; (first nested circle)
int16_t tickMarkOuterNoonY = secondHandNoonY;
double secondsTickMarkInnerNoonY = noonY + (isHighResolution ? 8 : 4);
double hoursTickMarkInnerNoonY = noonY + (isHighResolution ? 16 : 6);
// minute hand y coordinate
int16_t minuteHandNoonY = secondsTickMarkInnerNoonY + 4;
// hour string y coordinate
int16_t hourStringNoonY = minuteHandNoonY + 18;
// hour hand radius and y coordinate
int16_t hourHandRadius = radius * 0.35;
if (isHighResolution) {
hourHandRadius = radius * 0.55;
}
int16_t hourHandNoonY = centerY - hourHandRadius;
display->setColor(OLEDDISPLAY_COLOR::WHITE);
display->drawCircle(centerX, centerY, radius);
uint32_t rtc_sec = getValidTime(RTCQuality::RTCQualityDevice, true); // Display local timezone
if (rtc_sec > 0) {
int hour, minute, second;
decomposeTime(rtc_sec, hour, minute, second);
if (config.display.use_12h_clock) {
bool isPM = hour >= 12;
display->setFont(FONT_SMALL);
int yOffset = isHighResolution ? 1 : 0;
#ifdef USE_EINK
yOffset += 3;
#endif
display->drawString(centerX - (display->getStringWidth(isPM ? "pm" : "am") / 2), centerY + yOffset,
isPM ? "pm" : "am");
}
hour %= 12;
if (hour == 0)
hour = 12;
int16_t degreesPerHour = 30;
int16_t degreesPerMinuteOrSecond = 6;
double hourBaseAngle = hour * degreesPerHour;
double hourAngleOffset = ((double)minute / 60) * degreesPerHour;
double hourAngle = radians(hourBaseAngle + hourAngleOffset);
double minuteBaseAngle = minute * degreesPerMinuteOrSecond;
double minuteAngleOffset = ((double)second / 60) * degreesPerMinuteOrSecond;
double minuteAngle = radians(minuteBaseAngle + minuteAngleOffset);
double secondAngle = radians(second * degreesPerMinuteOrSecond);
double hourX = sin(-hourAngle) * (hourHandNoonY - centerY) + noonX;
double hourY = cos(-hourAngle) * (hourHandNoonY - centerY) + centerY;
double minuteX = sin(-minuteAngle) * (minuteHandNoonY - centerY) + noonX;
double minuteY = cos(-minuteAngle) * (minuteHandNoonY - centerY) + centerY;
double secondX = sin(-secondAngle) * (secondHandNoonY - centerY) + noonX;
double secondY = cos(-secondAngle) * (secondHandNoonY - centerY) + centerY;
display->setFont(FONT_MEDIUM);
// draw minute and hour tick marks and hour numbers
for (uint16_t angle = 0; angle < 360; angle += 6) {
double angleInRadians = radians(angle);
double sineAngleInRadians = sin(-angleInRadians);
double cosineAngleInRadians = cos(-angleInRadians);
double endX = sineAngleInRadians * (tickMarkOuterNoonY - centerY) + noonX;
double endY = cosineAngleInRadians * (tickMarkOuterNoonY - centerY) + centerY;
if (angle % degreesPerHour == 0) {
double startX = sineAngleInRadians * (hoursTickMarkInnerNoonY - centerY) + noonX;
double startY = cosineAngleInRadians * (hoursTickMarkInnerNoonY - centerY) + centerY;
// draw hour tick mark
display->drawLine(startX, startY, endX, endY);
static char buffer[2];
uint8_t hourInt = (angle / 30);
if (hourInt == 0) {
hourInt = 12;
}
// hour number x offset needs to be adjusted for some cases
int8_t hourStringXOffset;
int8_t hourStringYOffset = 13;
switch (hourInt) {
case 3:
hourStringXOffset = 5;
break;
case 9:
hourStringXOffset = 7;
break;
case 10:
case 11:
hourStringXOffset = 8;
break;
case 12:
hourStringXOffset = 13;
break;
default:
hourStringXOffset = 6;
break;
}
double hourStringX = (sineAngleInRadians * (hourStringNoonY - centerY) + noonX) - hourStringXOffset;
double hourStringY = (cosineAngleInRadians * (hourStringNoonY - centerY) + centerY) - hourStringYOffset;
#ifdef T_WATCH_S3
// draw hour number
display->drawStringf(hourStringX, hourStringY, buffer, "%d", hourInt);
#else
#ifdef USE_EINK
if (isHighResolution) {
// draw hour number
display->drawStringf(hourStringX, hourStringY, buffer, "%d", hourInt);
}
#else
if (isHighResolution && (hourInt == 3 || hourInt == 6 || hourInt == 9 || hourInt == 12)) {
// draw hour number
display->drawStringf(hourStringX, hourStringY, buffer, "%d", hourInt);
}
#endif
#endif
}
if (angle % degreesPerMinuteOrSecond == 0) {
double startX = sineAngleInRadians * (secondsTickMarkInnerNoonY - centerY) + noonX;
double startY = cosineAngleInRadians * (secondsTickMarkInnerNoonY - centerY) + centerY;
if (isHighResolution) {
// draw minute tick mark
display->drawLine(startX, startY, endX, endY);
}
}
}
// draw hour hand
display->drawLine(centerX, centerY, hourX, hourY);
// draw minute hand
display->drawLine(centerX, centerY, minuteX, minuteY);
#ifndef USE_EINK
// draw second hand
display->drawLine(centerX, centerY, secondX, secondY);
#endif
}
graphics::drawCommonFooter(display, x, y);
}
} // namespace ClockRenderer
} // namespace graphics
#endif