Files
firmware/src/Power.cpp
geeksville c1870f91fc Finish powermon/powerstress (#4230)
* Turn off vscode cmake prompt - we don't use cmake on meshtastic

* Add rak4631_dap variant for debugging with NanoDAP debug probe device.

* The rak device can also run freertos (which is underneath nrf52 arduino)

* Add semihosting support for nrf52840 devices
Initial platformio.ini file only supports rak4630
Default to non TCP for the semihosting log output for now...
Fixes https://github.com/meshtastic/firmware/issues/4135

* powermon WIP (for https://github.com/meshtastic/firmware/issues/4136 )

* oops - mean't to mark the _dbg variant as an 'extra' board.

* powermon wip

* Make serial port on wio-sdk-wm1110 board work
By disabling the (inaccessible) adafruit USB

* Instrument (radiolib only for now) lora for powermon
per https://github.com/meshtastic/firmware/issues/4136

* powermon gps support
https://github.com/meshtastic/firmware/issues/4136

* Add CPU deep and light sleep powermon states
https://github.com/meshtastic/firmware/issues/4136

* Change the board/swversion bootstring so it is a new "structured" log msg.

* powermon wip

* add example script for getting esp S3 debugging working
Not yet used but I didn't want these nasty tricks to get lost yet.

* Add PowerMon reporting for screen and bluetooth pwr.

* make power.powermon_enables config setting work.

* update to latest protobufs

* fix bogus shellcheck warning

* make powermon optional (but default enabled because tiny and no runtime impact)

* tell vscode, if formatting, use whatever our trunk formatter wants
without this flag if the user has set some other formatter (clang)
in their user level settings, it will be looking in the wrong directory
for the clang options (we want the options in .trunk/clang)

Note: formatOnSave is true in master, which means a bunch of our older
files are non compliant and if you edit them it will generate lots of
formatting related diffs.  I guess I'll start letting that happen with
my future commits ;-).

* add PowerStress module

* nrf52 arduino is built upon freertos, so let platformio debug it

* don't accidentally try to Segger ICE if we are using another ICE

* clean up RedirectablePrint::log so it doesn't have three very different implementations inline.

* remove NoopPrint - it is no longer needed

* when talking to API clients via serial, don't turn off log msgs instead encapsuate them

* fix the build - would loop forever if there were no files to send

* don't use Segger code if not talking to a Segger debugger

* when encapsulating logs, make sure the strings always has nul terminators

* nrf52 soft device will watchdog if you use ICE while BT on...
so have debugger disable bluetooth.

* Important to not print debug messages while writing to the toPhone scratch buffer

* don't include newlines if encapsulating log records as protobufs

* update to latest protobufs (needed for powermon goo)

* PowerStress WIP

* for #4154 and #4136 add concept of dependent gpios...
Which is currently only tested with the LED but eventually
will be used for shared GPIO/screen power rail enable
and LED forcing (which is a sanity check in the power stress
testing)

* fix linter warning

* Transformer is a better name for the LED input > operation > output classes

* PMW led changes to work on esp32-s3

* power stress improvements

* allow ble logrecords to be fetched either by NOTIFY or INDICATE ble types

This allows 'lossless' log reading.  If client has requested INDICATE
(rather than NOTIFY) each log record emitted via log() will have to fetched
by the client device before the meshtastic node can continue.

* Fix serious problem with nrf52 BLE logging.
When doing notifies of LogRecords it is important to use the
binary write routines - writing using the 'string' write won't work.
Because protobufs can contain \0 nuls inside of them which if being
parsed as a string will cause only a portion of the protobuf to be sent.
I noticed this because some log messages were not getting through.

* fix gpio transformer stuff to work correctly with LED_INVERTED

Thanks @todd-herbert for noticing this and the great stack trace.
The root cause was that I had accidentially shadowed outPin in a subclass
with an unneeded override.  It would break on any board that had inverted
LED power.

fixes
https://github.com/meshtastic/firmware/pull/4230#pullrequestreview-2217389099

* Support driving multiple output gpios from one input.

While investigating https://github.com/meshtastic/firmware/pull/4230#pullrequestreview-2217389099
I noticed in variant.h that there are now apparently newer TBEAMs than mine
that have _both_ a GPIO based power LED and the PMU based LED.  Add a splitter
so that we can drive two output GPIOs from one logical signal.

---------

Co-authored-by: Ben Meadors <benmmeadors@gmail.com>
2024-08-06 12:35:54 -05:00

1049 lines
37 KiB
C++

/**
* @file Power.cpp
* @brief This file contains the implementation of the Power class, which is responsible for managing power-related functionality
* of the device. It includes battery level sensing, power management unit (PMU) control, and power state machine management. The
* Power class is used by the main device class to manage power-related functionality.
*
* The file also includes implementations of various battery level sensors, such as the AnalogBatteryLevel class, which assumes
* the battery voltage is attached via a voltage-divider to an analog input.
*
* This file is part of the Meshtastic project.
* For more information, see: https://meshtastic.org/
*/
#include "power.h"
#include "NodeDB.h"
#include "PowerFSM.h"
#include "buzz/buzz.h"
#include "configuration.h"
#include "main.h"
#include "meshUtils.h"
#include "sleep.h"
// Working USB detection for powered/charging states on the RAK platform
#ifdef NRF_APM
#include "nrfx_power.h"
#endif
#if defined(DEBUG_HEAP_MQTT) && !MESHTASTIC_EXCLUDE_MQTT
#include "mqtt/MQTT.h"
#include "target_specific.h"
#if HAS_WIFI
#include <WiFi.h>
#endif
#endif
#ifndef DELAY_FOREVER
#define DELAY_FOREVER portMAX_DELAY
#endif
#if defined(BATTERY_PIN) && defined(ARCH_ESP32)
#ifndef BAT_MEASURE_ADC_UNIT // ADC1 is default
static const adc1_channel_t adc_channel = ADC_CHANNEL;
static const adc_unit_t unit = ADC_UNIT_1;
#else // ADC2
static const adc2_channel_t adc_channel = ADC_CHANNEL;
static const adc_unit_t unit = ADC_UNIT_2;
RTC_NOINIT_ATTR uint64_t RTC_reg_b;
#endif // BAT_MEASURE_ADC_UNIT
esp_adc_cal_characteristics_t *adc_characs = (esp_adc_cal_characteristics_t *)calloc(1, sizeof(esp_adc_cal_characteristics_t));
#ifndef ADC_ATTENUATION
static const adc_atten_t atten = ADC_ATTEN_DB_12;
#else
static const adc_atten_t atten = ADC_ATTENUATION;
#endif
#endif // BATTERY_PIN && ARCH_ESP32
#ifdef EXT_CHRG_DETECT
#ifndef EXT_CHRG_DETECT_MODE
static const uint8_t ext_chrg_detect_mode = INPUT;
#else
static const uint8_t ext_chrg_detect_mode = EXT_CHRG_DETECT_MODE;
#endif
#ifndef EXT_CHRG_DETECT_VALUE
static const uint8_t ext_chrg_detect_value = HIGH;
#else
static const uint8_t ext_chrg_detect_value = EXT_CHRG_DETECT_VALUE;
#endif
#endif
#if HAS_TELEMETRY && !MESHTASTIC_EXCLUDE_ENVIRONMENTAL_SENSOR && !defined(ARCH_PORTDUINO)
INA260Sensor ina260Sensor;
INA219Sensor ina219Sensor;
INA3221Sensor ina3221Sensor;
#endif
#if HAS_RAKPROT && !defined(ARCH_PORTDUINO)
RAK9154Sensor rak9154Sensor;
#endif
#ifdef HAS_PMU
XPowersLibInterface *PMU = NULL;
#else
// Copy of the base class defined in axp20x.h.
// I'd rather not include axp20x.h as it brings Wire dependency.
class HasBatteryLevel
{
public:
/**
* Battery state of charge, from 0 to 100 or -1 for unknown
*/
virtual int getBatteryPercent() { return -1; }
/**
* The raw voltage of the battery or NAN if unknown
*/
virtual uint16_t getBattVoltage() { return 0; }
/**
* return true if there is a battery installed in this unit
*/
virtual bool isBatteryConnect() { return false; }
virtual bool isVbusIn() { return false; }
virtual bool isCharging() { return false; }
};
#endif
bool pmu_irq = false;
Power *power;
using namespace meshtastic;
#ifndef AREF_VOLTAGE
#if defined(ARCH_NRF52)
/*
* Internal Reference is +/-0.6V, with an adjustable gain of 1/6, 1/5, 1/4,
* 1/3, 1/2 or 1, meaning 3.6, 3.0, 2.4, 1.8, 1.2 or 0.6V for the ADC levels.
*
* External Reference is VDD/4, with an adjustable gain of 1, 2 or 4, meaning
* VDD/4, VDD/2 or VDD for the ADC levels.
*
* Default settings are internal reference with 1/6 gain (GND..3.6V ADC range)
*/
#define AREF_VOLTAGE 3.6
#else
#define AREF_VOLTAGE 3.3
#endif
#endif
/**
* If this board has a battery level sensor, set this to a valid implementation
*/
static HasBatteryLevel *batteryLevel; // Default to NULL for no battery level sensor
/**
* A simple battery level sensor that assumes the battery voltage is attached via a voltage-divider to an analog input
*/
class AnalogBatteryLevel : public HasBatteryLevel
{
/**
* Battery state of charge, from 0 to 100 or -1 for unknown
*/
virtual int getBatteryPercent() override
{
#if defined(HAS_RAKPROT) && !defined(ARCH_PORTDUINO) && !defined(HAS_PMU)
if (hasRAK()) {
return rak9154Sensor.getBusBatteryPercent();
}
#endif
float v = getBattVoltage();
if (v < noBatVolt)
return -1; // If voltage is super low assume no battery installed
#ifdef NO_BATTERY_LEVEL_ON_CHARGE
// This does not work on a RAK4631 with battery connected
if (v > chargingVolt)
return 0; // While charging we can't report % full on the battery
#endif
/**
* @brief Battery voltage lookup table interpolation to obtain a more
* precise percentage rather than the old proportional one.
* @author Gabriele Russo
* @date 06/02/2024
*/
float battery_SOC = 0.0;
uint16_t voltage = v / NUM_CELLS; // single cell voltage (average)
for (int i = 0; i < NUM_OCV_POINTS; i++) {
if (OCV[i] <= voltage) {
if (i == 0) {
battery_SOC = 100.0; // 100% full
} else {
// interpolate between OCV[i] and OCV[i-1]
battery_SOC = (float)100.0 / (NUM_OCV_POINTS - 1.0) *
(NUM_OCV_POINTS - 1.0 - i + ((float)voltage - OCV[i]) / (OCV[i - 1] - OCV[i]));
}
break;
}
}
return clamp((int)(battery_SOC), 0, 100);
}
/**
* The raw voltage of the batteryin millivolts or NAN if unknown
*/
virtual uint16_t getBattVoltage() override
{
#if defined(HAS_RAKPROT) && !defined(ARCH_PORTDUINO) && !defined(HAS_PMU)
if (hasRAK()) {
return getRAKVoltage();
}
#endif
#if HAS_TELEMETRY && !defined(ARCH_PORTDUINO) && !defined(ARCH_STM32WL) && !defined(HAS_PMU) && \
!MESHTASTIC_EXCLUDE_ENVIRONMENTAL_SENSOR
if (hasINA()) {
LOG_DEBUG("Using INA on I2C addr 0x%x for device battery voltage\n", config.power.device_battery_ina_address);
return getINAVoltage();
}
#endif
#ifndef ADC_MULTIPLIER
#define ADC_MULTIPLIER 2.0
#endif
#ifndef BATTERY_SENSE_SAMPLES
#define BATTERY_SENSE_SAMPLES \
15 // Set the number of samples, it has an effect of increasing sensitivity in complex electromagnetic environment.
#endif
#ifdef BATTERY_PIN
// Override variant or default ADC_MULTIPLIER if we have the override pref
float operativeAdcMultiplier =
config.power.adc_multiplier_override > 0 ? config.power.adc_multiplier_override : ADC_MULTIPLIER;
// Do not call analogRead() often.
const uint32_t min_read_interval = 5000;
if (millis() - last_read_time_ms > min_read_interval) {
last_read_time_ms = millis();
uint32_t raw = 0;
float scaled = 0;
#ifdef ARCH_ESP32 // ADC block for espressif platforms
raw = espAdcRead();
scaled = esp_adc_cal_raw_to_voltage(raw, adc_characs);
scaled *= operativeAdcMultiplier;
#else // block for all other platforms
#ifdef ADC_CTRL // enable adc voltage divider when we need to read
pinMode(ADC_CTRL, OUTPUT);
digitalWrite(ADC_CTRL, ADC_CTRL_ENABLED);
delay(10);
#endif
for (uint32_t i = 0; i < BATTERY_SENSE_SAMPLES; i++) {
raw += analogRead(BATTERY_PIN);
}
raw = raw / BATTERY_SENSE_SAMPLES;
scaled = operativeAdcMultiplier * ((1000 * AREF_VOLTAGE) / pow(2, BATTERY_SENSE_RESOLUTION_BITS)) * raw;
#ifdef ADC_CTRL // disable adc voltage divider when we need to read
digitalWrite(ADC_CTRL, !ADC_CTRL_ENABLED);
#endif
#endif
if (!initial_read_done) {
// Flush the smoothing filter with an ADC reading, if the reading is plausibly correct
if (scaled > last_read_value)
last_read_value = scaled;
initial_read_done = true;
} else {
// Already initialized - filter this reading
last_read_value += (scaled - last_read_value) * 0.5; // Virtual LPF
}
// LOG_DEBUG("battery gpio %d raw val=%u scaled=%u filtered=%u\n", BATTERY_PIN, raw, (uint32_t)(scaled), (uint32_t)
// (last_read_value));
}
return last_read_value;
#endif // BATTERY_PIN
return 0;
}
#if defined(ARCH_ESP32) && !defined(HAS_PMU) && defined(BATTERY_PIN)
/**
* ESP32 specific function for getting calibrated ADC reads
*/
uint32_t espAdcRead()
{
uint32_t raw = 0;
uint8_t raw_c = 0; // raw reading counter
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
#ifdef ADC_CTRL // enable adc voltage divider when we need to read
pinMode(ADC_CTRL, OUTPUT);
digitalWrite(ADC_CTRL, ADC_CTRL_ENABLED);
delay(10);
#endif
for (int i = 0; i < BATTERY_SENSE_SAMPLES; i++) {
int val_ = adc1_get_raw(adc_channel);
if (val_ >= 0) { // save only valid readings
raw += val_;
raw_c++;
}
// delayMicroseconds(100);
}
#ifdef ADC_CTRL // disable adc voltage divider when we need to read
digitalWrite(ADC_CTRL, !ADC_CTRL_ENABLED);
#endif
#else // ADC2
#ifdef ADC_CTRL
#if defined(HELTEC_WIRELESS_PAPER) || defined(HELTEC_WIRELESS_PAPER_V1_0)
pinMode(ADC_CTRL, OUTPUT);
digitalWrite(ADC_CTRL, LOW); // ACTIVE LOW
delay(10);
#endif
#endif // End ADC_CTRL
#ifdef CONFIG_IDF_TARGET_ESP32S3 // ESP32S3
// ADC2 wifi bug workaround not required, breaks compile
// On ESP32S3, ADC2 can take turns with Wifi (?)
int32_t adc_buf;
esp_err_t read_result;
// Multiple samples
for (int i = 0; i < BATTERY_SENSE_SAMPLES; i++) {
adc_buf = 0;
read_result = -1;
read_result = adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf);
if (read_result == ESP_OK) {
raw += adc_buf;
raw_c++; // Count valid samples
} else {
LOG_DEBUG("An attempt to sample ADC2 failed\n");
}
}
#else // Other ESP32
int32_t adc_buf = 0;
for (int i = 0; i < BATTERY_SENSE_SAMPLES; i++) {
// ADC2 wifi bug workaround, see
// https://github.com/espressif/arduino-esp32/issues/102
WRITE_PERI_REG(SENS_SAR_READ_CTRL2_REG, RTC_reg_b);
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_DATA_INV);
adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf);
raw += adc_buf;
raw_c++;
}
#endif // BAT_MEASURE_ADC_UNIT
#ifdef ADC_CTRL
#if defined(HELTEC_WIRELESS_PAPER) || defined(HELTEC_WIRELESS_PAPER_V1_0)
digitalWrite(ADC_CTRL, HIGH);
#endif
#endif // End ADC_CTRL
#endif // End BAT_MEASURE_ADC_UNIT
return (raw / (raw_c < 1 ? 1 : raw_c));
}
#endif
/**
* return true if there is a battery installed in this unit
*/
virtual bool isBatteryConnect() override { return getBatteryPercent() != -1; }
/// If we see a battery voltage higher than physics allows - assume charger is pumping
/// in power
/// On some boards we don't have the power management chip (like AXPxxxx)
/// so we use EXT_PWR_DETECT GPIO pin to detect external power source
virtual bool isVbusIn() override
{
#ifdef EXT_PWR_DETECT
#ifdef HELTEC_CAPSULE_SENSOR_V3
// if external powered that pin will be pulled down
if (digitalRead(EXT_PWR_DETECT) == LOW) {
return true;
}
// if it's not LOW - check the battery
#else
// if external powered that pin will be pulled up
if (digitalRead(EXT_PWR_DETECT) == HIGH) {
return true;
}
// if it's not HIGH - check the battery
#endif
#endif
return getBattVoltage() > chargingVolt;
}
/// Assume charging if we have a battery and external power is connected.
/// we can't be smart enough to say 'full'?
virtual bool isCharging() override
{
#if defined(HAS_RAKPROT) && !defined(ARCH_PORTDUINO) && !defined(HAS_PMU)
if (hasRAK()) {
return (rak9154Sensor.isCharging()) ? OptTrue : OptFalse;
}
#endif
#ifdef EXT_CHRG_DETECT
return digitalRead(EXT_CHRG_DETECT) == ext_chrg_detect_value;
#else
return isBatteryConnect() && isVbusIn();
#endif
}
private:
/// If we see a battery voltage higher than physics allows - assume charger is pumping
/// in power
/// For heltecs with no battery connected, the measured voltage is 2204, so
// need to be higher than that, in this case is 2500mV (3000-500)
const uint16_t OCV[NUM_OCV_POINTS] = {OCV_ARRAY};
const float chargingVolt = (OCV[0] + 10) * NUM_CELLS;
const float noBatVolt = (OCV[NUM_OCV_POINTS - 1] - 500) * NUM_CELLS;
// Start value from minimum voltage for the filter to not start from 0
// that could trigger some events.
// This value is over-written by the first ADC reading, it the voltage seems reasonable.
bool initial_read_done = false;
float last_read_value = (OCV[NUM_OCV_POINTS - 1] * NUM_CELLS);
uint32_t last_read_time_ms = 0;
#if defined(HAS_RAKPROT)
uint16_t getRAKVoltage() { return rak9154Sensor.getBusVoltageMv(); }
bool hasRAK()
{
if (!rak9154Sensor.isInitialized())
return rak9154Sensor.runOnce() > 0;
return rak9154Sensor.isRunning();
}
#endif
#if HAS_TELEMETRY && !MESHTASTIC_EXCLUDE_ENVIRONMENTAL_SENSOR && !defined(ARCH_PORTDUINO) && !defined(ARCH_STM32WL)
uint16_t getINAVoltage()
{
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
return ina219Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA260].first ==
config.power.device_battery_ina_address) {
return ina260Sensor.getBusVoltageMv();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
return ina3221Sensor.getBusVoltageMv();
}
return 0;
}
bool hasINA()
{
if (!config.power.device_battery_ina_address) {
return false;
}
if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA219].first == config.power.device_battery_ina_address) {
if (!ina219Sensor.isInitialized())
return ina219Sensor.runOnce() > 0;
return ina219Sensor.isRunning();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA260].first ==
config.power.device_battery_ina_address) {
if (!ina260Sensor.isInitialized())
return ina260Sensor.runOnce() > 0;
return ina260Sensor.isRunning();
} else if (nodeTelemetrySensorsMap[meshtastic_TelemetrySensorType_INA3221].first ==
config.power.device_battery_ina_address) {
if (!ina3221Sensor.isInitialized())
return ina3221Sensor.runOnce() > 0;
return ina3221Sensor.isRunning();
}
return false;
}
#endif
};
static AnalogBatteryLevel analogLevel;
Power::Power() : OSThread("Power")
{
statusHandler = {};
low_voltage_counter = 0;
#ifdef DEBUG_HEAP
lastheap = memGet.getFreeHeap();
#endif
}
bool Power::analogInit()
{
#ifdef EXT_PWR_DETECT
#ifdef HELTEC_CAPSULE_SENSOR_V3
pinMode(EXT_PWR_DETECT, INPUT_PULLUP);
#else
pinMode(EXT_PWR_DETECT, INPUT);
#endif
#endif
#ifdef EXT_CHRG_DETECT
pinMode(EXT_CHRG_DETECT, ext_chrg_detect_mode);
#endif
#ifdef BATTERY_PIN
LOG_DEBUG("Using analog input %d for battery level\n", BATTERY_PIN);
// disable any internal pullups
pinMode(BATTERY_PIN, INPUT);
#ifndef BATTERY_SENSE_RESOLUTION_BITS
#define BATTERY_SENSE_RESOLUTION_BITS 10
#endif
#ifdef ARCH_ESP32 // ESP32 needs special analog stuff
#ifndef ADC_WIDTH // max resolution by default
static const adc_bits_width_t width = ADC_WIDTH_BIT_12;
#else
static const adc_bits_width_t width = ADC_WIDTH;
#endif
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
adc1_config_width(width);
adc1_config_channel_atten(adc_channel, atten);
#else // ADC2
adc2_config_channel_atten(adc_channel, atten);
#ifndef CONFIG_IDF_TARGET_ESP32S3
// ADC2 wifi bug workaround
// Not required with ESP32S3, breaks compile
RTC_reg_b = READ_PERI_REG(SENS_SAR_READ_CTRL2_REG);
#endif
#endif
// calibrate ADC
esp_adc_cal_value_t val_type = esp_adc_cal_characterize(unit, atten, width, DEFAULT_VREF, adc_characs);
// show ADC characterization base
if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
LOG_INFO("ADCmod: ADC characterization based on Two Point values stored in eFuse\n");
} else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
LOG_INFO("ADCmod: ADC characterization based on reference voltage stored in eFuse\n");
}
#ifdef CONFIG_IDF_TARGET_ESP32S3
// ESP32S3
else if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP_FIT) {
LOG_INFO("ADCmod: ADC Characterization based on Two Point values and fitting curve coefficients stored in eFuse\n");
}
#endif
else {
LOG_INFO("ADCmod: ADC characterization based on default reference voltage\n");
}
#endif // ARCH_ESP32
#ifdef ARCH_NRF52
#ifdef VBAT_AR_INTERNAL
analogReference(VBAT_AR_INTERNAL);
#else
analogReference(AR_INTERNAL); // 3.6V
#endif
#endif // ARCH_NRF52
#ifndef ARCH_ESP32
analogReadResolution(BATTERY_SENSE_RESOLUTION_BITS);
#endif
batteryLevel = &analogLevel;
return true;
#else
return false;
#endif
}
/**
* Initializes the Power class.
*
* @return true if the setup was successful, false otherwise.
*/
bool Power::setup()
{
bool found = axpChipInit() || analogInit();
#ifdef NRF_APM
found = true;
#endif
enabled = found;
low_voltage_counter = 0;
return found;
}
void Power::shutdown()
{
LOG_INFO("Shutting down\n");
#if defined(ARCH_NRF52) || defined(ARCH_ESP32)
#ifdef PIN_LED1
ledOff(PIN_LED1);
#endif
#ifdef PIN_LED2
ledOff(PIN_LED2);
#endif
#ifdef PIN_LED3
ledOff(PIN_LED3);
#endif
doDeepSleep(DELAY_FOREVER, false);
#endif
}
/// Reads power status to powerStatus singleton.
//
// TODO(girts): move this and other axp stuff to power.h/power.cpp.
void Power::readPowerStatus()
{
int32_t batteryVoltageMv = -1; // Assume unknown
int8_t batteryChargePercent = -1;
OptionalBool usbPowered = OptUnknown;
OptionalBool hasBattery = OptUnknown; // These must be static because NRF_APM code doesn't run every time
OptionalBool isCharging = OptUnknown;
if (batteryLevel) {
hasBattery = batteryLevel->isBatteryConnect() ? OptTrue : OptFalse;
usbPowered = batteryLevel->isVbusIn() ? OptTrue : OptFalse;
isCharging = batteryLevel->isCharging() ? OptTrue : OptFalse;
if (hasBattery) {
batteryVoltageMv = batteryLevel->getBattVoltage();
// If the AXP192 returns a valid battery percentage, use it
if (batteryLevel->getBatteryPercent() >= 0) {
batteryChargePercent = batteryLevel->getBatteryPercent();
} else {
// If the AXP192 returns a percentage less than 0, the feature is either not supported or there is an error
// In that case, we compute an estimate of the charge percent based on open circuite voltage table defined
// in power.h
batteryChargePercent = clamp((int)(((batteryVoltageMv - (OCV[NUM_OCV_POINTS - 1] * NUM_CELLS)) * 1e2) /
((OCV[0] * NUM_CELLS) - (OCV[NUM_OCV_POINTS - 1] * NUM_CELLS))),
0, 100);
}
}
}
// FIXME: IMO we shouldn't be littering our code with all these ifdefs. Way better instead to make a Nrf52IsUsbPowered subclass
// (which shares a superclass with the BatteryLevel stuff)
// that just provides a few methods. But in the interest of fixing this bug I'm going to follow current
// practice.
#ifdef NRF_APM // Section of code detects USB power on the RAK4631 and updates the power states. Takes 20 seconds or so to detect
// changes.
nrfx_power_usb_state_t nrf_usb_state = nrfx_power_usbstatus_get();
// LOG_DEBUG("NRF Power %d\n", nrf_usb_state);
// If changed to DISCONNECTED
if (nrf_usb_state == NRFX_POWER_USB_STATE_DISCONNECTED)
isCharging = usbPowered = OptFalse;
// If changed to CONNECTED / READY
else
isCharging = usbPowered = OptTrue;
#endif
// Notify any status instances that are observing us
const PowerStatus powerStatus2 = PowerStatus(hasBattery, usbPowered, isCharging, batteryVoltageMv, batteryChargePercent);
LOG_DEBUG("Battery: usbPower=%d, isCharging=%d, batMv=%d, batPct=%d\n", powerStatus2.getHasUSB(),
powerStatus2.getIsCharging(), powerStatus2.getBatteryVoltageMv(), powerStatus2.getBatteryChargePercent());
newStatus.notifyObservers(&powerStatus2);
#ifdef DEBUG_HEAP
if (lastheap != memGet.getFreeHeap()) {
LOG_DEBUG("Threads running:");
int running = 0;
for (int i = 0; i < MAX_THREADS; i++) {
auto thread = concurrency::mainController.get(i);
if ((thread != nullptr) && (thread->enabled)) {
LOG_DEBUG(" %s", thread->ThreadName.c_str());
running++;
}
}
LOG_DEBUG("\n");
LOG_DEBUG("Heap status: %d/%d bytes free (%d), running %d/%d threads\n", memGet.getFreeHeap(), memGet.getHeapSize(),
memGet.getFreeHeap() - lastheap, running, concurrency::mainController.size(false));
lastheap = memGet.getFreeHeap();
}
#ifdef DEBUG_HEAP_MQTT
if (mqtt) {
// send MQTT-Packet with Heap-Size
uint8_t dmac[6];
getMacAddr(dmac); // Get our hardware ID
char mac[18];
sprintf(mac, "!%02x%02x%02x%02x", dmac[2], dmac[3], dmac[4], dmac[5]);
auto newHeap = memGet.getFreeHeap();
std::string heapTopic =
(*moduleConfig.mqtt.root ? moduleConfig.mqtt.root : "msh") + std::string("/2/heap/") + std::string(mac);
std::string heapString = std::to_string(newHeap);
mqtt->pubSub.publish(heapTopic.c_str(), heapString.c_str(), false);
auto wifiRSSI = WiFi.RSSI();
std::string wifiTopic =
(*moduleConfig.mqtt.root ? moduleConfig.mqtt.root : "msh") + std::string("/2/wifi/") + std::string(mac);
std::string wifiString = std::to_string(wifiRSSI);
mqtt->pubSub.publish(wifiTopic.c_str(), wifiString.c_str(), false);
}
#endif
#endif
// If we have a battery at all and it is less than 0%, force deep sleep if we have more than 10 low readings in
// a row. NOTE: min LiIon/LiPo voltage is 2.0 to 2.5V, current OCV min is set to 3100 that is large enough.
//
if (batteryLevel && powerStatus2.getHasBattery() && !powerStatus2.getHasUSB()) {
if (batteryLevel->getBattVoltage() < OCV[NUM_OCV_POINTS - 1]) {
low_voltage_counter++;
LOG_DEBUG("Low voltage counter: %d/10\n", low_voltage_counter);
if (low_voltage_counter > 10) {
#ifdef ARCH_NRF52
// We can't trigger deep sleep on NRF52, it's freezing the board
LOG_DEBUG("Low voltage detected, but not triggering deep sleep\n");
#else
LOG_INFO("Low voltage detected, triggering deep sleep\n");
powerFSM.trigger(EVENT_LOW_BATTERY);
#endif
}
} else {
low_voltage_counter = 0;
}
}
}
int32_t Power::runOnce()
{
readPowerStatus();
#ifdef HAS_PMU
// WE no longer use the IRQ line to wake the CPU (due to false wakes from sleep), but we do poll
// the IRQ status by reading the registers over I2C
if (PMU) {
PMU->getIrqStatus();
if (PMU->isVbusRemoveIrq()) {
LOG_INFO("USB unplugged\n");
powerFSM.trigger(EVENT_POWER_DISCONNECTED);
}
if (PMU->isVbusInsertIrq()) {
LOG_INFO("USB plugged In\n");
powerFSM.trigger(EVENT_POWER_CONNECTED);
}
/*
Other things we could check if we cared...
if (PMU->isBatChagerStartIrq()) {
LOG_DEBUG("Battery start charging\n");
}
if (PMU->isBatChagerDoneIrq()) {
LOG_DEBUG("Battery fully charged\n");
}
if (PMU->isBatInsertIrq()) {
LOG_DEBUG("Battery inserted\n");
}
if (PMU->isBatRemoveIrq()) {
LOG_DEBUG("Battery removed\n");
}
*/
#ifndef T_WATCH_S3 // FIXME - why is this triggering on the T-Watch S3?
if (PMU->isPekeyLongPressIrq()) {
LOG_DEBUG("PEK long button press\n");
screen->setOn(false);
}
#endif
PMU->clearIrqStatus();
}
#endif
// Only read once every 20 seconds once the power status for the app has been initialized
return (statusHandler && statusHandler->isInitialized()) ? (1000 * 20) : RUN_SAME;
}
/**
* Init the power manager chip
*
* axp192 power
DCDC1 0.7-3.5V @ 1200mA max -> OLED // If you turn this off you'll lose comms to the axp192 because the OLED and the
axp192 share the same i2c bus, instead use ssd1306 sleep mode DCDC2 -> unused DCDC3 0.7-3.5V @ 700mA max -> ESP32 (keep this
on!) LDO1 30mA -> charges GPS backup battery // charges the tiny J13 battery by the GPS to power the GPS ram (for a couple of
days), can not be turned off LDO2 200mA -> LORA LDO3 200mA -> GPS
*
*/
bool Power::axpChipInit()
{
#ifdef HAS_PMU
TwoWire *w = NULL;
// Use macro to distinguish which wire is used by PMU
#ifdef PMU_USE_WIRE1
w = &Wire1;
#else
w = &Wire;
#endif
/**
* It is not necessary to specify the wire pin,
* just input the wire, because the wire has been initialized in main.cpp
*/
if (!PMU) {
PMU = new XPowersAXP2101(*w);
if (!PMU->init()) {
LOG_WARN("Failed to find AXP2101 power management\n");
delete PMU;
PMU = NULL;
} else {
LOG_INFO("AXP2101 PMU init succeeded, using AXP2101 PMU\n");
}
}
if (!PMU) {
PMU = new XPowersAXP192(*w);
if (!PMU->init()) {
LOG_WARN("Failed to find AXP192 power management\n");
delete PMU;
PMU = NULL;
} else {
LOG_INFO("AXP192 PMU init succeeded, using AXP192 PMU\n");
}
}
if (!PMU) {
/*
* In XPowersLib, if the XPowersAXPxxx object is released, Wire.end() will be called at the same time.
* In order not to affect other devices, if the initialization of the PMU fails, Wire needs to be re-initialized once,
* if there are multiple devices sharing the bus.
* * */
#ifndef PMU_USE_WIRE1
w->begin(I2C_SDA, I2C_SCL);
#endif
return false;
}
batteryLevel = PMU;
if (PMU->getChipModel() == XPOWERS_AXP192) {
// lora radio power channel
PMU->setPowerChannelVoltage(XPOWERS_LDO2, 3300);
PMU->enablePowerOutput(XPOWERS_LDO2);
// oled module power channel,
// disable it will cause abnormal communication between boot and AXP power supply,
// do not turn it off
PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
// enable oled power
PMU->enablePowerOutput(XPOWERS_DCDC1);
// gnss module power channel - now turned on in setGpsPower
PMU->setPowerChannelVoltage(XPOWERS_LDO3, 3300);
// PMU->enablePowerOutput(XPOWERS_LDO3);
// protected oled power source
PMU->setProtectedChannel(XPOWERS_DCDC1);
// protected esp32 power source
PMU->setProtectedChannel(XPOWERS_DCDC3);
// disable not use channel
PMU->disablePowerOutput(XPOWERS_DCDC2);
// disable all axp chip interrupt
PMU->disableIRQ(XPOWERS_AXP192_ALL_IRQ);
// Set constant current charging current
PMU->setChargerConstantCurr(XPOWERS_AXP192_CHG_CUR_450MA);
// Set up the charging voltage
PMU->setChargeTargetVoltage(XPOWERS_AXP192_CHG_VOL_4V2);
} else if (PMU->getChipModel() == XPOWERS_AXP2101) {
/*The alternative version of T-Beam 1.1 differs from T-Beam V1.1 in that it uses an AXP2101 power chip*/
if (HW_VENDOR == meshtastic_HardwareModel_TBEAM) {
// Unuse power channel
PMU->disablePowerOutput(XPOWERS_DCDC2);
PMU->disablePowerOutput(XPOWERS_DCDC3);
PMU->disablePowerOutput(XPOWERS_DCDC4);
PMU->disablePowerOutput(XPOWERS_DCDC5);
PMU->disablePowerOutput(XPOWERS_ALDO1);
PMU->disablePowerOutput(XPOWERS_ALDO4);
PMU->disablePowerOutput(XPOWERS_BLDO1);
PMU->disablePowerOutput(XPOWERS_BLDO2);
PMU->disablePowerOutput(XPOWERS_DLDO1);
PMU->disablePowerOutput(XPOWERS_DLDO2);
// GNSS RTC PowerVDD 3300mV
PMU->setPowerChannelVoltage(XPOWERS_VBACKUP, 3300);
PMU->enablePowerOutput(XPOWERS_VBACKUP);
// ESP32 VDD 3300mV
// ! No need to set, automatically open , Don't close it
// PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
// PMU->setProtectedChannel(XPOWERS_DCDC1);
// LoRa VDD 3300mV
PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO2);
// GNSS VDD 3300mV
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO3);
} else if (HW_VENDOR == meshtastic_HardwareModel_LILYGO_TBEAM_S3_CORE ||
HW_VENDOR == meshtastic_HardwareModel_T_WATCH_S3) {
// t-beam s3 core
/**
* gnss module power channel
* The default ALDO4 is off, you need to turn on the GNSS power first, otherwise it will be invalid during
* initialization
*/
PMU->setPowerChannelVoltage(XPOWERS_ALDO4, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO4);
// lora radio power channel
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO3);
// m.2 interface
PMU->setPowerChannelVoltage(XPOWERS_DCDC3, 3300);
PMU->enablePowerOutput(XPOWERS_DCDC3);
/**
* ALDO2 cannot be turned off.
* It is a necessary condition for sensor communication.
* It must be turned on to properly access the sensor and screen
* It is also responsible for the power supply of PCF8563
*/
PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO2);
// 6-axis , magnetometer ,bme280 , oled screen power channel
PMU->setPowerChannelVoltage(XPOWERS_ALDO1, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO1);
// sdcard power channel
PMU->setPowerChannelVoltage(XPOWERS_BLDO1, 3300);
PMU->enablePowerOutput(XPOWERS_BLDO1);
#ifdef T_WATCH_S3
// DRV2605 power channel
PMU->setPowerChannelVoltage(XPOWERS_BLDO2, 3300);
PMU->enablePowerOutput(XPOWERS_BLDO2);
#endif
// PMU->setPowerChannelVoltage(XPOWERS_DCDC4, 3300);
// PMU->enablePowerOutput(XPOWERS_DCDC4);
// not use channel
PMU->disablePowerOutput(XPOWERS_DCDC2); // not elicited
PMU->disablePowerOutput(XPOWERS_DCDC5); // not elicited
PMU->disablePowerOutput(XPOWERS_DLDO1); // Invalid power channel, it does not exist
PMU->disablePowerOutput(XPOWERS_DLDO2); // Invalid power channel, it does not exist
PMU->disablePowerOutput(XPOWERS_VBACKUP);
}
// disable all axp chip interrupt
PMU->disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
// Set the constant current charging current of AXP2101, temporarily use 500mA by default
PMU->setChargerConstantCurr(XPOWERS_AXP2101_CHG_CUR_500MA);
// Set up the charging voltage
PMU->setChargeTargetVoltage(XPOWERS_AXP2101_CHG_VOL_4V2);
}
PMU->clearIrqStatus();
// TBeam1.1 /T-Beam S3-Core has no external TS detection,
// it needs to be disabled, otherwise it will cause abnormal charging
PMU->disableTSPinMeasure();
// PMU->enableSystemVoltageMeasure();
PMU->enableVbusVoltageMeasure();
PMU->enableBattVoltageMeasure();
LOG_DEBUG("=======================================================================\n");
if (PMU->isChannelAvailable(XPOWERS_DCDC1)) {
LOG_DEBUG("DC1 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC1) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_DCDC1));
}
if (PMU->isChannelAvailable(XPOWERS_DCDC2)) {
LOG_DEBUG("DC2 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC2) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_DCDC2));
}
if (PMU->isChannelAvailable(XPOWERS_DCDC3)) {
LOG_DEBUG("DC3 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC3) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_DCDC3));
}
if (PMU->isChannelAvailable(XPOWERS_DCDC4)) {
LOG_DEBUG("DC4 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC4) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_DCDC4));
}
if (PMU->isChannelAvailable(XPOWERS_LDO2)) {
LOG_DEBUG("LDO2 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_LDO2) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_LDO2));
}
if (PMU->isChannelAvailable(XPOWERS_LDO3)) {
LOG_DEBUG("LDO3 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_LDO3) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_LDO3));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO1)) {
LOG_DEBUG("ALDO1: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO1) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_ALDO1));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO2)) {
LOG_DEBUG("ALDO2: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO2) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_ALDO2));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO3)) {
LOG_DEBUG("ALDO3: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO3) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_ALDO3));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO4)) {
LOG_DEBUG("ALDO4: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO4) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_ALDO4));
}
if (PMU->isChannelAvailable(XPOWERS_BLDO1)) {
LOG_DEBUG("BLDO1: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_BLDO1) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_BLDO1));
}
if (PMU->isChannelAvailable(XPOWERS_BLDO2)) {
LOG_DEBUG("BLDO2: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_BLDO2) ? "+" : "-",
PMU->getPowerChannelVoltage(XPOWERS_BLDO2));
}
LOG_DEBUG("=======================================================================\n");
// We can safely ignore this approach for most (or all) boards because MCU turned off
// earlier than battery discharged to 2.6V.
//
// Unfortanly for now we can't use this killswitch for RAK4630-based boards because they have a bug with
// battery voltage measurement. Probably it sometimes drops to low values.
#ifndef RAK4630
// Set PMU shutdown voltage at 2.6V to maximize battery utilization
PMU->setSysPowerDownVoltage(2600);
#endif
#ifdef PMU_IRQ
uint64_t pmuIrqMask = 0;
if (PMU->getChipModel() == XPOWERS_AXP192) {
pmuIrqMask = XPOWERS_AXP192_VBUS_INSERT_IRQ | XPOWERS_AXP192_BAT_INSERT_IRQ | XPOWERS_AXP192_PKEY_SHORT_IRQ;
} else if (PMU->getChipModel() == XPOWERS_AXP2101) {
pmuIrqMask = XPOWERS_AXP2101_VBUS_INSERT_IRQ | XPOWERS_AXP2101_BAT_INSERT_IRQ | XPOWERS_AXP2101_PKEY_SHORT_IRQ;
}
pinMode(PMU_IRQ, INPUT);
attachInterrupt(
PMU_IRQ, [] { pmu_irq = true; }, FALLING);
// we do not look for AXPXXX_CHARGING_FINISHED_IRQ & AXPXXX_CHARGING_IRQ because it occurs repeatedly while there is
// no battery also it could cause inadvertent waking from light sleep just because the battery filled
// we don't look for AXPXXX_BATT_REMOVED_IRQ because it occurs repeatedly while no battery installed
// we don't look at AXPXXX_VBUS_REMOVED_IRQ because we don't have anything hooked to vbus
PMU->enableIRQ(pmuIrqMask);
PMU->clearIrqStatus();
#endif /*PMU_IRQ*/
readPowerStatus();
pmu_found = true;
return pmu_found;
#else
return false;
#endif
}