Files
firmware/src/graphics/niche/Drivers/EInk/EInk.cpp
todd-herbert e6a98b1d6b InkHUD refactoring (#6216)
* chore: todo.txt
* chore: comments
* fix: no fast refresh on VME290
Reverts a line of code which was accidentally committed
* refactor: god class
Divide the behavior from the old WindowManager class into several subclasses which each have a clear role.
* refactor: cppcheck medium warnings
Enough to pass github CI for now
* refactor: updateType selection
* refactor: don't use a setter for the shared AppletFonts
* fix: update prioritization
forceUpdate calls weren't being prioritized
* refactor: remove unhelpful logging
getTimeString is used for parsing our own time, but also the timestamps of messages. The "one time only" log printing will likely fire in unhelpful situations.
* fix: " "
* refactor: get rid of types.h file for enums
* Keep that sneaky todo file out of commits
2025-03-06 11:25:41 +01:00

70 lines
2.6 KiB
C++

#include "./EInk.h"
#ifdef MESHTASTIC_INCLUDE_NICHE_GRAPHICS
using namespace NicheGraphics::Drivers;
// Separate from EInk::begin method, as derived class constructors can probably supply these parameters as constants
EInk::EInk(uint16_t width, uint16_t height, UpdateTypes supported)
: concurrency::OSThread("E-Ink Driver"), width(width), height(height), supportedUpdateTypes(supported)
{
OSThread::disable();
}
// Used by NicheGraphics implementations to check if a display supports a specific refresh operation.
// Whether or not the update type is supported is specified in the constructor
bool EInk::supports(UpdateTypes type)
{
// The EInkUpdateTypes enum assigns each type a unique bit. We are checking if that bit is set.
if (supportedUpdateTypes & type)
return true;
else
return false;
}
// Begins using the OSThread to detect when a display update is complete
// This allows the refresh operation to run "asynchronously".
// Rather than blocking execution waiting for the update to complete, we are periodically checking the hardware's BUSY pin
// The expectedDuration argument allows us to delay the start of this checking, if we know "roughly" how long an update takes.
// Potentially, a display without hardware BUSY could rely entirely on "expectedDuration",
// provided its isUpdateDone() override always returns true.
void EInk::beginPolling(uint32_t interval, uint32_t expectedDuration)
{
updateRunning = true;
updateBegunAt = millis();
pollingInterval = interval;
// To minimize load, we can choose to delay polling for a few seconds, if we know roughly how long the update will take
// By default, expectedDuration is 0, and we'll start polling immediately
OSThread::setIntervalFromNow(expectedDuration);
OSThread::enabled = true;
}
// Meshtastic's pseudo-threading layer
// We're using this as a timer, to periodically check if an update is complete
// This is what allows us to update the display asynchronously
int32_t EInk::runOnce()
{
if (!isUpdateDone())
return pollingInterval; // Poll again in a few ms
// If update done:
finalizeUpdate(); // Any post-update code: power down panel hardware, hibernate, etc
updateRunning = false; // Change what we report via EInk::busy()
return disable(); // Stop polling
}
// Wait for an in progress update to complete before continuing
// Run a normal (async) update first, *then* call await
void EInk::await()
{
// Stop our concurrency thread
OSThread::disable();
// Sit and block until the update is complete
while (updateRunning) {
runOnce();
yield();
}
}
#endif // MESHTASTIC_INCLUDE_NICHE_GRAPHICS