mirror of
https://github.com/meshtastic/firmware.git
synced 2025-12-20 17:52:35 +00:00
Compare commits
48 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
916e62398d | ||
|
|
4735b3ff5b | ||
|
|
cfd6483ea5 | ||
|
|
4f7a25f562 | ||
|
|
4176d79ee9 | ||
|
|
fad496378c | ||
|
|
e084699704 | ||
|
|
50213d8323 | ||
|
|
763276a2c8 | ||
|
|
71fcdba017 | ||
|
|
08227e79d0 | ||
|
|
5a4fab2506 | ||
|
|
31eb2f5337 | ||
|
|
82c1752d85 | ||
|
|
49a13bbfd3 | ||
|
|
0096f54ae9 | ||
|
|
5af122b39d | ||
|
|
4e106f4098 | ||
|
|
1f1d683f4f | ||
|
|
a8f64c3cc8 | ||
|
|
968a2d7fbc | ||
|
|
1fab9c5aac | ||
|
|
22bca31ce3 | ||
|
|
48c045a253 | ||
|
|
e9ca7792eb | ||
|
|
b1a55b4576 | ||
|
|
dd7452ad96 | ||
|
|
d7d8188093 | ||
|
|
62a893c760 | ||
|
|
a2ba9d3c44 | ||
|
|
22720e9f63 | ||
|
|
11b79a942d | ||
|
|
3c3e722181 | ||
|
|
fce31560c6 | ||
|
|
074ac33b8a | ||
|
|
2982e197e0 | ||
|
|
f69ddf168b | ||
|
|
8d985cfd37 | ||
|
|
4693302d82 | ||
|
|
814c126e67 | ||
|
|
a7d153abcb | ||
|
|
1b265eb48d | ||
|
|
94e80d3b44 | ||
|
|
f1ec95f49b | ||
|
|
7ee2643e9a | ||
|
|
2ab34357d5 | ||
|
|
b53392ab73 | ||
|
|
803d2dfefb |
32
.vscode/launch.json
vendored
32
.vscode/launch.json
vendored
@@ -1,32 +0,0 @@
|
||||
// AUTOMATICALLY GENERATED FILE. PLEASE DO NOT MODIFY IT MANUALLY
|
||||
|
||||
// PIO Unified Debugger
|
||||
//
|
||||
// Documentation: https://docs.platformio.org/page/plus/debugging.html
|
||||
// Configuration: https://docs.platformio.org/page/projectconf/section_env_debug.html
|
||||
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"type": "platformio-debug",
|
||||
"request": "launch",
|
||||
"name": "PIO Debug",
|
||||
"executable": "/home/kevinh/development/meshtastic/meshtastic-esp32/.pio/build/tbeam/firmware.elf",
|
||||
"toolchainBinDir": "/home/kevinh/.platformio/packages/toolchain-xtensa32/bin",
|
||||
"preLaunchTask": {
|
||||
"type": "PlatformIO",
|
||||
"task": "Pre-Debug"
|
||||
},
|
||||
"internalConsoleOptions": "openOnSessionStart"
|
||||
},
|
||||
{
|
||||
"type": "platformio-debug",
|
||||
"request": "launch",
|
||||
"name": "PIO Debug (skip Pre-Debug)",
|
||||
"executable": "/home/kevinh/development/meshtastic/meshtastic-esp32/.pio/build/tbeam/firmware.elf",
|
||||
"toolchainBinDir": "/home/kevinh/.platformio/packages/toolchain-xtensa32/bin",
|
||||
"internalConsoleOptions": "openOnSessionStart"
|
||||
}
|
||||
]
|
||||
}
|
||||
12
README.md
12
README.md
@@ -1,4 +1,4 @@
|
||||
# Meshtastic-esp32
|
||||
# Meshtastic-device
|
||||
|
||||
This is the device side code for the [meshtastic.org](https://www.meshtastic.org) project.
|
||||
|
||||
@@ -143,15 +143,19 @@ Hard resetting via RTS pin...
|
||||
7. The board will boot and show the Meshtastic logo.
|
||||
8. Please post a comment on our chat so we know if these instructions worked for you ;-). If you find bugs/have-questions post there also - we will be rapidly iterating over the next few weeks.
|
||||
|
||||
## Meshtastic Android app
|
||||
# Meshtastic Android app
|
||||
|
||||
The source code for the (optional) Meshtastic Android app is [here](https://github.com/meshtastic/Meshtastic-Android).
|
||||
|
||||
Alpha test builds are current available by opting into our alpha test group. See (www.meshtastic.org) for instructions.
|
||||
Alpha test builds available by opting into our alpha test group. See (www.meshtastic.org) for instructions.
|
||||
|
||||
After our rate of change slows a bit, we will make beta builds available here (without needing to join the alphatest group):
|
||||
If you don't want to live on the 'bleeding edge' you can opt-in to the beta-test or use the released version:
|
||||
[](https://play.google.com/store/apps/details?id=com.geeksville.mesh&referrer=utm_source%3Dgithub%26utm_medium%3Desp32-readme%26utm_campaign%3Dmeshtastic-esp32%2520readme%26anid%3Dadmob&pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1)
|
||||
|
||||
# Python API
|
||||
|
||||
We offer a [python API](https://github.com/meshtastic/Meshtastic-python) that makes it easy to use these devices to provide mesh networking for your custom projects.
|
||||
|
||||
# Development
|
||||
|
||||
We'd love to have you join us on this merry little project. Please see our [development documents](./docs/software/sw-design.md) and [join us in our discussion forum](https://meshtastic.discourse.group/).
|
||||
|
||||
@@ -39,6 +39,9 @@ function do_build {
|
||||
cp $SRCELF $OUTDIR/elfs/firmware-$ENV_NAME-$COUNTRY-$VERSION.elf
|
||||
}
|
||||
|
||||
# Important to pull latest version of libs into all device flavors, otherwise some devices might be stale
|
||||
platformio lib update
|
||||
|
||||
for COUNTRY in $COUNTRIES; do
|
||||
for BOARD in $BOARDS; do
|
||||
do_build $BOARD
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
|
||||
|
||||
export VERSION=0.6.0
|
||||
export VERSION=0.6.1
|
||||
@@ -10,7 +10,7 @@
|
||||
"hwids": [["0x239A", "0x4403"]],
|
||||
"usb_product": "PPR",
|
||||
"mcu": "nrf52840",
|
||||
"variant": "ppr",
|
||||
"variant": "pca10056-rc-clock",
|
||||
"variants_dir": "variants",
|
||||
"bsp": {
|
||||
"name": "adafruit"
|
||||
|
||||
@@ -13,6 +13,7 @@ Note: Questions after reading this? See our new [forum](https://meshtastic.disco
|
||||
- Applications where closed source GPS communicators just won't cut it (it is easy to add features for glider pilots etc...)
|
||||
- Secure long-range communication within groups without depending on cellular providers
|
||||
- Finding your lost kids ;-)
|
||||
- Through our [python API](https://pypi.org/project/meshtastic/) use these inexpensive radios to easily add mesh networking to your own projects.
|
||||
|
||||
[](https://www.youtube.com/watch?v=WlNbMbVZlHI "Meshtastic early demo")
|
||||
|
||||
@@ -38,6 +39,7 @@ This software is 100% open source and developed by a group of hobbyist experimen
|
||||
|
||||
Note: Updates are happening almost daily, only major updates are listed below. For more details see our forum.
|
||||
|
||||
- 04/28/2020 - 0.6.0 [Python API](https://pypi.org/project/meshtastic/) released. Makes it easy to use meshtastic devices as "zero config / just works" mesh transport adapters for other projects.
|
||||
- 04/20/2020 - 0.4.3 Pretty solid now both for the android app and the device code. Many people have donated translations and code. Probably going to call it a beta soon.
|
||||
- 03/03/2020 - 0.0.9 of the Android app and device code is released. Still an alpha but fairly functional.
|
||||
- 02/25/2020 - 0.0.4 of the Android app is released. This is a very early alpha, see below to join the alpha-testers group.
|
||||
|
||||
@@ -4,11 +4,7 @@
|
||||
|
||||
Minimum items needed to make sure hardware is good.
|
||||
|
||||
- DONE select and install a bootloader (adafruit)
|
||||
- DONE get old radio driver working on NRF52
|
||||
- DONE basic test of BLE
|
||||
- DONE get a debug 'serial' console working via the ICE passthrough feature
|
||||
- switch to RadioLab? test it with current radio. https://github.com/jgromes/RadioLib
|
||||
- add a hard fault handler
|
||||
- use "variants" to get all gpio bindings
|
||||
- plug in correct variants for the real board
|
||||
- Use the PMU driver on real hardware
|
||||
@@ -28,6 +24,7 @@ Minimum items needed to make sure hardware is good.
|
||||
|
||||
Needed to be fully functional at least at the same level of the ESP32 boards. At this point users would probably want them.
|
||||
|
||||
- increase preamble length? - will break other clients? so all devices must update
|
||||
- enable BLE DFU somehow
|
||||
- set appversion/hwversion
|
||||
- report appversion/hwversion in BLE
|
||||
@@ -46,6 +43,11 @@ Needed to be fully functional at least at the same level of the ESP32 boards. At
|
||||
|
||||
## Items to be 'feature complete'
|
||||
|
||||
- use SX126x::startReceiveDutyCycleAuto to save power by sleeping and briefly waking to check for preamble bits. Change xmit rules to have more preamble bits.
|
||||
- turn back on in-radio destaddr checking for RF95
|
||||
- remove the MeshRadio wrapper - we don't need it anymore, just do everythin in RadioInterface subclasses.
|
||||
- figure out what the correct current limit should be for the sx1262, currently we just use the default 100
|
||||
- put sx1262 in sleepmode when processor gets shutdown (or rebooted), ideally even for critical faults (to keep power draw low). repurpose deepsleep state for this.
|
||||
- good power management tips: https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/optimizing-power-on-nrf52-designs
|
||||
- call PMU set_ADC_CONV(0) during sleep, to stop reading PMU adcs and decrease current draw
|
||||
- do final power measurements
|
||||
@@ -54,11 +56,14 @@ Needed to be fully functional at least at the same level of the ESP32 boards. At
|
||||
- currently using soft device SD140, is that ideal?
|
||||
- turn on the watchdog timer, require servicing from key application threads
|
||||
- install a hardfault handler for null ptrs (if one isn't already installed)
|
||||
- nrf52setup should call randomSeed(tbd)
|
||||
|
||||
## Things to do 'someday'
|
||||
|
||||
Nice ideas worth considering someday...
|
||||
|
||||
- make/find a multithread safe debug logging class (include remote logging and timestamps and levels). make each log event atomic.
|
||||
- turn on freertos stack size checking
|
||||
- Currently we use Nordic's vendor ID, which is apparently okay: https://devzone.nordicsemi.com/f/nordic-q-a/44014/using-nordic-vid-and-pid-for-nrf52840 and I just picked a PID of 0x4403
|
||||
- Use NRF logger module (includes flash logging etc...) instead of DEBUG_MSG
|
||||
- Use "LED softblink" library on NRF52 to do nice pretty "breathing" LEDs. Don't whack LED from main thread anymore.
|
||||
@@ -85,6 +90,16 @@ Nice ideas worth considering someday...
|
||||
|
||||
- DONE add "DFU trigger library" to application load
|
||||
- DONE: using this: Possibly use this bootloader? https://github.com/adafruit/Adafruit_nRF52_Bootloader
|
||||
- DONE select and install a bootloader (adafruit)
|
||||
- DONE get old radio driver working on NRF52
|
||||
- DONE basic test of BLE
|
||||
- DONE get a debug 'serial' console working via the ICE passthrough feature
|
||||
- DONE switch to RadioLab? test it with current radio. https://github.com/jgromes/RadioLib
|
||||
- DONE change rx95 to radiolib
|
||||
- DONE track rxbad, rxgood, txgood
|
||||
- DONE neg 7 error code from receive
|
||||
- DONE remove unused sx1262 lib from github
|
||||
- at boot we are starting our message IDs at 1, rather we should start them at a random number. also, seed random based on timer. this could be the cause of our first message not seen bug.
|
||||
|
||||
```
|
||||
|
||||
|
||||
6
gdbinit
Normal file
6
gdbinit
Normal file
@@ -0,0 +1,6 @@
|
||||
# the jlink debugger seems to want a pause after reset before we tell it to start running
|
||||
define restart
|
||||
monitor reset
|
||||
shell sleep 1
|
||||
cont
|
||||
end
|
||||
@@ -31,7 +31,7 @@ board_build.partitions = partition-table.csv
|
||||
|
||||
; note: we add src to our include search path so that lmic_project_config can override
|
||||
; FIXME: fix lib/BluetoothOTA dependency back on src/ so we can remove -Isrc
|
||||
build_flags = -Wno-missing-field-initializers -Isrc -Isrc/rf95 -Isrc/mesh -Ilib/nanopb/include -Os -Wl,-Map,.pio/build/output.map
|
||||
build_flags = -Wno-missing-field-initializers -Isrc -Isrc/mesh -Ilib/nanopb/include -Os -Wl,-Map,.pio/build/output.map
|
||||
-DAXP_DEBUG_PORT=Serial
|
||||
-DHW_VERSION_${sysenv.COUNTRY}
|
||||
-DAPP_VERSION=${sysenv.APP_VERSION}
|
||||
@@ -73,8 +73,7 @@ lib_deps =
|
||||
Wire ; explicitly needed here because the AXP202 library forgets to add it
|
||||
https://github.com/meshtastic/arduino-fsm.git
|
||||
https://github.com/meshtastic/SparkFun_Ublox_Arduino_Library.git
|
||||
https://github.com/meshtastic/SX126x-Arduino.git
|
||||
Ticker ; Needed for SX126x-Arduino on ESP32
|
||||
https://github.com/meshtastic/RadioLib.git
|
||||
|
||||
; Common settings for ESP targes, mixin with extends = esp32_base
|
||||
[esp32_base]
|
||||
@@ -129,6 +128,7 @@ platform = nordicnrf52
|
||||
board = ppr
|
||||
framework = arduino
|
||||
debug_tool = jlink
|
||||
build_type = debug ; I'm debugging with ICE a lot now
|
||||
build_flags =
|
||||
${env.build_flags} -Wno-unused-variable -Isrc/nrf52
|
||||
src_filter =
|
||||
@@ -141,7 +141,11 @@ lib_deps =
|
||||
https://github.com/meshtastic/BQ25703A.git
|
||||
monitor_port = /dev/ttyACM1
|
||||
|
||||
debug_extra_cmds =
|
||||
source gdbinit
|
||||
|
||||
; Set initial breakpoint (defaults to main)
|
||||
debug_init_break =
|
||||
;debug_init_break = tbreak loop
|
||||
;debug_init_break = tbreak Reset_Handler
|
||||
|
||||
|
||||
2
proto
2
proto
Submodule proto updated: 8427b23016...bd002e5a14
@@ -74,7 +74,7 @@ void GPS::setup()
|
||||
ok = ublox.powerSaveMode(); // use power save mode
|
||||
assert(ok);
|
||||
}
|
||||
ok = ublox.saveConfiguration(2000);
|
||||
ok = ublox.saveConfiguration(3000);
|
||||
assert(ok);
|
||||
} else {
|
||||
// Some boards might have only the TX line from the GPS connected, in that case, we can't configure it at all. Just
|
||||
@@ -110,7 +110,7 @@ void GPS::perhapsSetRTC(const struct timeval *tv)
|
||||
#ifndef NO_ESP32
|
||||
settimeofday(tv, NULL);
|
||||
#else
|
||||
assert(0);
|
||||
DEBUG_MSG("ERROR TIME SETTING NOT IMPLEMENTED!\n");
|
||||
#endif
|
||||
readFromRTC();
|
||||
}
|
||||
|
||||
@@ -17,6 +17,7 @@ void SerialConsole::init()
|
||||
{
|
||||
Port.begin(SERIAL_BAUD);
|
||||
StreamAPI::init();
|
||||
emitRebooted();
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
44
src/WorkerThread.cpp
Normal file
44
src/WorkerThread.cpp
Normal file
@@ -0,0 +1,44 @@
|
||||
#include "WorkerThread.h"
|
||||
#include <assert.h>
|
||||
|
||||
void Thread::start(const char *name, size_t stackSize, uint32_t priority)
|
||||
{
|
||||
auto r = xTaskCreate(callRun, name, stackSize, this, priority, &taskHandle);
|
||||
assert(r == pdPASS);
|
||||
}
|
||||
|
||||
void Thread::callRun(void *_this)
|
||||
{
|
||||
((Thread *)_this)->doRun();
|
||||
}
|
||||
|
||||
void WorkerThread::doRun()
|
||||
{
|
||||
while (!wantExit) {
|
||||
block();
|
||||
loop();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Notify this thread so it can run
|
||||
*/
|
||||
void NotifiedWorkerThread::notify(uint32_t v, eNotifyAction action)
|
||||
{
|
||||
xTaskNotify(taskHandle, v, action);
|
||||
}
|
||||
|
||||
/**
|
||||
* Notify from an ISR
|
||||
*/
|
||||
void NotifiedWorkerThread::notifyFromISR(BaseType_t *highPriWoken, uint32_t v, eNotifyAction action)
|
||||
{
|
||||
xTaskNotifyFromISR(taskHandle, v, action, highPriWoken);
|
||||
}
|
||||
|
||||
void NotifiedWorkerThread::block()
|
||||
{
|
||||
xTaskNotifyWait(0, // don't clear notification on entry
|
||||
0, // do not reset notification value on read
|
||||
¬ification, portMAX_DELAY); // Wait forever
|
||||
}
|
||||
77
src/WorkerThread.h
Normal file
77
src/WorkerThread.h
Normal file
@@ -0,0 +1,77 @@
|
||||
#include <Arduino.h>
|
||||
|
||||
class Thread
|
||||
{
|
||||
protected:
|
||||
TaskHandle_t taskHandle = NULL;
|
||||
|
||||
/**
|
||||
* set this to true to ask thread to cleanly exit asap
|
||||
*/
|
||||
volatile bool wantExit = false;
|
||||
|
||||
public:
|
||||
void start(const char *name, size_t stackSize = 1024, uint32_t priority = tskIDLE_PRIORITY);
|
||||
|
||||
virtual ~Thread() { vTaskDelete(taskHandle); }
|
||||
|
||||
protected:
|
||||
/**
|
||||
* The method that will be called when start is called.
|
||||
*/
|
||||
virtual void doRun() = 0;
|
||||
|
||||
private:
|
||||
static void callRun(void *_this);
|
||||
};
|
||||
|
||||
/**
|
||||
* This wraps threading (FreeRTOS for now) with a blocking API intended for efficiently converting onlyschool arduino loop() code.
|
||||
*
|
||||
* Use as a mixin base class for the classes you want to convert.
|
||||
*
|
||||
* https://www.freertos.org/RTOS_Task_Notification_As_Mailbox.html
|
||||
*/
|
||||
class WorkerThread : public Thread
|
||||
{
|
||||
protected:
|
||||
/**
|
||||
* A method that should block execution - either waiting ona queue/mutex or a "task notification"
|
||||
*/
|
||||
virtual void block() = 0;
|
||||
|
||||
virtual void loop() = 0;
|
||||
|
||||
/**
|
||||
* The method that will be called when start is called.
|
||||
*/
|
||||
virtual void doRun();
|
||||
};
|
||||
|
||||
/**
|
||||
* A worker thread that waits on a freertos notification
|
||||
*/
|
||||
class NotifiedWorkerThread : public WorkerThread
|
||||
{
|
||||
public:
|
||||
/**
|
||||
* Notify this thread so it can run
|
||||
*/
|
||||
void notify(uint32_t v = 0, eNotifyAction action = eNoAction);
|
||||
|
||||
/**
|
||||
* Notify from an ISR
|
||||
*/
|
||||
void notifyFromISR(BaseType_t *highPriWoken, uint32_t v = 0, eNotifyAction action = eNoAction);
|
||||
|
||||
protected:
|
||||
/**
|
||||
* The notification that was most recently used to wake the thread. Read from loop()
|
||||
*/
|
||||
uint32_t notification = 0;
|
||||
|
||||
/**
|
||||
* A method that should block execution - either waiting ona queue/mutex or a "task notification"
|
||||
*/
|
||||
virtual void block();
|
||||
};
|
||||
@@ -217,10 +217,12 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#define LED_INVERTED 1
|
||||
|
||||
// Temporarily testing if we can build the RF95 driver for NRF52
|
||||
#if 0
|
||||
#define RESET_GPIO 14 // If defined, this pin will be used to reset the LORA radio
|
||||
#define RF95_IRQ_GPIO 26 // IRQ line for the LORA radio
|
||||
#define DIO1_GPIO 35 // DIO1 & DIO2 are not currently used, but they must be assigned to a pin number
|
||||
#define DIO2_GPIO 34 // DIO1 & DIO2 are not currently used, but they must be assigned to a pin number
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
@@ -164,6 +164,8 @@ void axp192Init()
|
||||
|
||||
void esp32Setup()
|
||||
{
|
||||
randomSeed(esp_random()); // ESP docs say this is fairly random
|
||||
|
||||
#ifdef AXP192_SLAVE_ADDRESS
|
||||
axp192Init();
|
||||
#endif
|
||||
|
||||
33
src/main.cpp
33
src/main.cpp
@@ -118,6 +118,13 @@ static uint32_t ledBlinker()
|
||||
|
||||
Periodic ledPeriodic(ledBlinker);
|
||||
|
||||
#include "RF95Interface.h"
|
||||
#include "SX1262Interface.h"
|
||||
|
||||
#ifdef NO_ESP32
|
||||
#include "variant.h"
|
||||
#endif
|
||||
|
||||
void setup()
|
||||
{
|
||||
#ifdef USE_SEGGER
|
||||
@@ -188,8 +195,32 @@ void setup()
|
||||
|
||||
realRouter.setup(); // required for our periodic task (kinda skanky FIXME)
|
||||
|
||||
#ifdef SX1262_ANT_SW
|
||||
// make analog PA vs not PA switch on SX1262 eval board work properly
|
||||
pinMode(SX1262_ANT_SW, OUTPUT);
|
||||
digitalWrite(SX1262_ANT_SW, 1);
|
||||
#endif
|
||||
|
||||
// Init our SPI controller
|
||||
#ifdef NRF52_SERIES
|
||||
SPI.begin();
|
||||
#else
|
||||
// ESP32
|
||||
SPI.begin(SCK_GPIO, MISO_GPIO, MOSI_GPIO, NSS_GPIO);
|
||||
SPI.setFrequency(4000000);
|
||||
#endif
|
||||
|
||||
// MUST BE AFTER service.init, so we have our radio config settings (from nodedb init)
|
||||
radio = new MeshRadio();
|
||||
RadioInterface *rIf =
|
||||
#if defined(RF95_IRQ_GPIO)
|
||||
// new CustomRF95(); old Radiohead based driver
|
||||
new RF95Interface(NSS_GPIO, RF95_IRQ_GPIO, RESET_GPIO, SPI);
|
||||
#elif defined(SX1262_CS)
|
||||
new SX1262Interface(SX1262_CS, SX1262_DIO1, SX1262_RESET, SX1262_BUSY, SPI);
|
||||
#else
|
||||
new SimRadio();
|
||||
#endif
|
||||
radio = new MeshRadio(rIf);
|
||||
router.addInterface(&radio->radioIf);
|
||||
|
||||
if (radio && !radio->init())
|
||||
|
||||
@@ -99,7 +99,7 @@ bool FloodingRouter::wasSeenRecently(const MeshPacket *p)
|
||||
BroadcastRecord &r = recentBroadcasts[i];
|
||||
|
||||
if ((now - r.rxTimeMsec) >= FLOOD_EXPIRE_TIME) {
|
||||
DEBUG_MSG("Deleting old broadcast record %d\n", i);
|
||||
// DEBUG_MSG("Deleting old broadcast record %d\n", i);
|
||||
recentBroadcasts.erase(recentBroadcasts.begin() + i); // delete old record
|
||||
} else {
|
||||
if (r.id == p->id && r.sender == p->from) {
|
||||
@@ -24,7 +24,7 @@ separated by 2.16 MHz with respect to the adjacent channels. Channel zero starts
|
||||
/// Sometimes while debugging it is useful to set this false, to disable rf95 accesses
|
||||
bool useHardware = true;
|
||||
|
||||
MeshRadio::MeshRadio() // , manager(radioIf)
|
||||
MeshRadio::MeshRadio(RadioInterface *rIf) : radioIf(*rIf) // , manager(radioIf)
|
||||
{
|
||||
myNodeInfo.num_channels = NUM_CHANNELS;
|
||||
|
||||
@@ -54,19 +54,18 @@ bool MeshRadio::init()
|
||||
delay(10);
|
||||
#endif
|
||||
|
||||
radioIf.setThisAddress(
|
||||
nodeDB.getNodeNum()); // Note: we must do this here, because the nodenum isn't inited at constructor time.
|
||||
// we now expect interfaces to operate in promiscous mode
|
||||
// radioIf.setThisAddress(nodeDB.getNodeNum()); // Note: we must do this here, because the nodenum isn't inited at constructor
|
||||
// time.
|
||||
|
||||
applySettings();
|
||||
|
||||
if (!radioIf.init()) {
|
||||
DEBUG_MSG("LoRa radio init failed\n");
|
||||
DEBUG_MSG("Uncomment '#define SERIAL_DEBUG' in RH_RF95.cpp for detailed debug info\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// not needed - defaults on
|
||||
// rf95.setPayloadCRC(true);
|
||||
|
||||
reloadConfig();
|
||||
// No need to call this now, init is supposed to do same. reloadConfig();
|
||||
|
||||
return true;
|
||||
}
|
||||
@@ -87,39 +86,28 @@ unsigned long hash(char *str)
|
||||
return hash;
|
||||
}
|
||||
|
||||
int MeshRadio::reloadConfig(void *unused)
|
||||
/**
|
||||
* Pull our channel settings etc... from protobufs to the dumb interface settings
|
||||
*/
|
||||
void MeshRadio::applySettings()
|
||||
{
|
||||
radioIf.setModeIdle(); // Need to be idle before doing init
|
||||
|
||||
// Set up default configuration
|
||||
// No Sync Words in LORA mode.
|
||||
radioIf.setModemConfig(
|
||||
(RH_RF95::ModemConfigChoice)channelSettings.modem_config); // Radio default
|
||||
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
|
||||
// rf95.setPreambleLength(8); // Default is 8
|
||||
radioIf.modemConfig = (ModemConfigChoice)channelSettings.modem_config;
|
||||
|
||||
// Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
|
||||
int channel_num = hash(channelSettings.name) % NUM_CHANNELS;
|
||||
float center_freq = CH0 + CH_SPACING * channel_num;
|
||||
if (!radioIf.setFrequency(center_freq)) {
|
||||
DEBUG_MSG("setFrequency failed\n");
|
||||
assert(0); // fixme panic
|
||||
}
|
||||
|
||||
// Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on
|
||||
|
||||
// The default transmitter power is 13dBm, using PA_BOOST.
|
||||
// If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
|
||||
// you can set transmitter powers from 5 to 23 dBm:
|
||||
// FIXME - can we do this? It seems to be in the Heltec board.
|
||||
radioIf.setTxPower(channelSettings.tx_power, false);
|
||||
radioIf.freq = CH0 + CH_SPACING * channel_num;
|
||||
radioIf.power = channelSettings.tx_power;
|
||||
|
||||
DEBUG_MSG("Set radio: name=%s, config=%u, ch=%d, txpower=%d\n", channelSettings.name, channelSettings.modem_config,
|
||||
channel_num, channelSettings.tx_power);
|
||||
}
|
||||
|
||||
// Done with init tell radio to start receiving
|
||||
radioIf.setModeRx();
|
||||
int MeshRadio::reloadConfig(void *unused)
|
||||
{
|
||||
applySettings();
|
||||
radioIf.reconfigure();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
#pragma once
|
||||
|
||||
#include "CustomRF95.h"
|
||||
#include "MemoryPool.h"
|
||||
#include "MeshTypes.h"
|
||||
#include "Observer.h"
|
||||
#include "PointerQueue.h"
|
||||
#include "RadioInterface.h"
|
||||
#include "configuration.h"
|
||||
#include "mesh.pb.h"
|
||||
|
||||
@@ -63,23 +63,19 @@
|
||||
|
||||
/**
|
||||
* A raw low level interface to our mesh. Only understands nodenums and bytes (not protobufs or node ids)
|
||||
* FIXME - REMOVE THIS CLASS
|
||||
*/
|
||||
class MeshRadio
|
||||
{
|
||||
public:
|
||||
// Kinda ugly way of selecting different radio implementations, but soon this MeshRadio class will be going away
|
||||
// entirely. At that point we can make things pretty.
|
||||
#ifdef RF95_IRQ_GPIO
|
||||
CustomRF95
|
||||
radioIf; // the raw radio interface - for now I'm leaving public - because this class is shrinking to be almost nothing
|
||||
#else
|
||||
SimRadio radioIf;
|
||||
#endif
|
||||
RadioInterface &radioIf;
|
||||
|
||||
/** pool is the pool we will alloc our rx packets from
|
||||
* rxDest is where we will send any rx packets, it becomes receivers responsibility to return packet to the pool
|
||||
*/
|
||||
MeshRadio();
|
||||
MeshRadio(RadioInterface *rIf);
|
||||
|
||||
bool init();
|
||||
|
||||
@@ -104,4 +100,9 @@ class MeshRadio
|
||||
radioIf.sleep();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Pull our channel settings etc... from protobufs to the dumb interface settings
|
||||
*/
|
||||
void applySettings();
|
||||
};
|
||||
|
||||
@@ -61,7 +61,14 @@ static Periodic sendOwnerPeriod(sendOwnerCb);
|
||||
// FIXME, move this someplace better
|
||||
PacketId generatePacketId()
|
||||
{
|
||||
static uint32_t i;
|
||||
static uint32_t i; // Note: trying to keep this in noinit didn't help for working across reboots
|
||||
static bool didInit = false;
|
||||
|
||||
if (!didInit) {
|
||||
didInit = true;
|
||||
i = random(0, NUM_PACKET_ID +
|
||||
1); // pick a random initial sequence number at boot (to prevent repeated reboots always starting at 0)
|
||||
}
|
||||
|
||||
i++;
|
||||
return (i % NUM_PACKET_ID) + 1; // return number between 1 and 255
|
||||
@@ -313,7 +320,7 @@ void MeshService::sendOurPosition(NodeNum dest, bool wantReplies)
|
||||
|
||||
int MeshService::onGPSChanged(void *unused)
|
||||
{
|
||||
DEBUG_MSG("got gps notify\n");
|
||||
// DEBUG_MSG("got gps notify\n");
|
||||
|
||||
// Update our local node info with our position (even if we don't decide to update anyone else)
|
||||
MeshPacket *p = allocForSending();
|
||||
|
||||
@@ -289,6 +289,8 @@ void NodeDB::updateFrom(const MeshPacket &mp)
|
||||
info->position.time = mp.rx_time;
|
||||
}
|
||||
|
||||
info->snr = mp.rx_snr; // keep the most recent SNR we received for this node.
|
||||
|
||||
if (p.has_position) {
|
||||
// we carefully preserve the old time, because we always trust our local timestamps more
|
||||
uint32_t oldtime = info->position.time;
|
||||
|
||||
@@ -45,9 +45,6 @@ class PhoneAPI
|
||||
/// We temporarily keep the nodeInfo here between the call to available and getFromRadio
|
||||
const NodeInfo *nodeInfoForPhone = NULL;
|
||||
|
||||
/// Our fromradio packet while it is being assembled
|
||||
FromRadio fromRadioScratch;
|
||||
|
||||
ToRadio toRadioScratch; // this is a static scratch object, any data must be copied elsewhere before returning
|
||||
|
||||
/// Use to ensure that clients don't get confused about old messages from the radio
|
||||
@@ -85,6 +82,9 @@ class PhoneAPI
|
||||
void handleSetRadio(const RadioConfig &r);
|
||||
|
||||
protected:
|
||||
/// Our fromradio packet while it is being assembled
|
||||
FromRadio fromRadioScratch;
|
||||
|
||||
/**
|
||||
* Subclasses can use this as a hook to provide custom notifications for their transport (i.e. bluetooth notifies)
|
||||
*/
|
||||
|
||||
123
src/mesh/RF95Interface.cpp
Normal file
123
src/mesh/RF95Interface.cpp
Normal file
@@ -0,0 +1,123 @@
|
||||
#include "RF95Interface.h"
|
||||
#include "MeshRadio.h" // kinda yucky, but we need to know which region we are in
|
||||
#include "RadioLibRF95.h"
|
||||
#include <configuration.h>
|
||||
|
||||
RF95Interface::RF95Interface(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, SPIClass &spi)
|
||||
: RadioLibInterface(cs, irq, rst, 0, spi)
|
||||
{
|
||||
// FIXME - we assume devices never get destroyed
|
||||
}
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
bool RF95Interface::init()
|
||||
{
|
||||
RadioLibInterface::init();
|
||||
|
||||
applyModemConfig();
|
||||
if (power > 20) // This chip has lower power limits than some
|
||||
power = 20;
|
||||
|
||||
iface = lora = new RadioLibRF95(&module);
|
||||
int res = lora->begin(freq, bw, sf, cr, syncWord, power, currentLimit, preambleLength);
|
||||
DEBUG_MSG("LORA init result %d\n", res);
|
||||
|
||||
if (res == ERR_NONE)
|
||||
res = lora->setCRC(SX126X_LORA_CRC_ON);
|
||||
|
||||
if (res == ERR_NONE)
|
||||
startReceive(); // start receiving
|
||||
|
||||
return res == ERR_NONE;
|
||||
}
|
||||
|
||||
void INTERRUPT_ATTR RF95Interface::disableInterrupt()
|
||||
{
|
||||
lora->clearDio0Action();
|
||||
}
|
||||
|
||||
bool RF95Interface::reconfigure()
|
||||
{
|
||||
applyModemConfig();
|
||||
|
||||
// set mode to standby
|
||||
setStandby();
|
||||
|
||||
// configure publicly accessible settings
|
||||
int err = lora->setSpreadingFactor(sf);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora->setBandwidth(bw);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora->setCodingRate(cr);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora->setSyncWord(syncWord);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora->setCurrentLimit(currentLimit);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora->setPreambleLength(preambleLength);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora->setFrequency(freq);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
if (power > 20) // This chip has lower power limits than some
|
||||
power = 20;
|
||||
err = lora->setOutputPower(power);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
startReceive(); // restart receiving
|
||||
|
||||
return ERR_NONE;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add SNR data to received messages
|
||||
*/
|
||||
void RF95Interface::addReceiveMetadata(MeshPacket *mp)
|
||||
{
|
||||
mp->rx_snr = lora->getSNR();
|
||||
}
|
||||
|
||||
void RF95Interface::setStandby()
|
||||
{
|
||||
int err = lora->standby();
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
isReceiving = false; // If we were receiving, not any more
|
||||
disableInterrupt();
|
||||
completeSending(); // If we were sending, not anymore
|
||||
}
|
||||
|
||||
void RF95Interface::startReceive()
|
||||
{
|
||||
setStandby();
|
||||
int err = lora->startReceive();
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
isReceiving = true;
|
||||
|
||||
// Must be done AFTER, starting transmit, because startTransmit clears (possibly stale) interrupt pending register bits
|
||||
enableInterrupt(isrRxLevel0);
|
||||
}
|
||||
|
||||
/** Could we send right now (i.e. either not actively receving or transmitting)? */
|
||||
bool RF95Interface::isActivelyReceiving()
|
||||
{
|
||||
return lora->isReceiving();
|
||||
}
|
||||
|
||||
bool RF95Interface::sleep()
|
||||
{
|
||||
// put chipset into sleep mode
|
||||
disableInterrupt();
|
||||
lora->sleep();
|
||||
|
||||
return true;
|
||||
}
|
||||
55
src/mesh/RF95Interface.h
Normal file
55
src/mesh/RF95Interface.h
Normal file
@@ -0,0 +1,55 @@
|
||||
#pragma once
|
||||
|
||||
#include "MeshRadio.h" // kinda yucky, but we need to know which region we are in
|
||||
#include "RadioLibInterface.h"
|
||||
#include "RadioLibRF95.h"
|
||||
|
||||
/**
|
||||
* Our new not radiohead adapter for RF95 style radios
|
||||
*/
|
||||
class RF95Interface : public RadioLibInterface
|
||||
{
|
||||
RadioLibRF95 *lora; // Either a RFM95 or RFM96 depending on what was stuffed on this board
|
||||
|
||||
public:
|
||||
RF95Interface(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, SPIClass &spi);
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool init();
|
||||
|
||||
/// Apply any radio provisioning changes
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool reconfigure();
|
||||
|
||||
/// Prepare hardware for sleep. Call this _only_ for deep sleep, not needed for light sleep.
|
||||
virtual bool sleep();
|
||||
|
||||
protected:
|
||||
/**
|
||||
* Glue functions called from ISR land
|
||||
*/
|
||||
virtual void disableInterrupt();
|
||||
|
||||
/**
|
||||
* Enable a particular ISR callback glue function
|
||||
*/
|
||||
virtual void enableInterrupt(void (*callback)()) { lora->setDio0Action(callback); }
|
||||
|
||||
/** are we actively receiving a packet (only called during receiving state) */
|
||||
virtual bool isActivelyReceiving();
|
||||
|
||||
/**
|
||||
* Start waiting to receive a message
|
||||
*/
|
||||
virtual void startReceive();
|
||||
|
||||
/**
|
||||
* Add SNR data to received messages
|
||||
*/
|
||||
virtual void addReceiveMetadata(MeshPacket *mp);
|
||||
private:
|
||||
void setStandby();
|
||||
};
|
||||
67
src/mesh/RadioInterface.cpp
Normal file
67
src/mesh/RadioInterface.cpp
Normal file
@@ -0,0 +1,67 @@
|
||||
|
||||
#include "RadioInterface.h"
|
||||
#include "NodeDB.h"
|
||||
#include "assert.h"
|
||||
#include "configuration.h"
|
||||
#include <assert.h>
|
||||
#include <pb_decode.h>
|
||||
#include <pb_encode.h>
|
||||
|
||||
// 1kb was too small
|
||||
#define RADIO_STACK_SIZE 4096
|
||||
|
||||
RadioInterface::RadioInterface() : txQueue(MAX_TX_QUEUE)
|
||||
{
|
||||
assert(sizeof(PacketHeader) == 4); // make sure the compiler did what we expected
|
||||
}
|
||||
|
||||
bool RadioInterface::init()
|
||||
{
|
||||
start("radio", RADIO_STACK_SIZE); // Start our worker thread
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
ErrorCode SimRadio::send(MeshPacket *p)
|
||||
{
|
||||
DEBUG_MSG("SimRadio.send\n");
|
||||
packetPool.release(p);
|
||||
return ERRNO_OK;
|
||||
}
|
||||
|
||||
void RadioInterface::deliverToReceiver(MeshPacket *p)
|
||||
{
|
||||
assert(rxDest);
|
||||
assert(rxDest->enqueue(p, 0)); // NOWAIT - fixme, if queue is full, delete older messages
|
||||
}
|
||||
|
||||
/***
|
||||
* given a packet set sendingPacket and decode the protobufs into radiobuf. Returns # of payload bytes to send
|
||||
*/
|
||||
size_t RadioInterface::beginSending(MeshPacket *p)
|
||||
{
|
||||
assert(!sendingPacket);
|
||||
|
||||
// DEBUG_MSG("sending queued packet on mesh (txGood=%d,rxGood=%d,rxBad=%d)\n", rf95.txGood(), rf95.rxGood(), rf95.rxBad());
|
||||
assert(p->has_payload);
|
||||
|
||||
lastTxStart = millis();
|
||||
|
||||
PacketHeader *h = (PacketHeader *)radiobuf;
|
||||
|
||||
h->from = p->from;
|
||||
h->to = p->to;
|
||||
h->flags = 0;
|
||||
h->id = p->id;
|
||||
|
||||
// if the sender nodenum is zero, that means uninitialized
|
||||
assert(h->from);
|
||||
|
||||
size_t numbytes = pb_encode_to_bytes(radiobuf + sizeof(PacketHeader), sizeof(radiobuf), SubPacket_fields, &p->payload) +
|
||||
sizeof(PacketHeader);
|
||||
|
||||
assert(numbytes <= MAX_RHPACKETLEN);
|
||||
|
||||
sendingPacket = p;
|
||||
return numbytes;
|
||||
}
|
||||
120
src/mesh/RadioInterface.h
Normal file
120
src/mesh/RadioInterface.h
Normal file
@@ -0,0 +1,120 @@
|
||||
#pragma once
|
||||
|
||||
#include "MemoryPool.h"
|
||||
#include "MeshTypes.h"
|
||||
#include "PointerQueue.h"
|
||||
#include "WorkerThread.h"
|
||||
#include "mesh.pb.h"
|
||||
|
||||
#define MAX_TX_QUEUE 16 // max number of packets which can be waiting for transmission
|
||||
|
||||
#define MAX_RHPACKETLEN 256
|
||||
|
||||
/**
|
||||
* This structure has to exactly match the wire layout when sent over the radio link. Used to keep compatibility
|
||||
* wtih the old radiohead implementation.
|
||||
*/
|
||||
typedef struct {
|
||||
uint8_t to, from, id, flags;
|
||||
} PacketHeader;
|
||||
|
||||
typedef enum {
|
||||
Bw125Cr45Sf128 = 0, ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
|
||||
Bw500Cr45Sf128, ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
|
||||
Bw31_25Cr48Sf512, ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
|
||||
Bw125Cr48Sf4096, ///< Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
|
||||
} ModemConfigChoice;
|
||||
|
||||
/**
|
||||
* Basic operations all radio chipsets must implement.
|
||||
*
|
||||
* This defines the SOLE API for talking to radios (because soon we will have alternate radio implementations)
|
||||
*/
|
||||
class RadioInterface : protected NotifiedWorkerThread
|
||||
{
|
||||
friend class MeshRadio; // for debugging we let that class touch pool
|
||||
PointerQueue<MeshPacket> *rxDest = NULL;
|
||||
|
||||
protected:
|
||||
MeshPacket *sendingPacket = NULL; // The packet we are currently sending
|
||||
PointerQueue<MeshPacket> txQueue;
|
||||
uint32_t lastTxStart = 0L;
|
||||
|
||||
/**
|
||||
* A temporary buffer used for sending/receving packets, sized to hold the biggest buffer we might need
|
||||
* */
|
||||
uint8_t radiobuf[MAX_RHPACKETLEN];
|
||||
|
||||
/**
|
||||
* Enqueue a received packet for the registered receiver
|
||||
*/
|
||||
void deliverToReceiver(MeshPacket *p);
|
||||
|
||||
public:
|
||||
float freq = 915.0; // FIXME, init all these params from user setings
|
||||
int8_t power = 17;
|
||||
ModemConfigChoice modemConfig;
|
||||
|
||||
/** pool is the pool we will alloc our rx packets from
|
||||
* rxDest is where we will send any rx packets, it becomes receivers responsibility to return packet to the pool
|
||||
*/
|
||||
RadioInterface();
|
||||
|
||||
/**
|
||||
* Set where to deliver received packets. This method should only be used by the Router class
|
||||
*/
|
||||
void setReceiver(PointerQueue<MeshPacket> *_rxDest) { rxDest = _rxDest; }
|
||||
|
||||
/**
|
||||
* Return true if we think the board can go to sleep (i.e. our tx queue is empty, we are not sending or receiving)
|
||||
*
|
||||
* This method must be used before putting the CPU into deep or light sleep.
|
||||
*/
|
||||
virtual bool canSleep() { return true; }
|
||||
|
||||
/// Prepare hardware for sleep. Call this _only_ for deep sleep, not needed for light sleep.
|
||||
virtual bool sleep() { return true; }
|
||||
|
||||
/**
|
||||
* Send a packet (possibly by enquing in a private fifo). This routine will
|
||||
* later free() the packet to pool. This routine is not allowed to stall.
|
||||
* If the txmit queue is full it might return an error
|
||||
*/
|
||||
virtual ErrorCode send(MeshPacket *p) = 0;
|
||||
|
||||
// methods from radiohead
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool init();
|
||||
|
||||
/// Apply any radio provisioning changes
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool reconfigure() = 0;
|
||||
|
||||
protected:
|
||||
/***
|
||||
* given a packet set sendingPacket and decode the protobufs into radiobuf. Returns # of bytes to send (including the
|
||||
* PacketHeader & payload).
|
||||
*
|
||||
* Used as the first step of
|
||||
*/
|
||||
size_t beginSending(MeshPacket *p);
|
||||
|
||||
virtual void loop() {} // Idle processing
|
||||
};
|
||||
|
||||
class SimRadio : public RadioInterface
|
||||
{
|
||||
public:
|
||||
virtual ErrorCode send(MeshPacket *p);
|
||||
|
||||
// methods from radiohead
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool init() { return true; }
|
||||
};
|
||||
253
src/mesh/RadioLibInterface.cpp
Normal file
253
src/mesh/RadioLibInterface.cpp
Normal file
@@ -0,0 +1,253 @@
|
||||
#include "RadioLibInterface.h"
|
||||
#include "MeshTypes.h"
|
||||
#include "mesh-pb-constants.h"
|
||||
#include <NodeDB.h> // FIXME, this class shouldn't need to look into nodedb
|
||||
#include <configuration.h>
|
||||
#include <pb_decode.h>
|
||||
#include <pb_encode.h>
|
||||
|
||||
// FIXME, we default to 4MHz SPI, SPI mode 0, check if the datasheet says it can really do that
|
||||
static SPISettings spiSettings(4000000, MSBFIRST, SPI_MODE0);
|
||||
|
||||
RadioLibInterface::RadioLibInterface(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE busy,
|
||||
SPIClass &spi, PhysicalLayer *_iface)
|
||||
: module(cs, irq, rst, busy, spi, spiSettings), iface(_iface)
|
||||
{
|
||||
assert(!instance); // We assume only one for now
|
||||
instance = this;
|
||||
}
|
||||
|
||||
#ifndef NO_ESP32
|
||||
// ESP32 doesn't use that flag
|
||||
#define YIELD_FROM_ISR(x) portYIELD_FROM_ISR()
|
||||
#else
|
||||
#define YIELD_FROM_ISR(x) portYIELD_FROM_ISR(x)
|
||||
#endif
|
||||
|
||||
void INTERRUPT_ATTR RadioLibInterface::isrRxLevel0()
|
||||
{
|
||||
instance->disableInterrupt();
|
||||
|
||||
instance->pending = ISR_RX;
|
||||
BaseType_t xHigherPriorityTaskWoken;
|
||||
instance->notifyFromISR(&xHigherPriorityTaskWoken);
|
||||
|
||||
/* Force a context switch if xHigherPriorityTaskWoken is now set to pdTRUE.
|
||||
The macro used to do this is dependent on the port and may be called
|
||||
portEND_SWITCHING_ISR. */
|
||||
YIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
}
|
||||
|
||||
void INTERRUPT_ATTR RadioLibInterface::isrTxLevel0()
|
||||
{
|
||||
instance->disableInterrupt();
|
||||
|
||||
instance->pending = ISR_TX;
|
||||
BaseType_t xHigherPriorityTaskWoken;
|
||||
instance->notifyFromISR(&xHigherPriorityTaskWoken);
|
||||
|
||||
/* Force a context switch if xHigherPriorityTaskWoken is now set to pdTRUE.
|
||||
The macro used to do this is dependent on the port and may be called
|
||||
portEND_SWITCHING_ISR. */
|
||||
YIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
}
|
||||
|
||||
/** Our ISR code currently needs this to find our active instance
|
||||
*/
|
||||
RadioLibInterface *RadioLibInterface::instance;
|
||||
|
||||
/**
|
||||
* Convert our modemConfig enum into wf, sf, etc...
|
||||
*/
|
||||
void RadioLibInterface::applyModemConfig()
|
||||
{
|
||||
switch (modemConfig) {
|
||||
case Bw125Cr45Sf128: ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
|
||||
bw = 125;
|
||||
cr = 5;
|
||||
sf = 7;
|
||||
break;
|
||||
case Bw500Cr45Sf128: ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
|
||||
bw = 500;
|
||||
cr = 5;
|
||||
sf = 7;
|
||||
break;
|
||||
case Bw31_25Cr48Sf512: ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
|
||||
bw = 31.25;
|
||||
cr = 8;
|
||||
sf = 9;
|
||||
break;
|
||||
case Bw125Cr48Sf4096:
|
||||
bw = 125;
|
||||
cr = 8;
|
||||
sf = 12;
|
||||
break;
|
||||
default:
|
||||
assert(0); // Unknown enum
|
||||
}
|
||||
}
|
||||
|
||||
/** Could we send right now (i.e. either not actively receving or transmitting)? */
|
||||
bool RadioLibInterface::canSendImmediately()
|
||||
{
|
||||
// We wait _if_ we are partially though receiving a packet (rather than just merely waiting for one).
|
||||
// To do otherwise would be doubly bad because not only would we drop the packet that was on the way in,
|
||||
// we almost certainly guarantee no one outside will like the packet we are sending.
|
||||
PendingISR isPending = pending;
|
||||
bool busyTx = sendingPacket != NULL;
|
||||
bool busyRx = isReceiving && isActivelyReceiving();
|
||||
|
||||
if (busyTx || busyRx || isPending)
|
||||
DEBUG_MSG("Can not send yet, busyTx=%d, busyRx=%d, intPend=%d\n", busyTx, busyRx, isPending);
|
||||
|
||||
return !busyTx && !busyRx && !isPending;
|
||||
}
|
||||
|
||||
/// Send a packet (possibly by enquing in a private fifo). This routine will
|
||||
/// later free() the packet to pool. This routine is not allowed to stall because it is called from
|
||||
/// bluetooth comms code. If the txmit queue is empty it might return an error
|
||||
ErrorCode RadioLibInterface::send(MeshPacket *p)
|
||||
{
|
||||
// We wait _if_ we are partially though receiving a packet (rather than just merely waiting for one).
|
||||
// To do otherwise would be doubly bad because not only would we drop the packet that was on the way in,
|
||||
// we almost certainly guarantee no one outside will like the packet we are sending.
|
||||
if (canSendImmediately()) {
|
||||
// if the radio is idle, we can send right away
|
||||
DEBUG_MSG("immediate send on mesh fr=0x%x,to=0x%x,id=%d\n (txGood=%d,rxGood=%d,rxBad=%d)\n", p->from, p->to, p->id,
|
||||
txGood, rxGood, rxBad);
|
||||
|
||||
startSend(p);
|
||||
return ERRNO_OK;
|
||||
} else {
|
||||
DEBUG_MSG("enqueuing packet for send from=0x%x, to=0x%x\n", p->from, p->to);
|
||||
ErrorCode res = txQueue.enqueue(p, 0) ? ERRNO_OK : ERRNO_UNKNOWN;
|
||||
|
||||
if (res != ERRNO_OK) // we weren't able to queue it, so we must drop it to prevent leaks
|
||||
packetPool.release(p);
|
||||
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
bool RadioLibInterface::canSleep()
|
||||
{
|
||||
bool res = txQueue.isEmpty();
|
||||
if (!res) // only print debug messages if we are vetoing sleep
|
||||
DEBUG_MSG("radio wait to sleep, txEmpty=%d\n", txQueue.isEmpty());
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void RadioLibInterface::loop()
|
||||
{
|
||||
PendingISR wasPending = pending;
|
||||
pending = ISR_NONE;
|
||||
|
||||
if (wasPending == ISR_TX)
|
||||
handleTransmitInterrupt();
|
||||
else if (wasPending == ISR_RX)
|
||||
handleReceiveInterrupt();
|
||||
else
|
||||
assert(0); // We expected to receive a valid notification from the ISR
|
||||
|
||||
startNextWork();
|
||||
}
|
||||
|
||||
void RadioLibInterface::startNextWork()
|
||||
{
|
||||
// First send any outgoing packets we have ready
|
||||
MeshPacket *txp = txQueue.dequeuePtr(0);
|
||||
if (txp)
|
||||
startSend(txp);
|
||||
else {
|
||||
// Nothing to send, let's switch back to receive mode
|
||||
startReceive();
|
||||
}
|
||||
}
|
||||
|
||||
void RadioLibInterface::handleTransmitInterrupt()
|
||||
{
|
||||
// DEBUG_MSG("handling lora TX interrupt\n");
|
||||
assert(sendingPacket); // Were we sending? - FIXME, this was null coming out of light sleep due to RF95 ISR!
|
||||
|
||||
completeSending();
|
||||
}
|
||||
|
||||
void RadioLibInterface::completeSending()
|
||||
{
|
||||
if (sendingPacket) {
|
||||
txGood++;
|
||||
DEBUG_MSG("Completed sending to=0x%x, id=%u\n", sendingPacket->to, sendingPacket->id);
|
||||
|
||||
// We are done sending that packet, release it
|
||||
packetPool.release(sendingPacket);
|
||||
sendingPacket = NULL;
|
||||
// DEBUG_MSG("Done with send\n");
|
||||
}
|
||||
}
|
||||
|
||||
void RadioLibInterface::handleReceiveInterrupt()
|
||||
{
|
||||
assert(isReceiving);
|
||||
isReceiving = false;
|
||||
|
||||
// read the number of actually received bytes
|
||||
size_t length = iface->getPacketLength();
|
||||
|
||||
int state = iface->readData(radiobuf, length);
|
||||
if (state != ERR_NONE) {
|
||||
DEBUG_MSG("ignoring received packet due to error=%d\n", state);
|
||||
rxBad++;
|
||||
} else {
|
||||
// Skip the 4 headers that are at the beginning of the rxBuf
|
||||
int32_t payloadLen = length - sizeof(PacketHeader);
|
||||
const uint8_t *payload = radiobuf + sizeof(PacketHeader);
|
||||
|
||||
// check for short packets
|
||||
if (payloadLen < 0) {
|
||||
DEBUG_MSG("ignoring received packet too short\n");
|
||||
rxBad++;
|
||||
} else {
|
||||
const PacketHeader *h = (PacketHeader *)radiobuf;
|
||||
uint8_t ourAddr = nodeDB.getNodeNum();
|
||||
|
||||
if (h->to != 255 && h->to != ourAddr) {
|
||||
DEBUG_MSG("ignoring packet not sent to us\n");
|
||||
} else {
|
||||
MeshPacket *mp = packetPool.allocZeroed();
|
||||
|
||||
SubPacket *p = &mp->payload;
|
||||
|
||||
mp->from = h->from;
|
||||
mp->to = h->to;
|
||||
mp->id = h->id;
|
||||
addReceiveMetadata(mp);
|
||||
|
||||
if (!pb_decode_from_bytes(payload, payloadLen, SubPacket_fields, p)) {
|
||||
DEBUG_MSG("Invalid protobufs in received mesh packet, discarding.\n");
|
||||
packetPool.release(mp);
|
||||
// rxBad++; not really a hw error
|
||||
} else {
|
||||
// parsing was successful, queue for our recipient
|
||||
mp->has_payload = true;
|
||||
rxGood++;
|
||||
DEBUG_MSG("Lora RX interrupt from=0x%x, id=%u\n", mp->from, mp->id);
|
||||
|
||||
deliverToReceiver(mp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** start an immediate transmit */
|
||||
void RadioLibInterface::startSend(MeshPacket *txp)
|
||||
{
|
||||
size_t numbytes = beginSending(txp);
|
||||
|
||||
int res = iface->startTransmit(radiobuf, numbytes);
|
||||
assert(res == ERR_NONE);
|
||||
|
||||
// Must be done AFTER, starting transmit, because startTransmit clears (possibly stale) interrupt pending register bits
|
||||
enableInterrupt(isrTxLevel0);
|
||||
}
|
||||
124
src/mesh/RadioLibInterface.h
Normal file
124
src/mesh/RadioLibInterface.h
Normal file
@@ -0,0 +1,124 @@
|
||||
#pragma once
|
||||
|
||||
#include "RadioInterface.h"
|
||||
|
||||
#include <RadioLib.h>
|
||||
|
||||
// ESP32 has special rules about ISR code
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
#define INTERRUPT_ATTR IRAM_ATTR
|
||||
#else
|
||||
#define INTERRUPT_ATTR
|
||||
#endif
|
||||
|
||||
class RadioLibInterface : public RadioInterface
|
||||
{
|
||||
/// Used as our notification from the ISR
|
||||
enum PendingISR { ISR_NONE = 0, ISR_RX, ISR_TX };
|
||||
|
||||
volatile PendingISR pending = ISR_NONE;
|
||||
|
||||
/** Our ISR code currently needs this to find our active instance
|
||||
*/
|
||||
static RadioLibInterface *instance;
|
||||
|
||||
/**
|
||||
* Raw ISR handler that just calls our polymorphic method
|
||||
*/
|
||||
static void isrTxLevel0();
|
||||
|
||||
/**
|
||||
* Debugging counts
|
||||
*/
|
||||
uint32_t rxBad = 0, rxGood = 0, txGood = 0;
|
||||
|
||||
protected:
|
||||
float bw = 125;
|
||||
uint8_t sf = 9;
|
||||
uint8_t cr = 7;
|
||||
|
||||
/**
|
||||
* FIXME, use a meshtastic sync word, but hashed with the Channel name. Currently picking the same default
|
||||
* the RF95 used (0x14). Note: do not use 0x34 - that is reserved for lorawan
|
||||
*/
|
||||
uint8_t syncWord = SX126X_SYNC_WORD_PRIVATE;
|
||||
|
||||
float currentLimit = 100; // FIXME
|
||||
uint16_t preambleLength = 8; // 8 is default, but FIXME use longer to increase the amount of sleep time when receiving
|
||||
|
||||
Module module; // The HW interface to the radio
|
||||
|
||||
/**
|
||||
* provides lowest common denominator RadioLib API
|
||||
*/
|
||||
PhysicalLayer *iface;
|
||||
|
||||
/// are _trying_ to receive a packet currently (note - we might just be waiting for one)
|
||||
bool isReceiving;
|
||||
|
||||
/**
|
||||
* Glue functions called from ISR land
|
||||
*/
|
||||
virtual void disableInterrupt() = 0;
|
||||
|
||||
/**
|
||||
* Enable a particular ISR callback glue function
|
||||
*/
|
||||
virtual void enableInterrupt(void (*)()) = 0;
|
||||
|
||||
public:
|
||||
RadioLibInterface(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE busy, SPIClass &spi,
|
||||
PhysicalLayer *iface = NULL);
|
||||
|
||||
virtual ErrorCode send(MeshPacket *p);
|
||||
|
||||
/**
|
||||
* Return true if we think the board can go to sleep (i.e. our tx queue is empty, we are not sending or receiving)
|
||||
*
|
||||
* This method must be used before putting the CPU into deep or light sleep.
|
||||
*/
|
||||
virtual bool canSleep();
|
||||
|
||||
private:
|
||||
/** start an immediate transmit */
|
||||
void startSend(MeshPacket *txp);
|
||||
|
||||
/** start a queued transmit (if we have one), else start receiving */
|
||||
void startNextWork();
|
||||
|
||||
void handleTransmitInterrupt();
|
||||
void handleReceiveInterrupt();
|
||||
|
||||
protected:
|
||||
/**
|
||||
* Convert our modemConfig enum into wf, sf, etc...
|
||||
*/
|
||||
void applyModemConfig();
|
||||
|
||||
/** Could we send right now (i.e. either not actively receiving or transmitting)? */
|
||||
bool canSendImmediately();
|
||||
|
||||
/** are we actively receiving a packet (only called during receiving state) */
|
||||
virtual bool isActivelyReceiving() = 0;
|
||||
|
||||
/**
|
||||
* Start waiting to receive a message
|
||||
*/
|
||||
virtual void startReceive() = 0;
|
||||
|
||||
/**
|
||||
* Raw ISR handler that just calls our polymorphic method
|
||||
*/
|
||||
static void isrRxLevel0();
|
||||
|
||||
/**
|
||||
* If a send was in progress finish it and return the buffer to the pool */
|
||||
void completeSending();
|
||||
|
||||
/**
|
||||
* Add SNR data to received messages
|
||||
*/
|
||||
virtual void addReceiveMetadata(MeshPacket *mp) = 0;
|
||||
|
||||
virtual void loop(); // Idle processing
|
||||
};
|
||||
63
src/mesh/RadioLibRF95.cpp
Normal file
63
src/mesh/RadioLibRF95.cpp
Normal file
@@ -0,0 +1,63 @@
|
||||
#include "RadioLibRF95.h"
|
||||
|
||||
#define RF95_CHIP_VERSION 0x12
|
||||
#define RF95_ALT_VERSION 0x11 // Supposedly some versions of the chip have id 0x11
|
||||
|
||||
RadioLibRF95::RadioLibRF95(Module *mod) : SX1278(mod) {}
|
||||
|
||||
int16_t RadioLibRF95::begin(float freq, float bw, uint8_t sf, uint8_t cr, uint8_t syncWord, int8_t power, uint8_t currentLimit,
|
||||
uint16_t preambleLength, uint8_t gain)
|
||||
{
|
||||
// execute common part
|
||||
int16_t state = SX127x::begin(RF95_CHIP_VERSION, syncWord, currentLimit, preambleLength);
|
||||
if (state != ERR_NONE)
|
||||
state = SX127x::begin(RF95_ALT_VERSION, syncWord, currentLimit, preambleLength);
|
||||
RADIOLIB_ASSERT(state);
|
||||
|
||||
// configure settings not accessible by API
|
||||
state = config();
|
||||
RADIOLIB_ASSERT(state);
|
||||
|
||||
// configure publicly accessible settings
|
||||
state = setFrequency(freq);
|
||||
RADIOLIB_ASSERT(state);
|
||||
|
||||
state = setBandwidth(bw);
|
||||
RADIOLIB_ASSERT(state);
|
||||
|
||||
state = setSpreadingFactor(sf);
|
||||
RADIOLIB_ASSERT(state);
|
||||
|
||||
state = setCodingRate(cr);
|
||||
RADIOLIB_ASSERT(state);
|
||||
|
||||
state = setOutputPower(power);
|
||||
RADIOLIB_ASSERT(state);
|
||||
|
||||
state = setGain(gain);
|
||||
|
||||
return (state);
|
||||
}
|
||||
|
||||
int16_t RadioLibRF95::setFrequency(float freq)
|
||||
{
|
||||
// RADIOLIB_CHECK_RANGE(freq, 862.0, 1020.0, ERR_INVALID_FREQUENCY);
|
||||
|
||||
// set frequency
|
||||
return (SX127x::setFrequencyRaw(freq));
|
||||
}
|
||||
|
||||
#define RH_RF95_MODEM_STATUS_CLEAR 0x10
|
||||
#define RH_RF95_MODEM_STATUS_HEADER_INFO_VALID 0x08
|
||||
#define RH_RF95_MODEM_STATUS_RX_ONGOING 0x04
|
||||
#define RH_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED 0x02
|
||||
#define RH_RF95_MODEM_STATUS_SIGNAL_DETECTED 0x01
|
||||
|
||||
bool RadioLibRF95::isReceiving()
|
||||
{
|
||||
// 0x0b == Look for header info valid, signal synchronized or signal detected
|
||||
uint8_t reg = _mod->SPIreadRegister(SX127X_REG_MODEM_STAT) & 0x1f;
|
||||
// Serial.printf("reg %x\n", reg);
|
||||
return (reg & (RH_RF95_MODEM_STATUS_SIGNAL_DETECTED | RH_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED |
|
||||
RH_RF95_MODEM_STATUS_HEADER_INFO_VALID)) != 0;
|
||||
}
|
||||
70
src/mesh/RadioLibRF95.h
Normal file
70
src/mesh/RadioLibRF95.h
Normal file
@@ -0,0 +1,70 @@
|
||||
#pragma once
|
||||
#include <RadioLib.h>
|
||||
|
||||
/*!
|
||||
\class RFM95
|
||||
|
||||
\brief Derived class for %RFM95 modules. Overrides some methods from SX1278 due to different parameter ranges.
|
||||
*/
|
||||
class RadioLibRF95: public SX1278 {
|
||||
public:
|
||||
|
||||
// constructor
|
||||
|
||||
/*!
|
||||
\brief Default constructor. Called from Arduino sketch when creating new LoRa instance.
|
||||
|
||||
\param mod Instance of Module that will be used to communicate with the %LoRa chip.
|
||||
*/
|
||||
RadioLibRF95(Module* mod);
|
||||
|
||||
// basic methods
|
||||
|
||||
/*!
|
||||
\brief %LoRa modem initialization method. Must be called at least once from Arduino sketch to initialize the module.
|
||||
|
||||
\param freq Carrier frequency in MHz. Allowed values range from 868.0 MHz to 915.0 MHz.
|
||||
|
||||
\param bw %LoRa link bandwidth in kHz. Allowed values are 10.4, 15.6, 20.8, 31.25, 41.7, 62.5, 125, 250 and 500 kHz.
|
||||
|
||||
\param sf %LoRa link spreading factor. Allowed values range from 6 to 12.
|
||||
|
||||
\param cr %LoRa link coding rate denominator. Allowed values range from 5 to 8.
|
||||
|
||||
\param syncWord %LoRa sync word. Can be used to distinguish different networks. Note that value 0x34 is reserved for LoRaWAN networks.
|
||||
|
||||
\param power Transmission output power in dBm. Allowed values range from 2 to 17 dBm.
|
||||
|
||||
\param currentLimit Trim value for OCP (over current protection) in mA. Can be set to multiplies of 5 in range 45 to 120 mA and to multiples of 10 in range 120 to 240 mA.
|
||||
Set to 0 to disable OCP (not recommended).
|
||||
|
||||
\param preambleLength Length of %LoRa transmission preamble in symbols. The actual preamble length is 4.25 symbols longer than the set number.
|
||||
Allowed values range from 6 to 65535.
|
||||
|
||||
\param gain Gain of receiver LNA (low-noise amplifier). Can be set to any integer in range 1 to 6 where 1 is the highest gain.
|
||||
Set to 0 to enable automatic gain control (recommended).
|
||||
|
||||
\returns \ref status_codes
|
||||
*/
|
||||
int16_t begin(float freq = 915.0, float bw = 125.0, uint8_t sf = 9, uint8_t cr = 7, uint8_t syncWord = SX127X_SYNC_WORD, int8_t power = 17, uint8_t currentLimit = 100, uint16_t preambleLength = 8, uint8_t gain = 0);
|
||||
|
||||
// configuration methods
|
||||
|
||||
/*!
|
||||
\brief Sets carrier frequency. Allowed values range from 868.0 MHz to 915.0 MHz.
|
||||
|
||||
\param freq Carrier frequency to be set in MHz.
|
||||
|
||||
\returns \ref status_codes
|
||||
*/
|
||||
int16_t setFrequency(float freq);
|
||||
|
||||
// Return true if we are actively receiving a message currently
|
||||
bool isReceiving();
|
||||
|
||||
#ifndef RADIOLIB_GODMODE
|
||||
private:
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
@@ -35,9 +35,6 @@ Router::Router() : fromRadioQueue(MAX_RX_FROMRADIO) {}
|
||||
*/
|
||||
void Router::loop()
|
||||
{
|
||||
if (iface)
|
||||
iface->loop();
|
||||
|
||||
MeshPacket *mp;
|
||||
while ((mp = fromRadioQueue.dequeuePtr(0)) != NULL) {
|
||||
handleReceived(mp);
|
||||
@@ -6,7 +6,6 @@
|
||||
#include "PointerQueue.h"
|
||||
#include "RadioInterface.h"
|
||||
#include "mesh.pb.h"
|
||||
#include <RH_RF95.h>
|
||||
|
||||
/**
|
||||
* A mesh aware router that supports multiple interfaces.
|
||||
117
src/mesh/SX1262Interface.cpp
Normal file
117
src/mesh/SX1262Interface.cpp
Normal file
@@ -0,0 +1,117 @@
|
||||
#include "SX1262Interface.h"
|
||||
#include <configuration.h>
|
||||
|
||||
SX1262Interface::SX1262Interface(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE busy,
|
||||
SPIClass &spi)
|
||||
: RadioLibInterface(cs, irq, rst, busy, spi, &lora), lora(&module)
|
||||
{
|
||||
}
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
bool SX1262Interface::init()
|
||||
{
|
||||
RadioLibInterface::init();
|
||||
|
||||
float tcxoVoltage = 0; // None - we use an XTAL
|
||||
bool useRegulatorLDO = false; // Seems to depend on the connection to pin 9/DCC_SW - if an inductor DCDC?
|
||||
|
||||
applyModemConfig();
|
||||
if (power > 22) // This chip has lower power limits than some
|
||||
power = 22;
|
||||
int res = lora.begin(freq, bw, sf, cr, syncWord, power, currentLimit, preambleLength, tcxoVoltage, useRegulatorLDO);
|
||||
DEBUG_MSG("LORA init result %d\n", res);
|
||||
|
||||
if (res == ERR_NONE)
|
||||
res = lora.setCRC(SX126X_LORA_CRC_ON);
|
||||
|
||||
if (res == ERR_NONE)
|
||||
startReceive(); // start receiving
|
||||
|
||||
return res == ERR_NONE;
|
||||
}
|
||||
|
||||
bool SX1262Interface::reconfigure()
|
||||
{
|
||||
applyModemConfig();
|
||||
|
||||
// set mode to standby
|
||||
setStandby();
|
||||
|
||||
// configure publicly accessible settings
|
||||
int err = lora.setSpreadingFactor(sf);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora.setBandwidth(bw);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora.setCodingRate(cr);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora.setSyncWord(syncWord);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora.setCurrentLimit(currentLimit);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora.setPreambleLength(preambleLength);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
err = lora.setFrequency(freq);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
if (power > 22) // This chip has lower power limits than some
|
||||
power = 22;
|
||||
err = lora.setOutputPower(power);
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
startReceive(); // restart receiving
|
||||
|
||||
return ERR_NONE;
|
||||
}
|
||||
|
||||
void SX1262Interface::setStandby()
|
||||
{
|
||||
int err = lora.standby();
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
isReceiving = false; // If we were receiving, not any more
|
||||
disableInterrupt();
|
||||
completeSending(); // If we were sending, not anymore
|
||||
}
|
||||
|
||||
/**
|
||||
* Add SNR data to received messages
|
||||
*/
|
||||
void SX1262Interface::addReceiveMetadata(MeshPacket *mp)
|
||||
{
|
||||
mp->rx_snr = lora.getSNR();
|
||||
}
|
||||
|
||||
void SX1262Interface::startReceive()
|
||||
{
|
||||
setStandby();
|
||||
int err = lora.startReceive();
|
||||
assert(err == ERR_NONE);
|
||||
|
||||
isReceiving = true;
|
||||
|
||||
// Must be done AFTER, starting transmit, because startTransmit clears (possibly stale) interrupt pending register bits
|
||||
enableInterrupt(isrRxLevel0);
|
||||
}
|
||||
|
||||
/** Could we send right now (i.e. either not actively receving or transmitting)? */
|
||||
bool SX1262Interface::isActivelyReceiving()
|
||||
{
|
||||
return lora.getPacketLength() > 0;
|
||||
}
|
||||
|
||||
bool SX1262Interface::sleep()
|
||||
{
|
||||
// put chipset into sleep mode
|
||||
disableInterrupt();
|
||||
lora.sleep();
|
||||
|
||||
return true;
|
||||
}
|
||||
53
src/mesh/SX1262Interface.h
Normal file
53
src/mesh/SX1262Interface.h
Normal file
@@ -0,0 +1,53 @@
|
||||
#pragma once
|
||||
|
||||
#include "RadioLibInterface.h"
|
||||
|
||||
/**
|
||||
* Our adapter for SX1262 radios
|
||||
*/
|
||||
class SX1262Interface : public RadioLibInterface
|
||||
{
|
||||
SX1262 lora;
|
||||
|
||||
public:
|
||||
SX1262Interface(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE busy, SPIClass &spi);
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool init();
|
||||
|
||||
/// Apply any radio provisioning changes
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool reconfigure();
|
||||
|
||||
/// Prepare hardware for sleep. Call this _only_ for deep sleep, not needed for light sleep.
|
||||
virtual bool sleep();
|
||||
|
||||
protected:
|
||||
/**
|
||||
* Glue functions called from ISR land
|
||||
*/
|
||||
virtual void INTERRUPT_ATTR disableInterrupt() { lora.clearDio1Action(); }
|
||||
|
||||
/**
|
||||
* Enable a particular ISR callback glue function
|
||||
*/
|
||||
virtual void enableInterrupt(void (*callback)()) { lora.setDio1Action(callback); }
|
||||
|
||||
/** are we actively receiving a packet (only called during receiving state) */
|
||||
virtual bool isActivelyReceiving();
|
||||
|
||||
/**
|
||||
* Start waiting to receive a message
|
||||
*/
|
||||
virtual void startReceive();
|
||||
/**
|
||||
* Add SNR data to received messages
|
||||
*/
|
||||
virtual void addReceiveMetadata(MeshPacket *mp);
|
||||
|
||||
private:
|
||||
void setStandby();
|
||||
};
|
||||
@@ -1,4 +1,5 @@
|
||||
#include "StreamAPI.h"
|
||||
#include "configuration.h"
|
||||
|
||||
#define START1 0x94
|
||||
#define START2 0xc3
|
||||
@@ -58,6 +59,16 @@ void StreamAPI::writeStream()
|
||||
do {
|
||||
// Send every packet we can
|
||||
len = getFromRadio(txBuf + HEADER_LEN);
|
||||
emitTxBuffer(len);
|
||||
} while (len);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Send the current txBuffer over our stream
|
||||
*/
|
||||
void StreamAPI::emitTxBuffer(size_t len)
|
||||
{
|
||||
if (len != 0) {
|
||||
txBuf[0] = START1;
|
||||
txBuf[1] = START2;
|
||||
@@ -66,6 +77,15 @@ void StreamAPI::writeStream()
|
||||
|
||||
stream->write(txBuf, len + HEADER_LEN);
|
||||
}
|
||||
} while (len);
|
||||
}
|
||||
|
||||
void StreamAPI::emitRebooted()
|
||||
{
|
||||
// In case we send a FromRadio packet
|
||||
memset(&fromRadioScratch, 0, sizeof(fromRadioScratch));
|
||||
fromRadioScratch.which_variant = FromRadio_rebooted_tag;
|
||||
fromRadioScratch.variant.rebooted = true;
|
||||
|
||||
DEBUG_MSG("Emitting reboot packet for serial shell\n");
|
||||
emitTxBuffer(pb_encode_to_bytes(txBuf + HEADER_LEN, FromRadio_size, FromRadio_fields, &fromRadioScratch));
|
||||
}
|
||||
@@ -37,8 +37,6 @@ class StreamAPI : public PhoneAPI
|
||||
uint8_t rxBuf[MAX_STREAM_BUF_SIZE];
|
||||
size_t rxPtr = 0;
|
||||
|
||||
uint8_t txBuf[MAX_STREAM_BUF_SIZE];
|
||||
|
||||
public:
|
||||
StreamAPI(Stream *_stream) : stream(_stream) {}
|
||||
|
||||
@@ -61,6 +59,19 @@ class StreamAPI : public PhoneAPI
|
||||
void writeStream();
|
||||
|
||||
protected:
|
||||
/**
|
||||
* Send a FromRadio.rebooted = true packet to the phone
|
||||
*/
|
||||
void emitRebooted();
|
||||
|
||||
/**
|
||||
* Send the current txBuffer over our stream
|
||||
*/
|
||||
void emitTxBuffer(size_t len);
|
||||
|
||||
/// Are we allowed to write packets to our output stream (subclasses can turn this off - i.e. SerialConsole)
|
||||
bool canWrite = true;
|
||||
|
||||
/// Subclasses can use this scratch buffer if they wish
|
||||
uint8_t txBuf[MAX_STREAM_BUF_SIZE];
|
||||
};
|
||||
@@ -102,8 +102,7 @@ typedef struct _NodeInfo {
|
||||
User user;
|
||||
bool has_position;
|
||||
Position position;
|
||||
int32_t snr;
|
||||
int32_t frequency_error;
|
||||
float snr;
|
||||
} NodeInfo;
|
||||
|
||||
typedef struct _RadioConfig {
|
||||
@@ -129,8 +128,8 @@ typedef struct _MeshPacket {
|
||||
bool has_payload;
|
||||
SubPacket payload;
|
||||
uint32_t rx_time;
|
||||
int32_t rx_snr;
|
||||
uint32_t id;
|
||||
float rx_snr;
|
||||
} MeshPacket;
|
||||
|
||||
typedef struct _DeviceState {
|
||||
@@ -159,6 +158,7 @@ typedef struct _FromRadio {
|
||||
RadioConfig radio;
|
||||
DebugString debug_string;
|
||||
uint32_t config_complete_id;
|
||||
bool rebooted;
|
||||
} variant;
|
||||
} FromRadio;
|
||||
|
||||
@@ -197,7 +197,7 @@ typedef struct _ToRadio {
|
||||
#define ChannelSettings_init_default {0, _ChannelSettings_ModemConfig_MIN, {0}, ""}
|
||||
#define RadioConfig_init_default {false, RadioConfig_UserPreferences_init_default, false, ChannelSettings_init_default}
|
||||
#define RadioConfig_UserPreferences_init_default {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||
#define NodeInfo_init_default {0, false, User_init_default, false, Position_init_default, 0, 0}
|
||||
#define NodeInfo_init_default {0, false, User_init_default, false, Position_init_default, 0}
|
||||
#define MyNodeInfo_init_default {0, 0, 0, "", "", "", 0, 0, 0}
|
||||
#define DeviceState_init_default {false, RadioConfig_init_default, false, MyNodeInfo_init_default, false, User_init_default, 0, {NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default, NodeInfo_init_default}, 0, {MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default, MeshPacket_init_default}, false, MeshPacket_init_default, 0}
|
||||
#define DebugString_init_default {""}
|
||||
@@ -212,7 +212,7 @@ typedef struct _ToRadio {
|
||||
#define ChannelSettings_init_zero {0, _ChannelSettings_ModemConfig_MIN, {0}, ""}
|
||||
#define RadioConfig_init_zero {false, RadioConfig_UserPreferences_init_zero, false, ChannelSettings_init_zero}
|
||||
#define RadioConfig_UserPreferences_init_zero {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||
#define NodeInfo_init_zero {0, false, User_init_zero, false, Position_init_zero, 0, 0}
|
||||
#define NodeInfo_init_zero {0, false, User_init_zero, false, Position_init_zero, 0}
|
||||
#define MyNodeInfo_init_zero {0, 0, 0, "", "", "", 0, 0, 0}
|
||||
#define DeviceState_init_zero {false, RadioConfig_init_zero, false, MyNodeInfo_init_zero, false, User_init_zero, 0, {NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero, NodeInfo_init_zero}, 0, {MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero, MeshPacket_init_zero}, false, MeshPacket_init_zero, 0}
|
||||
#define DebugString_init_zero {""}
|
||||
@@ -262,8 +262,7 @@ typedef struct _ToRadio {
|
||||
#define NodeInfo_num_tag 1
|
||||
#define NodeInfo_user_tag 2
|
||||
#define NodeInfo_position_tag 3
|
||||
#define NodeInfo_snr_tag 5
|
||||
#define NodeInfo_frequency_error_tag 6
|
||||
#define NodeInfo_snr_tag 7
|
||||
#define RadioConfig_preferences_tag 1
|
||||
#define RadioConfig_channel_settings_tag 2
|
||||
#define SubPacket_position_tag 1
|
||||
@@ -274,8 +273,8 @@ typedef struct _ToRadio {
|
||||
#define MeshPacket_to_tag 2
|
||||
#define MeshPacket_payload_tag 3
|
||||
#define MeshPacket_rx_time_tag 4
|
||||
#define MeshPacket_rx_snr_tag 5
|
||||
#define MeshPacket_id_tag 6
|
||||
#define MeshPacket_rx_snr_tag 7
|
||||
#define DeviceState_radio_tag 1
|
||||
#define DeviceState_my_node_tag 2
|
||||
#define DeviceState_owner_tag 3
|
||||
@@ -289,6 +288,7 @@ typedef struct _ToRadio {
|
||||
#define FromRadio_radio_tag 6
|
||||
#define FromRadio_debug_string_tag 7
|
||||
#define FromRadio_config_complete_id_tag 8
|
||||
#define FromRadio_rebooted_tag 9
|
||||
#define FromRadio_num_tag 1
|
||||
#define ToRadio_packet_tag 1
|
||||
#define ToRadio_want_config_id_tag 100
|
||||
@@ -340,8 +340,8 @@ X(a, STATIC, SINGULAR, INT32, from, 1) \
|
||||
X(a, STATIC, SINGULAR, INT32, to, 2) \
|
||||
X(a, STATIC, OPTIONAL, MESSAGE, payload, 3) \
|
||||
X(a, STATIC, SINGULAR, UINT32, rx_time, 4) \
|
||||
X(a, STATIC, SINGULAR, SINT32, rx_snr, 5) \
|
||||
X(a, STATIC, SINGULAR, UINT32, id, 6)
|
||||
X(a, STATIC, SINGULAR, UINT32, id, 6) \
|
||||
X(a, STATIC, SINGULAR, FLOAT, rx_snr, 7)
|
||||
#define MeshPacket_CALLBACK NULL
|
||||
#define MeshPacket_DEFAULT NULL
|
||||
#define MeshPacket_payload_MSGTYPE SubPacket
|
||||
@@ -383,8 +383,7 @@ X(a, STATIC, SINGULAR, BOOL, promiscuous_mode, 101)
|
||||
X(a, STATIC, SINGULAR, INT32, num, 1) \
|
||||
X(a, STATIC, OPTIONAL, MESSAGE, user, 2) \
|
||||
X(a, STATIC, OPTIONAL, MESSAGE, position, 3) \
|
||||
X(a, STATIC, SINGULAR, INT32, snr, 5) \
|
||||
X(a, STATIC, SINGULAR, INT32, frequency_error, 6)
|
||||
X(a, STATIC, SINGULAR, FLOAT, snr, 7)
|
||||
#define NodeInfo_CALLBACK NULL
|
||||
#define NodeInfo_DEFAULT NULL
|
||||
#define NodeInfo_user_MSGTYPE User
|
||||
@@ -432,7 +431,8 @@ X(a, STATIC, ONEOF, MESSAGE, (variant,my_info,variant.my_info), 3) \
|
||||
X(a, STATIC, ONEOF, MESSAGE, (variant,node_info,variant.node_info), 4) \
|
||||
X(a, STATIC, ONEOF, MESSAGE, (variant,radio,variant.radio), 6) \
|
||||
X(a, STATIC, ONEOF, MESSAGE, (variant,debug_string,variant.debug_string), 7) \
|
||||
X(a, STATIC, ONEOF, UINT32, (variant,config_complete_id,variant.config_complete_id), 8)
|
||||
X(a, STATIC, ONEOF, UINT32, (variant,config_complete_id,variant.config_complete_id), 8) \
|
||||
X(a, STATIC, ONEOF, BOOL, (variant,rebooted,variant.rebooted), 9)
|
||||
#define FromRadio_CALLBACK NULL
|
||||
#define FromRadio_DEFAULT NULL
|
||||
#define FromRadio_variant_packet_MSGTYPE MeshPacket
|
||||
@@ -491,16 +491,16 @@ extern const pb_msgdesc_t ToRadio_msg;
|
||||
#define User_size 72
|
||||
/* RouteDiscovery_size depends on runtime parameters */
|
||||
#define SubPacket_size 383
|
||||
#define MeshPacket_size 426
|
||||
#define MeshPacket_size 425
|
||||
#define ChannelSettings_size 44
|
||||
#define RadioConfig_size 120
|
||||
#define RadioConfig_UserPreferences_size 72
|
||||
#define NodeInfo_size 155
|
||||
#define NodeInfo_size 138
|
||||
#define MyNodeInfo_size 85
|
||||
#define DeviceState_size 19502
|
||||
#define DeviceState_size 18925
|
||||
#define DebugString_size 258
|
||||
#define FromRadio_size 435
|
||||
#define ToRadio_size 429
|
||||
#define FromRadio_size 434
|
||||
#define ToRadio_size 428
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
|
||||
@@ -17,7 +17,7 @@ static inline void debugger_break(void)
|
||||
void __attribute__((noreturn)) __assert_func(const char *file, int line, const char *func, const char *failedexpr)
|
||||
{
|
||||
DEBUG_MSG("assert failed %s: %d, %s, test=%s\n", file, line, func, failedexpr);
|
||||
debugger_break();
|
||||
// debugger_break(); FIXME doesn't work, possibly not for segger
|
||||
while (1)
|
||||
; // FIXME, reboot!
|
||||
}
|
||||
@@ -67,4 +67,5 @@ void nrf52Setup()
|
||||
{
|
||||
// Not yet on board
|
||||
// pmu.init();
|
||||
DEBUG_MSG("FIXME, need to call randomSeed on nrf52!\n");
|
||||
}
|
||||
@@ -1,208 +0,0 @@
|
||||
#include "CustomRF95.h"
|
||||
#include "NodeDB.h" // FIXME, this class should not need to touch nodedb
|
||||
#include "assert.h"
|
||||
#include "configuration.h"
|
||||
#include <pb_decode.h>
|
||||
#include <pb_encode.h>
|
||||
|
||||
#ifdef RF95_IRQ_GPIO
|
||||
|
||||
/// A temporary buffer used for sending/receving packets, sized to hold the biggest buffer we might need
|
||||
#define MAX_RHPACKETLEN 251
|
||||
static uint8_t radiobuf[MAX_RHPACKETLEN];
|
||||
|
||||
CustomRF95::CustomRF95() : RH_RF95(NSS_GPIO, RF95_IRQ_GPIO), txQueue(MAX_TX_QUEUE) {}
|
||||
|
||||
bool CustomRF95::canSleep()
|
||||
{
|
||||
// We allow initializing mode, because sometimes while testing we don't ever call init() to turn on the hardware
|
||||
bool isRx = isReceiving();
|
||||
|
||||
bool res = (_mode == RHModeInitialising || _mode == RHModeIdle || _mode == RHModeRx) && !isRx && txQueue.isEmpty();
|
||||
if (!res) // only print debug messages if we are vetoing sleep
|
||||
DEBUG_MSG("radio wait to sleep, mode=%d, isRx=%d, txEmpty=%d, txGood=%d\n", _mode, isRx, txQueue.isEmpty(), _txGood);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
bool CustomRF95::sleep()
|
||||
{
|
||||
// we no longer care about interrupts from this device
|
||||
prepareDeepSleep();
|
||||
|
||||
// FIXME - leave the device state in rx mode instead
|
||||
return RH_RF95::sleep();
|
||||
}
|
||||
|
||||
bool CustomRF95::init()
|
||||
{
|
||||
bool ok = RH_RF95::init();
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
||||
/// Send a packet (possibly by enquing in a private fifo). This routine will
|
||||
/// later free() the packet to pool. This routine is not allowed to stall because it is called from
|
||||
/// bluetooth comms code. If the txmit queue is empty it might return an error
|
||||
ErrorCode CustomRF95::send(MeshPacket *p)
|
||||
{
|
||||
// We wait _if_ we are partially though receiving a packet (rather than just merely waiting for one).
|
||||
// To do otherwise would be doubly bad because not only would we drop the packet that was on the way in,
|
||||
// we almost certainly guarantee no one outside will like the packet we are sending.
|
||||
if (_mode == RHModeIdle || (_mode == RHModeRx && !isReceiving())) {
|
||||
// if the radio is idle, we can send right away
|
||||
DEBUG_MSG("immediate send on mesh fr=0x%x,to=0x%x,id=%d\n (txGood=%d,rxGood=%d,rxBad=%d)\n", p->from, p->to, p->id,
|
||||
txGood(), rxGood(), rxBad());
|
||||
|
||||
waitPacketSent(); // Make sure we dont interrupt an outgoing message
|
||||
|
||||
if (!waitCAD())
|
||||
return false; // Check channel activity
|
||||
|
||||
startSend(p);
|
||||
return ERRNO_OK;
|
||||
} else {
|
||||
DEBUG_MSG("enquing packet for send from=0x%x, to=0x%x\n", p->from, p->to);
|
||||
ErrorCode res = txQueue.enqueue(p, 0) ? ERRNO_OK : ERRNO_UNKNOWN;
|
||||
|
||||
if (res != ERRNO_OK) // we weren't able to queue it, so we must drop it to prevent leaks
|
||||
packetPool.release(p);
|
||||
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
// After doing standard behavior, check to see if a new packet arrived or one was sent and start a new send or receive as
|
||||
// necessary
|
||||
void CustomRF95::handleInterrupt()
|
||||
{
|
||||
RH_RF95::handleInterrupt();
|
||||
|
||||
if (_mode == RHModeIdle) // We are now done sending or receiving
|
||||
{
|
||||
if (sendingPacket) // Were we sending?
|
||||
{
|
||||
// We are done sending that packet, release it
|
||||
packetPool.release(sendingPacket);
|
||||
sendingPacket = NULL;
|
||||
// DEBUG_MSG("Done with send\n");
|
||||
}
|
||||
|
||||
// If we just finished receiving a packet, forward it into a queue
|
||||
if (_rxBufValid) {
|
||||
// We received a packet
|
||||
|
||||
// Skip the 4 headers that are at the beginning of the rxBuf
|
||||
size_t payloadLen = _bufLen - RH_RF95_HEADER_LEN;
|
||||
uint8_t *payload = _buf + RH_RF95_HEADER_LEN;
|
||||
|
||||
// FIXME - throws exception if called in ISR context: frequencyError() - probably the floating point math
|
||||
int32_t freqerr = -1, snr = lastSNR();
|
||||
// DEBUG_MSG("Received packet from mesh src=0x%x,dest=0x%x,id=%d,len=%d rxGood=%d,rxBad=%d,freqErr=%d,snr=%d\n",
|
||||
// srcaddr, destaddr, id, rxlen, rf95.rxGood(), rf95.rxBad(), freqerr, snr);
|
||||
|
||||
MeshPacket *mp = packetPool.allocZeroed();
|
||||
|
||||
SubPacket *p = &mp->payload;
|
||||
|
||||
mp->from = _rxHeaderFrom;
|
||||
mp->to = _rxHeaderTo;
|
||||
mp->id = _rxHeaderId;
|
||||
|
||||
//_rxHeaderId = _buf[2];
|
||||
//_rxHeaderFlags = _buf[3];
|
||||
|
||||
// If we already have an entry in the DB for this nodenum, goahead and hide the snr/freqerr info there.
|
||||
// Note: we can't create it at this point, because it might be a bogus User node allocation. But odds are we will
|
||||
// already have a record we can hide this debugging info in.
|
||||
NodeInfo *info = nodeDB.getNode(mp->from);
|
||||
if (info) {
|
||||
info->snr = snr;
|
||||
info->frequency_error = freqerr;
|
||||
}
|
||||
|
||||
if (!pb_decode_from_bytes(payload, payloadLen, SubPacket_fields, p)) {
|
||||
packetPool.release(mp);
|
||||
} else {
|
||||
// parsing was successful, queue for our recipient
|
||||
mp->has_payload = true;
|
||||
|
||||
deliverToReceiver(mp);
|
||||
}
|
||||
|
||||
clearRxBuf(); // This message accepted and cleared
|
||||
}
|
||||
|
||||
handleIdleISR();
|
||||
}
|
||||
}
|
||||
|
||||
/** The ISR doesn't have any good work to do, give a new assignment.
|
||||
*
|
||||
* Return true if a higher pri task has woken
|
||||
*/
|
||||
void CustomRF95::handleIdleISR()
|
||||
{
|
||||
// First send any outgoing packets we have ready
|
||||
MeshPacket *txp = txQueue.dequeuePtr(0);
|
||||
if (txp)
|
||||
startSend(txp);
|
||||
else {
|
||||
// Nothing to send, let's switch back to receive mode
|
||||
setModeRx();
|
||||
}
|
||||
}
|
||||
|
||||
/// This routine might be called either from user space or ISR
|
||||
void CustomRF95::startSend(MeshPacket *txp)
|
||||
{
|
||||
assert(!sendingPacket);
|
||||
|
||||
// DEBUG_MSG("sending queued packet on mesh (txGood=%d,rxGood=%d,rxBad=%d)\n", rf95.txGood(), rf95.rxGood(), rf95.rxBad());
|
||||
assert(txp->has_payload);
|
||||
|
||||
lastTxStart = millis();
|
||||
|
||||
size_t numbytes = pb_encode_to_bytes(radiobuf, sizeof(radiobuf), SubPacket_fields, &txp->payload);
|
||||
|
||||
sendingPacket = txp;
|
||||
|
||||
setHeaderTo(txp->to);
|
||||
setHeaderId(txp->id);
|
||||
|
||||
// if the sender nodenum is zero, that means uninitialized
|
||||
assert(txp->from);
|
||||
setHeaderFrom(txp->from); // We must do this before each send, because we might have just changed our nodenum
|
||||
|
||||
assert(numbytes <= 251); // Make sure we don't overflow the tiny max packet size
|
||||
|
||||
// uint32_t start = millis(); // FIXME, store this in the class
|
||||
|
||||
int res = RH_RF95::send(radiobuf, numbytes);
|
||||
assert(res);
|
||||
}
|
||||
|
||||
#define TX_WATCHDOG_TIMEOUT 30 * 1000
|
||||
|
||||
#include "error.h"
|
||||
|
||||
void CustomRF95::loop()
|
||||
{
|
||||
RH_RF95::loop();
|
||||
|
||||
// It should never take us more than 30 secs to send a packet, if it does, we have a bug, FIXME, move most of this
|
||||
// into CustomRF95
|
||||
uint32_t now = millis();
|
||||
if (lastTxStart != 0 && (now - lastTxStart) > TX_WATCHDOG_TIMEOUT && mode() == RHGenericDriver::RHModeTx) {
|
||||
DEBUG_MSG("ERROR! Bug! Tx packet took too long to send, forcing radio into rx mode\n");
|
||||
setModeRx();
|
||||
if (sendingPacket) { // There was probably a packet we were trying to send, free it
|
||||
packetPool.release(sendingPacket);
|
||||
sendingPacket = NULL;
|
||||
}
|
||||
recordCriticalError(ErrTxWatchdog);
|
||||
lastTxStart = 0; // Stop checking for now, because we just warned the developer
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -1,56 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "RadioInterface.h"
|
||||
#include "mesh.pb.h"
|
||||
#include <RH_RF95.h>
|
||||
|
||||
#define MAX_TX_QUEUE 16 // max number of packets which can be waiting for transmission
|
||||
|
||||
/**
|
||||
* A version of the RF95 driver which is smart enough to manage packets via queues (no polling or blocking in user threads!)
|
||||
*/
|
||||
class CustomRF95 : public RH_RF95, public RadioInterface
|
||||
{
|
||||
friend class MeshRadio; // for debugging we let that class touch pool
|
||||
|
||||
PointerQueue<MeshPacket> txQueue;
|
||||
|
||||
uint32_t lastTxStart = 0L;
|
||||
|
||||
public:
|
||||
/** pool is the pool we will alloc our rx packets from
|
||||
* rxDest is where we will send any rx packets, it becomes receivers responsibility to return packet to the pool
|
||||
*/
|
||||
CustomRF95();
|
||||
|
||||
/**
|
||||
* Return true if we think the board can go to sleep (i.e. our tx queue is empty, we are not sending or receiving)
|
||||
*
|
||||
* This method must be used before putting the CPU into deep or light sleep.
|
||||
*/
|
||||
bool canSleep();
|
||||
|
||||
/// Prepare hardware for sleep. Call this _only_ for deep sleep, not needed for light sleep.
|
||||
virtual bool sleep();
|
||||
|
||||
/// Send a packet (possibly by enquing in a private fifo). This routine will
|
||||
/// later free() the packet to pool. This routine is not allowed to stall because it is called from
|
||||
/// bluetooth comms code. If the txmit queue is empty it might return an error
|
||||
ErrorCode send(MeshPacket *p);
|
||||
|
||||
bool init();
|
||||
|
||||
void loop(); // Idle processing
|
||||
|
||||
protected:
|
||||
// After doing standard behavior, check to see if a new packet arrived or one was sent and start a new send or receive as
|
||||
// necessary
|
||||
virtual void handleInterrupt();
|
||||
|
||||
private:
|
||||
/// Send a new packet - this low level call can be called from either ISR or userspace
|
||||
void startSend(MeshPacket *txp);
|
||||
|
||||
/// Return true if a higher pri task has woken
|
||||
void handleIdleISR();
|
||||
};
|
||||
@@ -1,17 +0,0 @@
|
||||
This software is Copyright (C) 2008 Mike McCauley. Use is subject to license
|
||||
conditions. The main licensing options available are GPL V2 or Commercial:
|
||||
|
||||
Open Source Licensing GPL V2
|
||||
|
||||
This is the appropriate option if you want to share the source code of your
|
||||
application with everyone you distribute it to, and you also want to give them
|
||||
the right to share who uses it. If you wish to use this software under Open
|
||||
Source Licensing, you must contribute all your source code to the open source
|
||||
community in accordance with the GPL Version 2 when your application is
|
||||
distributed. See http://www.gnu.org/copyleft/gpl.html
|
||||
|
||||
Commercial Licensing
|
||||
|
||||
This is the appropriate option if you are creating proprietary applications
|
||||
and you are not prepared to distribute and share the source code of your
|
||||
application. Contact info@open.com.au for details.
|
||||
@@ -1,4 +0,0 @@
|
||||
# RF95
|
||||
|
||||
This is a heavily modified version of the Mike McCauley's RadioHead RF95 driver. We are using it under the GPL V3 License. See the
|
||||
file LICENSE for Mike's license terms (which listed GPL as acceptible).
|
||||
@@ -1,207 +0,0 @@
|
||||
// RHGenericDriver.cpp
|
||||
//
|
||||
// Copyright (C) 2014 Mike McCauley
|
||||
// $Id: RHGenericDriver.cpp,v 1.23 2018/02/11 23:57:18 mikem Exp $
|
||||
|
||||
#include <RHGenericDriver.h>
|
||||
|
||||
RHGenericDriver::RHGenericDriver()
|
||||
: _mode(RHModeInitialising), _thisAddress(RH_BROADCAST_ADDRESS), _txHeaderTo(RH_BROADCAST_ADDRESS),
|
||||
_txHeaderFrom(RH_BROADCAST_ADDRESS), _txHeaderId(0), _txHeaderFlags(0), _rxBad(0), _rxGood(0), _txGood(0), _cad_timeout(0)
|
||||
{
|
||||
}
|
||||
|
||||
bool RHGenericDriver::init()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
// Blocks until a valid message is received
|
||||
void RHGenericDriver::waitAvailable()
|
||||
{
|
||||
while (!available())
|
||||
YIELD;
|
||||
}
|
||||
|
||||
// Blocks until a valid message is received or timeout expires
|
||||
// Return true if there is a message available
|
||||
// Works correctly even on millis() rollover
|
||||
bool RHGenericDriver::waitAvailableTimeout(uint16_t timeout)
|
||||
{
|
||||
unsigned long starttime = millis();
|
||||
while ((millis() - starttime) < timeout) {
|
||||
if (available()) {
|
||||
return true;
|
||||
}
|
||||
YIELD;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool RHGenericDriver::waitPacketSent()
|
||||
{
|
||||
while (_mode == RHModeTx)
|
||||
YIELD; // Wait for any previous transmit to finish
|
||||
return true;
|
||||
}
|
||||
|
||||
bool RHGenericDriver::waitPacketSent(uint16_t timeout)
|
||||
{
|
||||
unsigned long starttime = millis();
|
||||
while ((millis() - starttime) < timeout) {
|
||||
if (_mode != RHModeTx) // Any previous transmit finished?
|
||||
return true;
|
||||
YIELD;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Wait until no channel activity detected or timeout
|
||||
bool RHGenericDriver::waitCAD()
|
||||
{
|
||||
if (!_cad_timeout)
|
||||
return true;
|
||||
|
||||
// Wait for any channel activity to finish or timeout
|
||||
// Sophisticated DCF function...
|
||||
// DCF : BackoffTime = random() x aSlotTime
|
||||
// 100 - 1000 ms
|
||||
// 10 sec timeout
|
||||
unsigned long t = millis();
|
||||
while (isChannelActive()) {
|
||||
if (millis() - t > _cad_timeout)
|
||||
return false;
|
||||
#if (RH_PLATFORM == RH_PLATFORM_STM32) // stdlib on STMF103 gets confused if random is redefined
|
||||
delay(_random(1, 10) * 100);
|
||||
#else
|
||||
delay(random(1, 10) * 100); // Should these values be configurable? Macros?
|
||||
#endif
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// subclasses are expected to override if CAD is available for that radio
|
||||
bool RHGenericDriver::isChannelActive()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setPromiscuous(bool promiscuous)
|
||||
{
|
||||
_promiscuous = promiscuous;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setThisAddress(uint8_t address)
|
||||
{
|
||||
_thisAddress = address;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setHeaderTo(uint8_t to)
|
||||
{
|
||||
_txHeaderTo = to;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setHeaderFrom(uint8_t from)
|
||||
{
|
||||
_txHeaderFrom = from;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setHeaderId(uint8_t id)
|
||||
{
|
||||
_txHeaderId = id;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setHeaderFlags(uint8_t set, uint8_t clear)
|
||||
{
|
||||
_txHeaderFlags &= ~clear;
|
||||
_txHeaderFlags |= set;
|
||||
}
|
||||
|
||||
uint8_t RHGenericDriver::headerTo()
|
||||
{
|
||||
return _rxHeaderTo;
|
||||
}
|
||||
|
||||
uint8_t RHGenericDriver::headerFrom()
|
||||
{
|
||||
return _rxHeaderFrom;
|
||||
}
|
||||
|
||||
uint8_t RHGenericDriver::headerId()
|
||||
{
|
||||
return _rxHeaderId;
|
||||
}
|
||||
|
||||
uint8_t RHGenericDriver::headerFlags()
|
||||
{
|
||||
return _rxHeaderFlags;
|
||||
}
|
||||
|
||||
int16_t RHGenericDriver::lastRssi()
|
||||
{
|
||||
return _lastRssi;
|
||||
}
|
||||
|
||||
RHGenericDriver::RHMode RHGenericDriver::mode()
|
||||
{
|
||||
return _mode;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setMode(RHMode mode)
|
||||
{
|
||||
_mode = mode;
|
||||
}
|
||||
|
||||
bool RHGenericDriver::sleep()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// Diagnostic help
|
||||
void RHGenericDriver::printBuffer(const char *prompt, const uint8_t *buf, uint8_t len)
|
||||
{
|
||||
#ifdef RH_HAVE_SERIAL
|
||||
Serial.println(prompt);
|
||||
uint8_t i;
|
||||
for (i = 0; i < len; i++) {
|
||||
if (i % 16 == 15)
|
||||
Serial.println(buf[i], HEX);
|
||||
else {
|
||||
Serial.print(buf[i], HEX);
|
||||
Serial.print(' ');
|
||||
}
|
||||
}
|
||||
Serial.println("");
|
||||
#endif
|
||||
}
|
||||
|
||||
uint16_t RHGenericDriver::rxBad()
|
||||
{
|
||||
return _rxBad;
|
||||
}
|
||||
|
||||
uint16_t RHGenericDriver::rxGood()
|
||||
{
|
||||
return _rxGood;
|
||||
}
|
||||
|
||||
uint16_t RHGenericDriver::txGood()
|
||||
{
|
||||
return _txGood;
|
||||
}
|
||||
|
||||
void RHGenericDriver::setCADTimeout(unsigned long cad_timeout)
|
||||
{
|
||||
_cad_timeout = cad_timeout;
|
||||
}
|
||||
|
||||
#if (RH_PLATFORM == RH_PLATFORM_ATTINY)
|
||||
// Tinycore does not have __cxa_pure_virtual, so without this we
|
||||
// get linking complaints from the default code generated for pure virtual functions
|
||||
extern "C" void __cxa_pure_virtual()
|
||||
{
|
||||
while (1)
|
||||
;
|
||||
}
|
||||
#endif
|
||||
@@ -1,280 +0,0 @@
|
||||
// RHGenericDriver.h
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2014 Mike McCauley
|
||||
// $Id: RHGenericDriver.h,v 1.23 2018/09/23 23:54:01 mikem Exp $
|
||||
|
||||
#ifndef RHGenericDriver_h
|
||||
#define RHGenericDriver_h
|
||||
|
||||
#include <RadioHead.h>
|
||||
|
||||
// Defines bits of the FLAGS header reserved for use by the RadioHead library and
|
||||
// the flags available for use by applications
|
||||
#define RH_FLAGS_RESERVED 0xf0
|
||||
#define RH_FLAGS_APPLICATION_SPECIFIC 0x0f
|
||||
#define RH_FLAGS_NONE 0
|
||||
|
||||
// Default timeout for waitCAD() in ms
|
||||
#define RH_CAD_DEFAULT_TIMEOUT 10000
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
/// \class RHGenericDriver RHGenericDriver.h <RHGenericDriver.h>
|
||||
/// \brief Abstract base class for a RadioHead driver.
|
||||
///
|
||||
/// This class defines the functions that must be provided by any RadioHead driver.
|
||||
/// Different types of driver will implement all the abstract functions, and will perhaps override
|
||||
/// other functions in this subclass, or perhaps add new functions specifically required by that driver.
|
||||
/// Do not directly instantiate this class: it is only to be subclassed by driver classes.
|
||||
///
|
||||
/// Subclasses are expected to implement a half-duplex, unreliable, error checked, unaddressed packet transport.
|
||||
/// They are expected to carry a message payload with an appropriate maximum length for the transport hardware
|
||||
/// and to also carry unaltered 4 message headers: TO, FROM, ID, FLAGS
|
||||
///
|
||||
/// \par Headers
|
||||
///
|
||||
/// Each message sent and received by a RadioHead driver includes 4 headers:
|
||||
/// -TO The node address that the message is being sent to (broadcast RH_BROADCAST_ADDRESS (255) is permitted)
|
||||
/// -FROM The node address of the sending node
|
||||
/// -ID A message ID, distinct (over short time scales) for each message sent by a particilar node
|
||||
/// -FLAGS A bitmask of flags. The most significant 4 bits are reserved for use by RadioHead. The least
|
||||
/// significant 4 bits are reserved for applications.
|
||||
class RHGenericDriver
|
||||
{
|
||||
public:
|
||||
/// \brief Defines different operating modes for the transport hardware
|
||||
///
|
||||
/// These are the different values that can be adopted by the _mode variable and
|
||||
/// returned by the mode() member function,
|
||||
typedef enum {
|
||||
RHModeInitialising = 0, ///< Transport is initialising. Initial default value until init() is called..
|
||||
RHModeSleep, ///< Transport hardware is in low power sleep mode (if supported)
|
||||
RHModeIdle, ///< Transport is idle.
|
||||
RHModeTx, ///< Transport is in the process of transmitting a message.
|
||||
RHModeRx, ///< Transport is in the process of receiving a message.
|
||||
RHModeCad ///< Transport is in the process of detecting channel activity (if supported)
|
||||
} RHMode;
|
||||
|
||||
/// Constructor
|
||||
RHGenericDriver();
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool init();
|
||||
|
||||
/// Tests whether a new message is available
|
||||
/// from the Driver.
|
||||
/// On most drivers, if there is an uncollected received message, and there is no message
|
||||
/// currently bing transmitted, this will also put the Driver into RHModeRx mode until
|
||||
/// a message is actually received by the transport, when it will be returned to RHModeIdle.
|
||||
/// This can be called multiple times in a timeout loop.
|
||||
/// \return true if a new, complete, error-free uncollected message is available to be retreived by recv().
|
||||
virtual bool available() = 0;
|
||||
|
||||
/// Returns the maximum message length
|
||||
/// available in this Driver.
|
||||
/// \return The maximum legal message length
|
||||
virtual uint8_t maxMessageLength() = 0;
|
||||
|
||||
/// Starts the receiver and blocks until a valid received
|
||||
/// message is available.
|
||||
virtual void waitAvailable();
|
||||
|
||||
/// Blocks until the transmitter
|
||||
/// is no longer transmitting.
|
||||
virtual bool waitPacketSent();
|
||||
|
||||
/// Blocks until the transmitter is no longer transmitting.
|
||||
/// or until the timeout occuers, whichever happens first
|
||||
/// \param[in] timeout Maximum time to wait in milliseconds.
|
||||
/// \return true if the radio completed transmission within the timeout period. False if it timed out.
|
||||
virtual bool waitPacketSent(uint16_t timeout);
|
||||
|
||||
/// Starts the receiver and blocks until a received message is available or a timeout
|
||||
/// \param[in] timeout Maximum time to wait in milliseconds.
|
||||
/// \return true if a message is available
|
||||
virtual bool waitAvailableTimeout(uint16_t timeout);
|
||||
|
||||
// Bent G Christensen (bentor@gmail.com), 08/15/2016
|
||||
/// Channel Activity Detection (CAD).
|
||||
/// Blocks until channel activity is finished or CAD timeout occurs.
|
||||
/// Uses the radio's CAD function (if supported) to detect channel activity.
|
||||
/// Implements random delays of 100 to 1000ms while activity is detected and until timeout.
|
||||
/// Caution: the random() function is not seeded. If you want non-deterministic behaviour, consider
|
||||
/// using something like randomSeed(analogRead(A0)); in your sketch.
|
||||
/// Permits the implementation of listen-before-talk mechanism (Collision Avoidance).
|
||||
/// Calls the isChannelActive() member function for the radio (if supported)
|
||||
/// to determine if the channel is active. If the radio does not support isChannelActive(),
|
||||
/// always returns true immediately
|
||||
/// \return true if the radio-specific CAD (as returned by isChannelActive())
|
||||
/// shows the channel is clear within the timeout period (or the timeout period is 0), else returns false.
|
||||
virtual bool waitCAD();
|
||||
|
||||
/// Sets the Channel Activity Detection timeout in milliseconds to be used by waitCAD().
|
||||
/// The default is 0, which means do not wait for CAD detection.
|
||||
/// CAD detection depends on support for isChannelActive() by your particular radio.
|
||||
void setCADTimeout(unsigned long cad_timeout);
|
||||
|
||||
/// Determine if the currently selected radio channel is active.
|
||||
/// This is expected to be subclassed by specific radios to implement their Channel Activity Detection
|
||||
/// if supported. If the radio does not support CAD, returns true immediately. If a RadioHead radio
|
||||
/// supports isChannelActive() it will be documented in the radio specific documentation.
|
||||
/// This is called automatically by waitCAD().
|
||||
/// \return true if the radio-specific CAD (as returned by override of isChannelActive()) shows the
|
||||
/// current radio channel as active, else false. If there is no radio-specific CAD, returns false.
|
||||
virtual bool isChannelActive();
|
||||
|
||||
/// Sets the address of this node. Defaults to 0xFF. Subclasses or the user may want to change this.
|
||||
/// This will be used to test the adddress in incoming messages. In non-promiscuous mode,
|
||||
/// only messages with a TO header the same as thisAddress or the broadcast addess (0xFF) will be accepted.
|
||||
/// In promiscuous mode, all messages will be accepted regardless of the TO header.
|
||||
/// In a conventional multinode system, all nodes will have a unique address
|
||||
/// (which you could store in EEPROM).
|
||||
/// You would normally set the header FROM address to be the same as thisAddress (though you dont have to,
|
||||
/// allowing the possibilty of address spoofing).
|
||||
/// \param[in] thisAddress The address of this node.
|
||||
virtual void setThisAddress(uint8_t thisAddress);
|
||||
|
||||
/// Sets the TO header to be sent in all subsequent messages
|
||||
/// \param[in] to The new TO header value
|
||||
virtual void setHeaderTo(uint8_t to);
|
||||
|
||||
/// Sets the FROM header to be sent in all subsequent messages
|
||||
/// \param[in] from The new FROM header value
|
||||
virtual void setHeaderFrom(uint8_t from);
|
||||
|
||||
/// Sets the ID header to be sent in all subsequent messages
|
||||
/// \param[in] id The new ID header value
|
||||
virtual void setHeaderId(uint8_t id);
|
||||
|
||||
/// Sets and clears bits in the FLAGS header to be sent in all subsequent messages
|
||||
/// First it clears he FLAGS according to the clear argument, then sets the flags according to the
|
||||
/// set argument. The default for clear always clears the application specific flags.
|
||||
/// \param[in] set bitmask of bits to be set. Flags are cleared with the clear mask before being set.
|
||||
/// \param[in] clear bitmask of flags to clear. Defaults to RH_FLAGS_APPLICATION_SPECIFIC
|
||||
/// which clears the application specific flags, resulting in new application specific flags
|
||||
/// identical to the set.
|
||||
virtual void setHeaderFlags(uint8_t set, uint8_t clear = RH_FLAGS_APPLICATION_SPECIFIC);
|
||||
|
||||
/// Tells the receiver to accept messages with any TO address, not just messages
|
||||
/// addressed to thisAddress or the broadcast address
|
||||
/// \param[in] promiscuous true if you wish to receive messages with any TO address
|
||||
virtual void setPromiscuous(bool promiscuous);
|
||||
|
||||
/// Returns the TO header of the last received message
|
||||
/// \return The TO header
|
||||
virtual uint8_t headerTo();
|
||||
|
||||
/// Returns the FROM header of the last received message
|
||||
/// \return The FROM header
|
||||
virtual uint8_t headerFrom();
|
||||
|
||||
/// Returns the ID header of the last received message
|
||||
/// \return The ID header
|
||||
virtual uint8_t headerId();
|
||||
|
||||
/// Returns the FLAGS header of the last received message
|
||||
/// \return The FLAGS header
|
||||
virtual uint8_t headerFlags();
|
||||
|
||||
/// Returns the most recent RSSI (Receiver Signal Strength Indicator).
|
||||
/// Usually it is the RSSI of the last received message, which is measured when the preamble is received.
|
||||
/// If you called readRssi() more recently, it will return that more recent value.
|
||||
/// \return The most recent RSSI measurement in dBm.
|
||||
virtual int16_t lastRssi();
|
||||
|
||||
/// Returns the operating mode of the library.
|
||||
/// \return the current mode, one of RF69_MODE_*
|
||||
virtual RHMode mode();
|
||||
|
||||
/// Sets the operating mode of the transport.
|
||||
virtual void setMode(RHMode mode);
|
||||
|
||||
/// Sets the transport hardware into low-power sleep mode
|
||||
/// (if supported). May be overridden by specific drivers to initialte sleep mode.
|
||||
/// If successful, the transport will stay in sleep mode until woken by
|
||||
/// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
|
||||
/// \return true if sleep mode is supported by transport hardware and the RadioHead driver, and if sleep mode
|
||||
/// was successfully entered. If sleep mode is not suported, return false.
|
||||
virtual bool sleep();
|
||||
|
||||
/// Prints a data buffer in HEX.
|
||||
/// For diagnostic use
|
||||
/// \param[in] prompt string to preface the print
|
||||
/// \param[in] buf Location of the buffer to print
|
||||
/// \param[in] len Length of the buffer in octets.
|
||||
static void printBuffer(const char *prompt, const uint8_t *buf, uint8_t len);
|
||||
|
||||
/// Returns the count of the number of bad received packets (ie packets with bad lengths, checksum etc)
|
||||
/// which were rejected and not delivered to the application.
|
||||
/// Caution: not all drivers can correctly report this count. Some underlying hardware only report
|
||||
/// good packets.
|
||||
/// \return The number of bad packets received.
|
||||
virtual uint16_t rxBad();
|
||||
|
||||
/// Returns the count of the number of
|
||||
/// good received packets
|
||||
/// \return The number of good packets received.
|
||||
virtual uint16_t rxGood();
|
||||
|
||||
/// Returns the count of the number of
|
||||
/// packets successfully transmitted (though not necessarily received by the destination)
|
||||
/// \return The number of packets successfully transmitted
|
||||
virtual uint16_t txGood();
|
||||
|
||||
protected:
|
||||
/// The current transport operating mode
|
||||
volatile RHMode _mode;
|
||||
|
||||
/// This node id
|
||||
uint8_t _thisAddress;
|
||||
|
||||
/// Whether the transport is in promiscuous mode
|
||||
bool _promiscuous;
|
||||
|
||||
/// TO header in the last received mesasge
|
||||
volatile uint8_t _rxHeaderTo;
|
||||
|
||||
/// FROM header in the last received mesasge
|
||||
volatile uint8_t _rxHeaderFrom;
|
||||
|
||||
/// ID header in the last received mesasge
|
||||
volatile uint8_t _rxHeaderId;
|
||||
|
||||
/// FLAGS header in the last received mesasge
|
||||
volatile uint8_t _rxHeaderFlags;
|
||||
|
||||
/// TO header to send in all messages
|
||||
uint8_t _txHeaderTo;
|
||||
|
||||
/// FROM header to send in all messages
|
||||
uint8_t _txHeaderFrom;
|
||||
|
||||
/// ID header to send in all messages
|
||||
uint8_t _txHeaderId;
|
||||
|
||||
/// FLAGS header to send in all messages
|
||||
uint8_t _txHeaderFlags;
|
||||
|
||||
/// The value of the last received RSSI value, in some transport specific units
|
||||
volatile int16_t _lastRssi;
|
||||
|
||||
/// Count of the number of bad messages (eg bad checksum etc) received
|
||||
volatile uint16_t _rxBad;
|
||||
|
||||
/// Count of the number of successfully transmitted messaged
|
||||
volatile uint16_t _rxGood;
|
||||
|
||||
/// Count of the number of bad messages (correct checksum etc) received
|
||||
volatile uint16_t _txGood;
|
||||
|
||||
/// Channel activity detected
|
||||
volatile bool _cad;
|
||||
|
||||
/// Channel activity timeout in ms
|
||||
unsigned int _cad_timeout;
|
||||
|
||||
private:
|
||||
};
|
||||
|
||||
#endif
|
||||
@@ -1,31 +0,0 @@
|
||||
// RHGenericSPI.cpp
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2011 Mike McCauley
|
||||
// Contributed by Joanna Rutkowska
|
||||
// $Id: RHGenericSPI.cpp,v 1.2 2014/04/12 05:26:05 mikem Exp $
|
||||
|
||||
#include <RHGenericSPI.h>
|
||||
|
||||
RHGenericSPI::RHGenericSPI(Frequency frequency, BitOrder bitOrder, DataMode dataMode)
|
||||
:
|
||||
_frequency(frequency),
|
||||
_bitOrder(bitOrder),
|
||||
_dataMode(dataMode)
|
||||
{
|
||||
}
|
||||
|
||||
void RHGenericSPI::setBitOrder(BitOrder bitOrder)
|
||||
{
|
||||
_bitOrder = bitOrder;
|
||||
}
|
||||
|
||||
void RHGenericSPI::setDataMode(DataMode dataMode)
|
||||
{
|
||||
_dataMode = dataMode;
|
||||
}
|
||||
|
||||
void RHGenericSPI::setFrequency(Frequency frequency)
|
||||
{
|
||||
_frequency = frequency;
|
||||
}
|
||||
|
||||
@@ -1,183 +0,0 @@
|
||||
// RHGenericSPI.h
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2011 Mike McCauley
|
||||
// Contributed by Joanna Rutkowska
|
||||
// $Id: RHGenericSPI.h,v 1.9 2020/01/05 07:02:23 mikem Exp mikem $
|
||||
|
||||
#ifndef RHGenericSPI_h
|
||||
#define RHGenericSPI_h
|
||||
|
||||
#include <RadioHead.h>
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
/// \class RHGenericSPI RHGenericSPI.h <RHGenericSPI.h>
|
||||
/// \brief Base class for SPI interfaces
|
||||
///
|
||||
/// This generic abstract class is used to encapsulate hardware or software SPI interfaces for
|
||||
/// a variety of platforms.
|
||||
/// The intention is so that driver classes can be configured to use hardware or software SPI
|
||||
/// without changing the main code.
|
||||
///
|
||||
/// You must provide a subclass of this class to driver constructors that require SPI.
|
||||
/// A concrete subclass that encapsualates the standard Arduino hardware SPI and a bit-banged
|
||||
/// software implementation is included.
|
||||
///
|
||||
/// Do not directly use this class: it must be subclassed and the following abstract functions at least
|
||||
/// must be implmented:
|
||||
/// - begin()
|
||||
/// - end()
|
||||
/// - transfer()
|
||||
class RHGenericSPI
|
||||
{
|
||||
public:
|
||||
|
||||
/// \brief Defines constants for different SPI modes
|
||||
///
|
||||
/// Defines constants for different SPI modes
|
||||
/// that can be passed to the constructor or setMode()
|
||||
/// We need to define these in a device and platform independent way, because the
|
||||
/// SPI implementation is different on each platform.
|
||||
typedef enum
|
||||
{
|
||||
DataMode0 = 0, ///< SPI Mode 0: CPOL = 0, CPHA = 0
|
||||
DataMode1, ///< SPI Mode 1: CPOL = 0, CPHA = 1
|
||||
DataMode2, ///< SPI Mode 2: CPOL = 1, CPHA = 0
|
||||
DataMode3, ///< SPI Mode 3: CPOL = 1, CPHA = 1
|
||||
} DataMode;
|
||||
|
||||
/// \brief Defines constants for different SPI bus frequencies
|
||||
///
|
||||
/// Defines constants for different SPI bus frequencies
|
||||
/// that can be passed to setFrequency().
|
||||
/// The frequency you get may not be exactly the one according to the name.
|
||||
/// We need to define these in a device and platform independent way, because the
|
||||
/// SPI implementation is different on each platform.
|
||||
typedef enum
|
||||
{
|
||||
Frequency1MHz = 0, ///< SPI bus frequency close to 1MHz
|
||||
Frequency2MHz, ///< SPI bus frequency close to 2MHz
|
||||
Frequency4MHz, ///< SPI bus frequency close to 4MHz
|
||||
Frequency8MHz, ///< SPI bus frequency close to 8MHz
|
||||
Frequency16MHz ///< SPI bus frequency close to 16MHz
|
||||
} Frequency;
|
||||
|
||||
/// \brief Defines constants for different SPI endianness
|
||||
///
|
||||
/// Defines constants for different SPI endianness
|
||||
/// that can be passed to setBitOrder()
|
||||
/// We need to define these in a device and platform independent way, because the
|
||||
/// SPI implementation is different on each platform.
|
||||
typedef enum
|
||||
{
|
||||
BitOrderMSBFirst = 0, ///< SPI MSB first
|
||||
BitOrderLSBFirst, ///< SPI LSB first
|
||||
} BitOrder;
|
||||
|
||||
/// Constructor
|
||||
/// Creates an instance of an abstract SPI interface.
|
||||
/// Do not use this contructor directly: you must instead use on of the concrete subclasses provided
|
||||
/// such as RHHardwareSPI or RHSoftwareSPI
|
||||
/// \param[in] frequency One of RHGenericSPI::Frequency to select the SPI bus frequency. The frequency
|
||||
/// is mapped to the closest available bus frequency on the platform.
|
||||
/// \param[in] bitOrder Select the SPI bus bit order, one of RHGenericSPI::BitOrderMSBFirst or
|
||||
/// RHGenericSPI::BitOrderLSBFirst.
|
||||
/// \param[in] dataMode Selects the SPI bus data mode. One of RHGenericSPI::DataMode
|
||||
RHGenericSPI(Frequency frequency = Frequency1MHz, BitOrder bitOrder = BitOrderMSBFirst, DataMode dataMode = DataMode0);
|
||||
|
||||
/// Transfer a single octet to and from the SPI interface
|
||||
/// \param[in] data The octet to send
|
||||
/// \return The octet read from SPI while the data octet was sent
|
||||
virtual uint8_t transfer(uint8_t data) = 0;
|
||||
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
/// Transfer up to 2 bytes on the SPI interface
|
||||
/// \param[in] byte0 The first byte to be sent on the SPI interface
|
||||
/// \param[in] byte1 The second byte to be sent on the SPI interface
|
||||
/// \return The second byte clocked in as the second byte is sent.
|
||||
virtual uint8_t transfer2B(uint8_t byte0, uint8_t byte1) = 0;
|
||||
|
||||
/// Read a number of bytes on the SPI interface from an NRF device
|
||||
/// \param[in] reg The NRF device register to read
|
||||
/// \param[out] dest The buffer to hold the bytes read
|
||||
/// \param[in] len The number of bytes to read
|
||||
/// \return The NRF status byte
|
||||
virtual uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len) = 0;
|
||||
|
||||
/// Wrte a number of bytes on the SPI interface to an NRF device
|
||||
/// \param[in] reg The NRF device register to read
|
||||
/// \param[out] src The buffer to hold the bytes write
|
||||
/// \param[in] len The number of bytes to write
|
||||
/// \return The NRF status byte
|
||||
virtual uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len) = 0;
|
||||
|
||||
#endif
|
||||
|
||||
/// SPI Configuration methods
|
||||
/// Enable SPI interrupts (if supported)
|
||||
/// This can be used in an SPI slave to indicate when an SPI message has been received
|
||||
virtual void attachInterrupt() {};
|
||||
|
||||
/// Disable SPI interrupts (if supported)
|
||||
/// This can be used to diable the SPI interrupt in slaves where that is supported.
|
||||
virtual void detachInterrupt() {};
|
||||
|
||||
/// Initialise the SPI library.
|
||||
/// Call this after configuring and before using the SPI library
|
||||
virtual void begin() = 0;
|
||||
|
||||
/// Disables the SPI bus (leaving pin modes unchanged).
|
||||
/// Call this after you have finished using the SPI interface
|
||||
virtual void end() = 0;
|
||||
|
||||
/// Sets the bit order the SPI interface will use
|
||||
/// Sets the order of the bits shifted out of and into the SPI bus, either
|
||||
/// LSBFIRST (least-significant bit first) or MSBFIRST (most-significant bit first).
|
||||
/// \param[in] bitOrder Bit order to be used: one of RHGenericSPI::BitOrder
|
||||
virtual void setBitOrder(BitOrder bitOrder);
|
||||
|
||||
/// Sets the SPI data mode: that is, clock polarity and phase.
|
||||
/// See the Wikipedia article on SPI for details.
|
||||
/// \param[in] dataMode The mode to use: one of RHGenericSPI::DataMode
|
||||
virtual void setDataMode(DataMode dataMode);
|
||||
|
||||
/// Sets the SPI clock divider relative to the system clock.
|
||||
/// On AVR based boards, the dividers available are 2, 4, 8, 16, 32, 64 or 128.
|
||||
/// The default setting is SPI_CLOCK_DIV4, which sets the SPI clock to one-quarter
|
||||
/// the frequency of the system clock (4 Mhz for the boards at 16 MHz).
|
||||
/// \param[in] frequency The data rate to use: one of RHGenericSPI::Frequency
|
||||
virtual void setFrequency(Frequency frequency);
|
||||
|
||||
/// Signal the start of an SPI transaction that must not be interrupted by other SPI actions
|
||||
/// In subclasses that support transactions this will ensure that other SPI transactions
|
||||
/// are blocked until this one is completed by endTransaction().
|
||||
/// Base does nothing
|
||||
/// Might be overridden in subclass
|
||||
virtual void beginTransaction(){}
|
||||
|
||||
/// Signal the end of an SPI transaction
|
||||
/// Base does nothing
|
||||
/// Might be overridden in subclass
|
||||
virtual void endTransaction(){}
|
||||
|
||||
/// Specify the interrupt number of the interrupt that will use SPI transactions
|
||||
/// Tells the SPI support software that SPI transactions will occur with the interrupt
|
||||
/// handler assocated with interruptNumber
|
||||
/// Base does nothing
|
||||
/// Might be overridden in subclass
|
||||
/// \param[in] interruptNumber The number of the interrupt
|
||||
virtual void usingInterrupt(uint8_t interruptNumber){
|
||||
(void)interruptNumber;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
/// The configure SPI Bus frequency, one of RHGenericSPI::Frequency
|
||||
Frequency _frequency; // Bus frequency, one of RHGenericSPI::Frequency
|
||||
|
||||
/// Bit order, one of RHGenericSPI::BitOrder
|
||||
BitOrder _bitOrder;
|
||||
|
||||
/// SPI bus mode, one of RHGenericSPI::DataMode
|
||||
DataMode _dataMode;
|
||||
};
|
||||
#endif
|
||||
@@ -1,499 +0,0 @@
|
||||
// RHHardwareSPI.cpp
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2011 Mike McCauley
|
||||
// Contributed by Joanna Rutkowska
|
||||
// $Id: RHHardwareSPI.cpp,v 1.25 2020/01/05 07:02:23 mikem Exp mikem $
|
||||
|
||||
#include <RHHardwareSPI.h>
|
||||
|
||||
#ifdef RH_HAVE_HARDWARE_SPI
|
||||
|
||||
// Declare a single default instance of the hardware SPI interface class
|
||||
RHHardwareSPI hardware_spi;
|
||||
|
||||
|
||||
#if (RH_PLATFORM == RH_PLATFORM_STM32) // Maple etc
|
||||
// Declare an SPI interface to use
|
||||
HardwareSPI SPI(1);
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_STM32STD) // STM32F4 Discovery
|
||||
// Declare an SPI interface to use
|
||||
HardwareSPI SPI(1);
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS) // Mongoose OS platform
|
||||
HardwareSPI SPI(1);
|
||||
#endif
|
||||
|
||||
// Arduino Due has default SPI pins on central SPI headers, and not on 10, 11, 12, 13
|
||||
// as per other Arduinos
|
||||
// http://21stdigitalhome.blogspot.com.au/2013/02/arduino-due-hardware-spi.html
|
||||
#if defined (__arm__) && !defined(CORE_TEENSY) && !defined(SPI_CLOCK_DIV16) && !defined(RH_PLATFORM_NRF52)
|
||||
// Arduino Due in 1.5.5 has no definitions for SPI dividers
|
||||
// SPI clock divider is based on MCK of 84MHz
|
||||
#define SPI_CLOCK_DIV16 (VARIANT_MCK/84000000) // 1MHz
|
||||
#define SPI_CLOCK_DIV8 (VARIANT_MCK/42000000) // 2MHz
|
||||
#define SPI_CLOCK_DIV4 (VARIANT_MCK/21000000) // 4MHz
|
||||
#define SPI_CLOCK_DIV2 (VARIANT_MCK/10500000) // 8MHz
|
||||
#define SPI_CLOCK_DIV1 (VARIANT_MCK/5250000) // 16MHz
|
||||
#endif
|
||||
|
||||
RHHardwareSPI::RHHardwareSPI(Frequency frequency, BitOrder bitOrder, DataMode dataMode)
|
||||
:
|
||||
RHGenericSPI(frequency, bitOrder, dataMode)
|
||||
{
|
||||
}
|
||||
|
||||
uint8_t RHHardwareSPI::transfer(uint8_t data)
|
||||
{
|
||||
return SPI.transfer(data);
|
||||
}
|
||||
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
uint8_t RHHardwareSPI::transfer2B(uint8_t byte0, uint8_t byte1)
|
||||
{
|
||||
return SPI.transfer2B(byte0, byte1);
|
||||
}
|
||||
|
||||
uint8_t RHHardwareSPI::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
|
||||
{
|
||||
return SPI.spiBurstRead(reg, dest, len);
|
||||
}
|
||||
|
||||
uint8_t RHHardwareSPI::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
|
||||
{
|
||||
uint8_t status = SPI.spiBurstWrite(reg, src, len);
|
||||
return status;
|
||||
}
|
||||
#endif
|
||||
|
||||
void RHHardwareSPI::attachInterrupt()
|
||||
{
|
||||
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO || RH_PLATFORM == RH_PLATFORM_NRF52)
|
||||
SPI.attachInterrupt();
|
||||
#endif
|
||||
}
|
||||
|
||||
void RHHardwareSPI::detachInterrupt()
|
||||
{
|
||||
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO || RH_PLATFORM == RH_PLATFORM_NRF52)
|
||||
SPI.detachInterrupt();
|
||||
#endif
|
||||
}
|
||||
|
||||
void RHHardwareSPI::begin()
|
||||
{
|
||||
#if defined(SPI_HAS_TRANSACTION)
|
||||
// Perhaps this is a uniform interface for SPI?
|
||||
// Currently Teensy and ESP32 only
|
||||
uint32_t frequency;
|
||||
if (_frequency == Frequency16MHz)
|
||||
frequency = 16000000;
|
||||
else if (_frequency == Frequency8MHz)
|
||||
frequency = 8000000;
|
||||
else if (_frequency == Frequency4MHz)
|
||||
frequency = 4000000;
|
||||
else if (_frequency == Frequency2MHz)
|
||||
frequency = 2000000;
|
||||
else
|
||||
frequency = 1000000;
|
||||
|
||||
#if ((RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined (__arm__) && (defined(ARDUINO_SAM_DUE) || defined(ARDUINO_ARCH_SAMD))) || defined(ARDUINO_ARCH_NRF52) || defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_STM32) || defined(NRF52)
|
||||
// Arduino Due in 1.5.5 has its own BitOrder :-(
|
||||
// So too does Arduino Zero
|
||||
// So too does rogerclarkmelbourne/Arduino_STM32
|
||||
::BitOrder bitOrder;
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_ATTINY_MEGA)
|
||||
::BitOrder bitOrder;
|
||||
#else
|
||||
uint8_t bitOrder;
|
||||
#endif
|
||||
|
||||
if (_bitOrder == BitOrderLSBFirst)
|
||||
bitOrder = LSBFIRST;
|
||||
else
|
||||
bitOrder = MSBFIRST;
|
||||
|
||||
uint8_t dataMode;
|
||||
if (_dataMode == DataMode0)
|
||||
dataMode = SPI_MODE0;
|
||||
else if (_dataMode == DataMode1)
|
||||
dataMode = SPI_MODE1;
|
||||
else if (_dataMode == DataMode2)
|
||||
dataMode = SPI_MODE2;
|
||||
else if (_dataMode == DataMode3)
|
||||
dataMode = SPI_MODE3;
|
||||
else
|
||||
dataMode = SPI_MODE0;
|
||||
|
||||
// Save the settings for use in transactions
|
||||
_settings = SPISettings(frequency, bitOrder, dataMode);
|
||||
SPI.begin();
|
||||
|
||||
#else // SPI_HAS_TRANSACTION
|
||||
|
||||
// Sigh: there are no common symbols for some of these SPI options across all platforms
|
||||
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) || (RH_PLATFORM == RH_PLATFORM_UNO32) || (RH_PLATFORM == RH_PLATFORM_CHIPKIT_CORE || RH_PLATFORM == RH_PLATFORM_NRF52)
|
||||
uint8_t dataMode;
|
||||
if (_dataMode == DataMode0)
|
||||
dataMode = SPI_MODE0;
|
||||
else if (_dataMode == DataMode1)
|
||||
dataMode = SPI_MODE1;
|
||||
else if (_dataMode == DataMode2)
|
||||
dataMode = SPI_MODE2;
|
||||
else if (_dataMode == DataMode3)
|
||||
dataMode = SPI_MODE3;
|
||||
else
|
||||
dataMode = SPI_MODE0;
|
||||
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__) && defined(CORE_TEENSY)
|
||||
// Temporary work-around due to problem where avr_emulation.h does not work properly for the setDataMode() cal
|
||||
SPCR &= ~SPI_MODE_MASK;
|
||||
#else
|
||||
#if ((RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined (__arm__) && defined(ARDUINO_ARCH_SAMD)) || defined(ARDUINO_ARCH_NRF52)
|
||||
// Zero requires begin() before anything else :-)
|
||||
SPI.begin();
|
||||
#endif
|
||||
|
||||
SPI.setDataMode(dataMode);
|
||||
#endif
|
||||
|
||||
#if ((RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined (__arm__) && (defined(ARDUINO_SAM_DUE) || defined(ARDUINO_ARCH_SAMD))) || defined(ARDUINO_ARCH_NRF52) || defined (ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_STM32)
|
||||
// Arduino Due in 1.5.5 has its own BitOrder :-(
|
||||
// So too does Arduino Zero
|
||||
// So too does rogerclarkmelbourne/Arduino_STM32
|
||||
::BitOrder bitOrder;
|
||||
#else
|
||||
uint8_t bitOrder;
|
||||
#endif
|
||||
if (_bitOrder == BitOrderLSBFirst)
|
||||
bitOrder = LSBFIRST;
|
||||
else
|
||||
bitOrder = MSBFIRST;
|
||||
SPI.setBitOrder(bitOrder);
|
||||
uint8_t divider;
|
||||
switch (_frequency)
|
||||
{
|
||||
case Frequency1MHz:
|
||||
default:
|
||||
#if F_CPU == 8000000
|
||||
divider = SPI_CLOCK_DIV8;
|
||||
#else
|
||||
divider = SPI_CLOCK_DIV16;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case Frequency2MHz:
|
||||
#if F_CPU == 8000000
|
||||
divider = SPI_CLOCK_DIV4;
|
||||
#else
|
||||
divider = SPI_CLOCK_DIV8;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case Frequency4MHz:
|
||||
#if F_CPU == 8000000
|
||||
divider = SPI_CLOCK_DIV2;
|
||||
#else
|
||||
divider = SPI_CLOCK_DIV4;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case Frequency8MHz:
|
||||
divider = SPI_CLOCK_DIV2; // 4MHz on an 8MHz Arduino
|
||||
break;
|
||||
|
||||
case Frequency16MHz:
|
||||
divider = SPI_CLOCK_DIV2; // Not really 16MHz, only 8MHz. 4MHz on an 8MHz Arduino
|
||||
break;
|
||||
|
||||
}
|
||||
SPI.setClockDivider(divider);
|
||||
SPI.begin();
|
||||
// Teensy requires it to be set _after_ begin()
|
||||
SPI.setClockDivider(divider);
|
||||
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_STM32) // Maple etc
|
||||
spi_mode dataMode;
|
||||
// Hmmm, if we do this as a switch, GCC on maple gets v confused!
|
||||
if (_dataMode == DataMode0)
|
||||
dataMode = SPI_MODE_0;
|
||||
else if (_dataMode == DataMode1)
|
||||
dataMode = SPI_MODE_1;
|
||||
else if (_dataMode == DataMode2)
|
||||
dataMode = SPI_MODE_2;
|
||||
else if (_dataMode == DataMode3)
|
||||
dataMode = SPI_MODE_3;
|
||||
else
|
||||
dataMode = SPI_MODE_0;
|
||||
|
||||
uint32 bitOrder;
|
||||
if (_bitOrder == BitOrderLSBFirst)
|
||||
bitOrder = LSBFIRST;
|
||||
else
|
||||
bitOrder = MSBFIRST;
|
||||
|
||||
SPIFrequency frequency; // Yes, I know these are not exact equivalents.
|
||||
switch (_frequency)
|
||||
{
|
||||
case Frequency1MHz:
|
||||
default:
|
||||
frequency = SPI_1_125MHZ;
|
||||
break;
|
||||
|
||||
case Frequency2MHz:
|
||||
frequency = SPI_2_25MHZ;
|
||||
break;
|
||||
|
||||
case Frequency4MHz:
|
||||
frequency = SPI_4_5MHZ;
|
||||
break;
|
||||
|
||||
case Frequency8MHz:
|
||||
frequency = SPI_9MHZ;
|
||||
break;
|
||||
|
||||
case Frequency16MHz:
|
||||
frequency = SPI_18MHZ;
|
||||
break;
|
||||
|
||||
}
|
||||
SPI.begin(frequency, bitOrder, dataMode);
|
||||
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_STM32STD) // STM32F4 discovery
|
||||
uint8_t dataMode;
|
||||
if (_dataMode == DataMode0)
|
||||
dataMode = SPI_MODE0;
|
||||
else if (_dataMode == DataMode1)
|
||||
dataMode = SPI_MODE1;
|
||||
else if (_dataMode == DataMode2)
|
||||
dataMode = SPI_MODE2;
|
||||
else if (_dataMode == DataMode3)
|
||||
dataMode = SPI_MODE3;
|
||||
else
|
||||
dataMode = SPI_MODE0;
|
||||
|
||||
uint32_t bitOrder;
|
||||
if (_bitOrder == BitOrderLSBFirst)
|
||||
bitOrder = LSBFIRST;
|
||||
else
|
||||
bitOrder = MSBFIRST;
|
||||
|
||||
SPIFrequency frequency; // Yes, I know these are not exact equivalents.
|
||||
switch (_frequency)
|
||||
{
|
||||
case Frequency1MHz:
|
||||
default:
|
||||
frequency = SPI_1_3125MHZ;
|
||||
break;
|
||||
|
||||
case Frequency2MHz:
|
||||
frequency = SPI_2_625MHZ;
|
||||
break;
|
||||
|
||||
case Frequency4MHz:
|
||||
frequency = SPI_5_25MHZ;
|
||||
break;
|
||||
|
||||
case Frequency8MHz:
|
||||
frequency = SPI_10_5MHZ;
|
||||
break;
|
||||
|
||||
case Frequency16MHz:
|
||||
frequency = SPI_21_0MHZ;
|
||||
break;
|
||||
|
||||
}
|
||||
SPI.begin(frequency, bitOrder, dataMode);
|
||||
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_STM32F2) // Photon
|
||||
uint8_t dataMode;
|
||||
if (_dataMode == DataMode0)
|
||||
dataMode = SPI_MODE0;
|
||||
else if (_dataMode == DataMode1)
|
||||
dataMode = SPI_MODE1;
|
||||
else if (_dataMode == DataMode2)
|
||||
dataMode = SPI_MODE2;
|
||||
else if (_dataMode == DataMode3)
|
||||
dataMode = SPI_MODE3;
|
||||
else
|
||||
dataMode = SPI_MODE0;
|
||||
SPI.setDataMode(dataMode);
|
||||
if (_bitOrder == BitOrderLSBFirst)
|
||||
SPI.setBitOrder(LSBFIRST);
|
||||
else
|
||||
SPI.setBitOrder(MSBFIRST);
|
||||
|
||||
switch (_frequency)
|
||||
{
|
||||
case Frequency1MHz:
|
||||
default:
|
||||
SPI.setClockSpeed(1, MHZ);
|
||||
break;
|
||||
|
||||
case Frequency2MHz:
|
||||
SPI.setClockSpeed(2, MHZ);
|
||||
break;
|
||||
|
||||
case Frequency4MHz:
|
||||
SPI.setClockSpeed(4, MHZ);
|
||||
break;
|
||||
|
||||
case Frequency8MHz:
|
||||
SPI.setClockSpeed(8, MHZ);
|
||||
break;
|
||||
|
||||
case Frequency16MHz:
|
||||
SPI.setClockSpeed(16, MHZ);
|
||||
break;
|
||||
}
|
||||
|
||||
// SPI.setClockDivider(SPI_CLOCK_DIV4); // 72MHz / 4MHz = 18MHz
|
||||
// SPI.setClockSpeed(1, MHZ);
|
||||
SPI.begin();
|
||||
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_ESP8266)
|
||||
// Requires SPI driver for ESP8266 from https://github.com/esp8266/Arduino/tree/master/libraries/SPI
|
||||
// Which ppears to be in Arduino Board Manager ESP8266 Community version 2.1.0
|
||||
// Contributed by David Skinner
|
||||
// begin comes first
|
||||
SPI.begin();
|
||||
|
||||
// datamode
|
||||
switch ( _dataMode )
|
||||
{
|
||||
case DataMode1:
|
||||
SPI.setDataMode ( SPI_MODE1 );
|
||||
break;
|
||||
case DataMode2:
|
||||
SPI.setDataMode ( SPI_MODE2 );
|
||||
break;
|
||||
case DataMode3:
|
||||
SPI.setDataMode ( SPI_MODE3 );
|
||||
break;
|
||||
case DataMode0:
|
||||
default:
|
||||
SPI.setDataMode ( SPI_MODE0 );
|
||||
break;
|
||||
}
|
||||
|
||||
// bitorder
|
||||
SPI.setBitOrder(_bitOrder == BitOrderLSBFirst ? LSBFIRST : MSBFIRST);
|
||||
|
||||
// frequency (this sets the divider)
|
||||
switch (_frequency)
|
||||
{
|
||||
case Frequency1MHz:
|
||||
default:
|
||||
SPI.setFrequency(1000000);
|
||||
break;
|
||||
case Frequency2MHz:
|
||||
SPI.setFrequency(2000000);
|
||||
break;
|
||||
case Frequency4MHz:
|
||||
SPI.setFrequency(4000000);
|
||||
break;
|
||||
case Frequency8MHz:
|
||||
SPI.setFrequency(8000000);
|
||||
break;
|
||||
case Frequency16MHz:
|
||||
SPI.setFrequency(16000000);
|
||||
break;
|
||||
}
|
||||
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_RASPI) // Raspberry PI
|
||||
uint8_t dataMode;
|
||||
if (_dataMode == DataMode0)
|
||||
dataMode = BCM2835_SPI_MODE0;
|
||||
else if (_dataMode == DataMode1)
|
||||
dataMode = BCM2835_SPI_MODE1;
|
||||
else if (_dataMode == DataMode2)
|
||||
dataMode = BCM2835_SPI_MODE2;
|
||||
else if (_dataMode == DataMode3)
|
||||
dataMode = BCM2835_SPI_MODE3;
|
||||
|
||||
uint8_t bitOrder;
|
||||
if (_bitOrder == BitOrderLSBFirst)
|
||||
bitOrder = BCM2835_SPI_BIT_ORDER_LSBFIRST;
|
||||
else
|
||||
bitOrder = BCM2835_SPI_BIT_ORDER_MSBFIRST;
|
||||
|
||||
uint32_t divider;
|
||||
switch (_frequency)
|
||||
{
|
||||
case Frequency1MHz:
|
||||
default:
|
||||
divider = BCM2835_SPI_CLOCK_DIVIDER_256;
|
||||
break;
|
||||
case Frequency2MHz:
|
||||
divider = BCM2835_SPI_CLOCK_DIVIDER_128;
|
||||
break;
|
||||
case Frequency4MHz:
|
||||
divider = BCM2835_SPI_CLOCK_DIVIDER_64;
|
||||
break;
|
||||
case Frequency8MHz:
|
||||
divider = BCM2835_SPI_CLOCK_DIVIDER_32;
|
||||
break;
|
||||
case Frequency16MHz:
|
||||
divider = BCM2835_SPI_CLOCK_DIVIDER_16;
|
||||
break;
|
||||
}
|
||||
SPI.begin(divider, bitOrder, dataMode);
|
||||
#elif (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
uint8_t dataMode = SPI_MODE0;
|
||||
uint32_t frequency = 4000000; //!!! ESP32/NRF902 works ok at 4MHz but not at 8MHz SPI clock.
|
||||
uint32_t bitOrder = MSBFIRST;
|
||||
|
||||
if (_dataMode == DataMode0) {
|
||||
dataMode = SPI_MODE0;
|
||||
} else if (_dataMode == DataMode1) {
|
||||
dataMode = SPI_MODE1;
|
||||
} else if (_dataMode == DataMode2) {
|
||||
dataMode = SPI_MODE2;
|
||||
} else if (_dataMode == DataMode3) {
|
||||
dataMode = SPI_MODE3;
|
||||
}
|
||||
|
||||
if (_bitOrder == BitOrderLSBFirst) {
|
||||
bitOrder = LSBFIRST;
|
||||
}
|
||||
|
||||
if (_frequency == Frequency4MHz)
|
||||
frequency = 4000000;
|
||||
else if (_frequency == Frequency2MHz)
|
||||
frequency = 2000000;
|
||||
else
|
||||
frequency = 1000000;
|
||||
|
||||
SPI.begin(frequency, bitOrder, dataMode);
|
||||
#else
|
||||
#warning RHHardwareSPI does not support this platform yet. Consider adding it and contributing a patch.
|
||||
#endif
|
||||
|
||||
#endif // SPI_HAS_TRANSACTION
|
||||
}
|
||||
|
||||
void RHHardwareSPI::end()
|
||||
{
|
||||
return SPI.end();
|
||||
}
|
||||
|
||||
void RHHardwareSPI::beginTransaction()
|
||||
{
|
||||
#if defined(SPI_HAS_TRANSACTION)
|
||||
SPI.beginTransaction(_settings);
|
||||
#endif
|
||||
}
|
||||
|
||||
void RHHardwareSPI::endTransaction()
|
||||
{
|
||||
#if defined(SPI_HAS_TRANSACTION)
|
||||
SPI.endTransaction();
|
||||
#endif
|
||||
}
|
||||
|
||||
void RHHardwareSPI::usingInterrupt(uint8_t interrupt)
|
||||
{
|
||||
#if defined(SPI_HAS_TRANSACTION) && !defined(RH_MISSING_SPIUSINGINTERRUPT)
|
||||
SPI.usingInterrupt(interrupt);
|
||||
#endif
|
||||
(void)interrupt;
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -1,116 +0,0 @@
|
||||
// RHHardwareSPI.h
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2011 Mike McCauley
|
||||
// Contributed by Joanna Rutkowska
|
||||
// $Id: RHHardwareSPI.h,v 1.12 2020/01/05 07:02:23 mikem Exp mikem $
|
||||
|
||||
#ifndef RHHardwareSPI_h
|
||||
#define RHHardwareSPI_h
|
||||
|
||||
#include <RHGenericSPI.h>
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
/// \class RHHardwareSPI RHHardwareSPI.h <RHHardwareSPI.h>
|
||||
/// \brief Encapsulate a hardware SPI bus interface
|
||||
///
|
||||
/// This concrete subclass of GenericSPIClass encapsulates the standard Arduino hardware and other
|
||||
/// hardware SPI interfaces.
|
||||
///
|
||||
/// SPI transactions are supported in development environments that support it with SPI_HAS_TRANSACTION.
|
||||
class RHHardwareSPI : public RHGenericSPI
|
||||
{
|
||||
#ifdef RH_HAVE_HARDWARE_SPI
|
||||
public:
|
||||
/// Constructor
|
||||
/// Creates an instance of a hardware SPI interface, using whatever SPI hardware is available on
|
||||
/// your processor platform. On Arduino and Uno32, uses SPI. On Maple, uses HardwareSPI.
|
||||
/// \param[in] frequency One of RHGenericSPI::Frequency to select the SPI bus frequency. The frequency
|
||||
/// is mapped to the closest available bus frequency on the platform.
|
||||
/// \param[in] bitOrder Select the SPI bus bit order, one of RHGenericSPI::BitOrderMSBFirst or
|
||||
/// RHGenericSPI::BitOrderLSBFirst.
|
||||
/// \param[in] dataMode Selects the SPI bus data mode. One of RHGenericSPI::DataMode
|
||||
RHHardwareSPI(Frequency frequency = Frequency1MHz, BitOrder bitOrder = BitOrderMSBFirst, DataMode dataMode = DataMode0);
|
||||
|
||||
/// Transfer a single octet to and from the SPI interface
|
||||
/// \param[in] data The octet to send
|
||||
/// \return The octet read from SPI while the data octet was sent
|
||||
uint8_t transfer(uint8_t data);
|
||||
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
/// Transfer (write) 2 bytes on the SPI interface to an NRF device
|
||||
/// \param[in] byte0 The first byte to be sent on the SPI interface
|
||||
/// \param[in] byte1 The second byte to be sent on the SPI interface
|
||||
/// \return The second byte clocked in as the second byte is sent.
|
||||
uint8_t transfer2B(uint8_t byte0, uint8_t byte1);
|
||||
|
||||
/// Read a number of bytes on the SPI interface from an NRF device
|
||||
/// \param[in] reg The NRF device register to read
|
||||
/// \param[out] dest The buffer to hold the bytes read
|
||||
/// \param[in] len The number of bytes to read
|
||||
/// \return The NRF status byte
|
||||
uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len);
|
||||
|
||||
/// Wrte a number of bytes on the SPI interface to an NRF device
|
||||
/// \param[in] reg The NRF device register to read
|
||||
/// \param[out] src The buffer to hold the bytes write
|
||||
/// \param[in] len The number of bytes to write
|
||||
/// \return The NRF status byte
|
||||
uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len);
|
||||
|
||||
#endif
|
||||
|
||||
// SPI Configuration methods
|
||||
/// Enable SPI interrupts
|
||||
/// This can be used in an SPI slave to indicate when an SPI message has been received
|
||||
/// It will cause the SPI_STC_vect interrupt vectr to be executed
|
||||
void attachInterrupt();
|
||||
|
||||
/// Disable SPI interrupts
|
||||
/// This can be used to diable the SPI interrupt in slaves where that is supported.
|
||||
void detachInterrupt();
|
||||
|
||||
/// Initialise the SPI library
|
||||
/// Call this after configuring the SPI interface and before using it to transfer data.
|
||||
/// Initializes the SPI bus by setting SCK, MOSI, and SS to outputs, pulling SCK and MOSI low, and SS high.
|
||||
void begin();
|
||||
|
||||
/// Disables the SPI bus (leaving pin modes unchanged).
|
||||
/// Call this after you have finished using the SPI interface.
|
||||
void end();
|
||||
#else
|
||||
// not supported on ATTiny etc
|
||||
uint8_t transfer(uint8_t /*data*/) {return 0;}
|
||||
void begin(){}
|
||||
void end(){}
|
||||
|
||||
#endif
|
||||
|
||||
/// Signal the start of an SPI transaction that must not be interrupted by other SPI actions
|
||||
/// In subclasses that support transactions this will ensure that other SPI transactions
|
||||
/// are blocked until this one is completed by endTransaction().
|
||||
/// Uses the underlying SPI transaction support if available as specified by SPI_HAS_TRANSACTION.
|
||||
virtual void beginTransaction();
|
||||
|
||||
/// Signal the end of an SPI transaction
|
||||
/// Uses the underlying SPI transaction support if available as specified by SPI_HAS_TRANSACTION.
|
||||
virtual void endTransaction();
|
||||
|
||||
/// Specify the interrupt number of the interrupt that will use SPI transactions
|
||||
/// Tells the SPI support software that SPI transactions will occur with the interrupt
|
||||
/// handler assocated with interruptNumber
|
||||
/// Uses the underlying SPI transaction support if available as specified by SPI_HAS_TRANSACTION.
|
||||
/// \param[in] interruptNumber The number of the interrupt
|
||||
virtual void usingInterrupt(uint8_t interruptNumber);
|
||||
|
||||
protected:
|
||||
|
||||
#if defined(SPI_HAS_TRANSACTION)
|
||||
// Storage for SPI settings used in SPI transactions
|
||||
SPISettings _settings;
|
||||
#endif
|
||||
};
|
||||
|
||||
// Built in default instance
|
||||
extern RHHardwareSPI hardware_spi;
|
||||
|
||||
#endif
|
||||
@@ -1,137 +0,0 @@
|
||||
// RHNRFSPIDriver.cpp
|
||||
//
|
||||
// Copyright (C) 2014 Mike McCauley
|
||||
// $Id: RHNRFSPIDriver.cpp,v 1.5 2020/01/05 07:02:23 mikem Exp mikem $
|
||||
|
||||
#include <RHNRFSPIDriver.h>
|
||||
|
||||
RHNRFSPIDriver::RHNRFSPIDriver(uint8_t slaveSelectPin, RHGenericSPI& spi)
|
||||
:
|
||||
_spi(spi),
|
||||
_slaveSelectPin(slaveSelectPin)
|
||||
{
|
||||
}
|
||||
|
||||
bool RHNRFSPIDriver::init()
|
||||
{
|
||||
// start the SPI library with the default speeds etc:
|
||||
// On Arduino Due this defaults to SPI1 on the central group of 6 SPI pins
|
||||
_spi.begin();
|
||||
|
||||
// Initialise the slave select pin
|
||||
// On Maple, this must be _after_ spi.begin
|
||||
pinMode(_slaveSelectPin, OUTPUT);
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
|
||||
delay(100);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Low level commands for interfacing with the device
|
||||
uint8_t RHNRFSPIDriver::spiCommand(uint8_t command)
|
||||
{
|
||||
uint8_t status;
|
||||
ATOMIC_BLOCK_START;
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
status = _spi.transfer(command);
|
||||
#else
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
status = _spi.transfer(command);
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
#endif
|
||||
ATOMIC_BLOCK_END;
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t RHNRFSPIDriver::spiRead(uint8_t reg)
|
||||
{
|
||||
uint8_t val;
|
||||
ATOMIC_BLOCK_START;
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
val = _spi.transfer2B(reg, 0); // Send the address, discard the status, The written value is ignored, reg value is read
|
||||
#else
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
_spi.transfer(reg); // Send the address, discard the status
|
||||
val = _spi.transfer(0); // The written value is ignored, reg value is read
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
#endif
|
||||
ATOMIC_BLOCK_END;
|
||||
return val;
|
||||
}
|
||||
|
||||
uint8_t RHNRFSPIDriver::spiWrite(uint8_t reg, uint8_t val)
|
||||
{
|
||||
uint8_t status = 0;
|
||||
ATOMIC_BLOCK_START;
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
status = _spi.transfer2B(reg, val);
|
||||
#else
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
status = _spi.transfer(reg); // Send the address
|
||||
_spi.transfer(val); // New value follows
|
||||
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__) && defined(CORE_TEENSY)
|
||||
// Sigh: some devices, such as MRF89XA dont work properly on Teensy 3.1:
|
||||
// At 1MHz, the clock returns low _after_ slave select goes high, which prevents SPI
|
||||
// write working. This delay gixes time for the clock to return low.
|
||||
delayMicroseconds(5);
|
||||
#endif
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
#endif
|
||||
ATOMIC_BLOCK_END;
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t RHNRFSPIDriver::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
|
||||
{
|
||||
uint8_t status = 0;
|
||||
ATOMIC_BLOCK_START;
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
status = _spi.spiBurstRead(reg, dest, len);
|
||||
#else
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
status = _spi.transfer(reg); // Send the start address
|
||||
while (len--)
|
||||
*dest++ = _spi.transfer(0);
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
#endif
|
||||
ATOMIC_BLOCK_END;
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t RHNRFSPIDriver::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
|
||||
{
|
||||
uint8_t status = 0;
|
||||
ATOMIC_BLOCK_START;
|
||||
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
|
||||
status = _spi.spiBurstWrite(reg, src, len);
|
||||
#else
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
status = _spi.transfer(reg); // Send the start address
|
||||
while (len--)
|
||||
_spi.transfer(*src++);
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
#endif
|
||||
ATOMIC_BLOCK_END;
|
||||
return status;
|
||||
}
|
||||
|
||||
void RHNRFSPIDriver::setSlaveSelectPin(uint8_t slaveSelectPin)
|
||||
{
|
||||
_slaveSelectPin = slaveSelectPin;
|
||||
}
|
||||
|
||||
void RHNRFSPIDriver::spiUsingInterrupt(uint8_t interruptNumber)
|
||||
{
|
||||
_spi.usingInterrupt(interruptNumber);
|
||||
}
|
||||
|
||||
@@ -1,101 +0,0 @@
|
||||
// RHNRFSPIDriver.h
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2014 Mike McCauley
|
||||
// $Id: RHNRFSPIDriver.h,v 1.5 2017/11/06 00:04:08 mikem Exp $
|
||||
|
||||
#ifndef RHNRFSPIDriver_h
|
||||
#define RHNRFSPIDriver_h
|
||||
|
||||
#include <RHGenericDriver.h>
|
||||
#include <RHHardwareSPI.h>
|
||||
|
||||
class RHGenericSPI;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
/// \class RHNRFSPIDriver RHNRFSPIDriver.h <RHNRFSPIDriver.h>
|
||||
/// \brief Base class for RadioHead drivers that use the SPI bus
|
||||
/// to communicate with its NRF family transport hardware.
|
||||
///
|
||||
/// This class can be subclassed by Drivers that require to use the SPI bus.
|
||||
/// It can be configured to use either the RHHardwareSPI class (if there is one available on the platform)
|
||||
/// of the bitbanged RHSoftwareSPI class. The dfault behaviour is to use a pre-instantiated built-in RHHardwareSPI
|
||||
/// interface.
|
||||
///
|
||||
/// SPI bus access is protected by ATOMIC_BLOCK_START and ATOMIC_BLOCK_END, which will ensure interrupts
|
||||
/// are disabled during access.
|
||||
///
|
||||
/// The read and write routines use SPI conventions as used by Nordic NRF radios and otehr devices,
|
||||
/// but these can be overriden
|
||||
/// in subclasses if necessary.
|
||||
///
|
||||
/// Application developers are not expected to instantiate this class directly:
|
||||
/// it is for the use of Driver developers.
|
||||
class RHNRFSPIDriver : public RHGenericDriver
|
||||
{
|
||||
public:
|
||||
/// Constructor
|
||||
/// \param[in] slaveSelectPin The controller pin to use to select the desired SPI device. This pin will be driven LOW
|
||||
/// during SPI communications with the SPI device that uis iused by this Driver.
|
||||
/// \param[in] spi Reference to the SPI interface to use. The default is to use a default built-in Hardware interface.
|
||||
RHNRFSPIDriver(uint8_t slaveSelectPin = SS, RHGenericSPI& spi = hardware_spi);
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
bool init();
|
||||
|
||||
/// Sends a single command to the device
|
||||
/// \param[in] command The command code to send to the device.
|
||||
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
|
||||
/// it may or may not be meaningfule depending on the the type of device being accessed.
|
||||
uint8_t spiCommand(uint8_t command);
|
||||
|
||||
/// Reads a single register from the SPI device
|
||||
/// \param[in] reg Register number
|
||||
/// \return The value of the register
|
||||
uint8_t spiRead(uint8_t reg);
|
||||
|
||||
/// Writes a single byte to the SPI device
|
||||
/// \param[in] reg Register number
|
||||
/// \param[in] val The value to write
|
||||
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
|
||||
/// it may or may not be meaningfule depending on the the type of device being accessed.
|
||||
uint8_t spiWrite(uint8_t reg, uint8_t val);
|
||||
|
||||
/// Reads a number of consecutive registers from the SPI device using burst read mode
|
||||
/// \param[in] reg Register number of the first register
|
||||
/// \param[in] dest Array to write the register values to. Must be at least len bytes
|
||||
/// \param[in] len Number of bytes to read
|
||||
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
|
||||
/// it may or may not be meaningfule depending on the the type of device being accessed.
|
||||
uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len);
|
||||
|
||||
/// Write a number of consecutive registers using burst write mode
|
||||
/// \param[in] reg Register number of the first register
|
||||
/// \param[in] src Array of new register values to write. Must be at least len bytes
|
||||
/// \param[in] len Number of bytes to write
|
||||
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
|
||||
/// it may or may not be meaningfule depending on the the type of device being accessed.
|
||||
uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len);
|
||||
|
||||
/// Set or change the pin to be used for SPI slave select.
|
||||
/// This can be called at any time to change the
|
||||
/// pin that will be used for slave select in subsquent SPI operations.
|
||||
/// \param[in] slaveSelectPin The pin to use
|
||||
void setSlaveSelectPin(uint8_t slaveSelectPin);
|
||||
|
||||
/// Set the SPI interrupt number
|
||||
/// If SPI transactions can occur within an interrupt, tell the low level SPI
|
||||
/// interface which interrupt is used
|
||||
/// \param[in] interruptNumber the interrupt number
|
||||
void spiUsingInterrupt(uint8_t interruptNumber);
|
||||
|
||||
protected:
|
||||
/// Reference to the RHGenericSPI instance to use to trasnfer data with teh SPI device
|
||||
RHGenericSPI& _spi;
|
||||
|
||||
/// The pin number of the Slave Select pin that is used to select the desired device.
|
||||
uint8_t _slaveSelectPin;
|
||||
};
|
||||
|
||||
#endif
|
||||
@@ -1,95 +0,0 @@
|
||||
// RHSPIDriver.cpp
|
||||
//
|
||||
// Copyright (C) 2014 Mike McCauley
|
||||
// $Id: RHSPIDriver.cpp,v 1.11 2017/11/06 00:04:08 mikem Exp $
|
||||
|
||||
#include <RHSPIDriver.h>
|
||||
|
||||
RHSPIDriver::RHSPIDriver(uint8_t slaveSelectPin, RHGenericSPI& spi)
|
||||
:
|
||||
_spi(spi),
|
||||
_slaveSelectPin(slaveSelectPin)
|
||||
{
|
||||
}
|
||||
|
||||
bool RHSPIDriver::init()
|
||||
{
|
||||
// start the SPI library with the default speeds etc:
|
||||
// On Arduino Due this defaults to SPI1 on the central group of 6 SPI pins
|
||||
_spi.begin();
|
||||
|
||||
// Initialise the slave select pin
|
||||
// On Maple, this must be _after_ spi.begin
|
||||
pinMode(_slaveSelectPin, OUTPUT);
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
|
||||
delay(100);
|
||||
return true;
|
||||
}
|
||||
|
||||
uint8_t RHSPIDriver::spiRead(uint8_t reg)
|
||||
{
|
||||
uint8_t val;
|
||||
ATOMIC_BLOCK_START;
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
_spi.transfer(reg & ~RH_SPI_WRITE_MASK); // Send the address with the write mask off
|
||||
val = _spi.transfer(0); // The written value is ignored, reg value is read
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
ATOMIC_BLOCK_END;
|
||||
return val;
|
||||
}
|
||||
|
||||
uint8_t RHSPIDriver::spiWrite(uint8_t reg, uint8_t val)
|
||||
{
|
||||
uint8_t status = 0;
|
||||
ATOMIC_BLOCK_START;
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
status = _spi.transfer(reg | RH_SPI_WRITE_MASK); // Send the address with the write mask on
|
||||
_spi.transfer(val); // New value follows
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
ATOMIC_BLOCK_END;
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t RHSPIDriver::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
|
||||
{
|
||||
uint8_t status = 0;
|
||||
ATOMIC_BLOCK_START;
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
status = _spi.transfer(reg & ~RH_SPI_WRITE_MASK); // Send the start address with the write mask off
|
||||
while (len--)
|
||||
*dest++ = _spi.transfer(0);
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
ATOMIC_BLOCK_END;
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t RHSPIDriver::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
|
||||
{
|
||||
uint8_t status = 0;
|
||||
ATOMIC_BLOCK_START;
|
||||
_spi.beginTransaction();
|
||||
digitalWrite(_slaveSelectPin, LOW);
|
||||
status = _spi.transfer(reg | RH_SPI_WRITE_MASK); // Send the start address with the write mask on
|
||||
while (len--)
|
||||
_spi.transfer(*src++);
|
||||
digitalWrite(_slaveSelectPin, HIGH);
|
||||
_spi.endTransaction();
|
||||
ATOMIC_BLOCK_END;
|
||||
return status;
|
||||
}
|
||||
|
||||
void RHSPIDriver::setSlaveSelectPin(uint8_t slaveSelectPin)
|
||||
{
|
||||
_slaveSelectPin = slaveSelectPin;
|
||||
}
|
||||
|
||||
void RHSPIDriver::spiUsingInterrupt(uint8_t interruptNumber)
|
||||
{
|
||||
_spi.usingInterrupt(interruptNumber);
|
||||
}
|
||||
|
||||
@@ -1,100 +0,0 @@
|
||||
// RHSPIDriver.h
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2014 Mike McCauley
|
||||
// $Id: RHSPIDriver.h,v 1.14 2019/09/06 04:40:40 mikem Exp $
|
||||
|
||||
#ifndef RHSPIDriver_h
|
||||
#define RHSPIDriver_h
|
||||
|
||||
#include <RHGenericDriver.h>
|
||||
#include <RHHardwareSPI.h>
|
||||
|
||||
// This is the bit in the SPI address that marks it as a write
|
||||
#define RH_SPI_WRITE_MASK 0x80
|
||||
|
||||
class RHGenericSPI;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
/// \class RHSPIDriver RHSPIDriver.h <RHSPIDriver.h>
|
||||
/// \brief Base class for RadioHead drivers that use the SPI bus
|
||||
/// to communicate with its transport hardware.
|
||||
///
|
||||
/// This class can be subclassed by Drivers that require to use the SPI bus.
|
||||
/// It can be configured to use either the RHHardwareSPI class (if there is one available on the platform)
|
||||
/// of the bitbanged RHSoftwareSPI class. The default behaviour is to use a pre-instantiated built-in RHHardwareSPI
|
||||
/// interface.
|
||||
///
|
||||
/// SPI bus access is protected by ATOMIC_BLOCK_START and ATOMIC_BLOCK_END, which will ensure interrupts
|
||||
/// are disabled during access.
|
||||
///
|
||||
/// The read and write routines implement commonly used SPI conventions: specifically that the MSB
|
||||
/// of the first byte transmitted indicates that it is a write and the remaining bits indicate the rehgister to access)
|
||||
/// This can be overriden
|
||||
/// in subclasses if necessaryor an alternative class, RHNRFSPIDriver can be used to access devices like
|
||||
/// Nordic NRF series radios, which have different requirements.
|
||||
///
|
||||
/// Application developers are not expected to instantiate this class directly:
|
||||
/// it is for the use of Driver developers.
|
||||
class RHSPIDriver : public RHGenericDriver
|
||||
{
|
||||
public:
|
||||
/// Constructor
|
||||
/// \param[in] slaveSelectPin The controler pin to use to select the desired SPI device. This pin will be driven LOW
|
||||
/// during SPI communications with the SPI device that uis iused by this Driver.
|
||||
/// \param[in] spi Reference to the SPI interface to use. The default is to use a default built-in Hardware interface.
|
||||
RHSPIDriver(uint8_t slaveSelectPin = SS, RHGenericSPI& spi = hardware_spi);
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
bool init();
|
||||
|
||||
/// Reads a single register from the SPI device
|
||||
/// \param[in] reg Register number
|
||||
/// \return The value of the register
|
||||
uint8_t spiRead(uint8_t reg);
|
||||
|
||||
/// Writes a single byte to the SPI device
|
||||
/// \param[in] reg Register number
|
||||
/// \param[in] val The value to write
|
||||
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
|
||||
/// it may or may not be meaningfule depending on the the type of device being accessed.
|
||||
uint8_t spiWrite(uint8_t reg, uint8_t val);
|
||||
|
||||
/// Reads a number of consecutive registers from the SPI device using burst read mode
|
||||
/// \param[in] reg Register number of the first register
|
||||
/// \param[in] dest Array to write the register values to. Must be at least len bytes
|
||||
/// \param[in] len Number of bytes to read
|
||||
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
|
||||
/// it may or may not be meaningfule depending on the the type of device being accessed.
|
||||
uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len);
|
||||
|
||||
/// Write a number of consecutive registers using burst write mode
|
||||
/// \param[in] reg Register number of the first register
|
||||
/// \param[in] src Array of new register values to write. Must be at least len bytes
|
||||
/// \param[in] len Number of bytes to write
|
||||
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
|
||||
/// it may or may not be meaningfule depending on the the type of device being accessed.
|
||||
uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len);
|
||||
|
||||
/// Set or change the pin to be used for SPI slave select.
|
||||
/// This can be called at any time to change the
|
||||
/// pin that will be used for slave select in subsquent SPI operations.
|
||||
/// \param[in] slaveSelectPin The pin to use
|
||||
void setSlaveSelectPin(uint8_t slaveSelectPin);
|
||||
|
||||
/// Set the SPI interrupt number
|
||||
/// If SPI transactions can occur within an interrupt, tell the low level SPI
|
||||
/// interface which interrupt is used
|
||||
/// \param[in] interruptNumber the interrupt number
|
||||
void spiUsingInterrupt(uint8_t interruptNumber);
|
||||
|
||||
protected:
|
||||
/// Reference to the RHGenericSPI instance to use to transfer data with the SPI device
|
||||
RHGenericSPI& _spi;
|
||||
|
||||
/// The pin number of the Slave Select pin that is used to select the desired device.
|
||||
uint8_t _slaveSelectPin;
|
||||
};
|
||||
|
||||
#endif
|
||||
@@ -1,166 +0,0 @@
|
||||
// SoftwareSPI.cpp
|
||||
// Author: Chris Lapa (chris@lapa.com.au)
|
||||
// Copyright (C) 2014 Chris Lapa
|
||||
// Contributed by Chris Lapa
|
||||
|
||||
#include <RHSoftwareSPI.h>
|
||||
|
||||
RHSoftwareSPI::RHSoftwareSPI(Frequency frequency, BitOrder bitOrder, DataMode dataMode)
|
||||
:
|
||||
RHGenericSPI(frequency, bitOrder, dataMode)
|
||||
{
|
||||
setPins(12, 11, 13);
|
||||
}
|
||||
|
||||
// Caution: on Arduino Uno and many other CPUs, digitalWrite is quite slow, taking about 4us
|
||||
// digitalWrite is also slow, taking about 3.5us
|
||||
// resulting in very slow SPI bus speeds using this technique, up to about 120us per octet of transfer
|
||||
uint8_t RHSoftwareSPI::transfer(uint8_t data)
|
||||
{
|
||||
uint8_t readData;
|
||||
uint8_t writeData;
|
||||
uint8_t builtReturn;
|
||||
uint8_t mask;
|
||||
|
||||
if (_bitOrder == BitOrderMSBFirst)
|
||||
{
|
||||
mask = 0x80;
|
||||
}
|
||||
else
|
||||
{
|
||||
mask = 0x01;
|
||||
}
|
||||
builtReturn = 0;
|
||||
readData = 0;
|
||||
|
||||
for (uint8_t count=0; count<8; count++)
|
||||
{
|
||||
if (data & mask)
|
||||
{
|
||||
writeData = HIGH;
|
||||
}
|
||||
else
|
||||
{
|
||||
writeData = LOW;
|
||||
}
|
||||
|
||||
if (_clockPhase == 1)
|
||||
{
|
||||
// CPHA=1, miso/mosi changing state now
|
||||
digitalWrite(_mosi, writeData);
|
||||
digitalWrite(_sck, ~_clockPolarity);
|
||||
delayPeriod();
|
||||
|
||||
// CPHA=1, miso/mosi stable now
|
||||
readData = digitalRead(_miso);
|
||||
digitalWrite(_sck, _clockPolarity);
|
||||
delayPeriod();
|
||||
}
|
||||
else
|
||||
{
|
||||
// CPHA=0, miso/mosi changing state now
|
||||
digitalWrite(_mosi, writeData);
|
||||
digitalWrite(_sck, _clockPolarity);
|
||||
delayPeriod();
|
||||
|
||||
// CPHA=0, miso/mosi stable now
|
||||
readData = digitalRead(_miso);
|
||||
digitalWrite(_sck, ~_clockPolarity);
|
||||
delayPeriod();
|
||||
}
|
||||
|
||||
if (_bitOrder == BitOrderMSBFirst)
|
||||
{
|
||||
mask >>= 1;
|
||||
builtReturn |= (readData << (7 - count));
|
||||
}
|
||||
else
|
||||
{
|
||||
mask <<= 1;
|
||||
builtReturn |= (readData << count);
|
||||
}
|
||||
}
|
||||
|
||||
digitalWrite(_sck, _clockPolarity);
|
||||
|
||||
return builtReturn;
|
||||
}
|
||||
|
||||
/// Initialise the SPI library
|
||||
void RHSoftwareSPI::begin()
|
||||
{
|
||||
if (_dataMode == DataMode0 ||
|
||||
_dataMode == DataMode1)
|
||||
{
|
||||
_clockPolarity = LOW;
|
||||
}
|
||||
else
|
||||
{
|
||||
_clockPolarity = HIGH;
|
||||
}
|
||||
|
||||
if (_dataMode == DataMode0 ||
|
||||
_dataMode == DataMode2)
|
||||
{
|
||||
_clockPhase = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
_clockPhase = 1;
|
||||
}
|
||||
digitalWrite(_sck, _clockPolarity);
|
||||
|
||||
// Caution: these counts assume that digitalWrite is very fast, which is usually not true
|
||||
switch (_frequency)
|
||||
{
|
||||
case Frequency1MHz:
|
||||
_delayCounts = 8;
|
||||
break;
|
||||
|
||||
case Frequency2MHz:
|
||||
_delayCounts = 4;
|
||||
break;
|
||||
|
||||
case Frequency4MHz:
|
||||
_delayCounts = 2;
|
||||
break;
|
||||
|
||||
case Frequency8MHz:
|
||||
_delayCounts = 1;
|
||||
break;
|
||||
|
||||
case Frequency16MHz:
|
||||
_delayCounts = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/// Disables the SPI bus usually, in this case
|
||||
/// there is no hardware controller to disable.
|
||||
void RHSoftwareSPI::end() { }
|
||||
|
||||
/// Sets the pins used by this SoftwareSPIClass instance.
|
||||
/// \param[in] miso master in slave out pin used
|
||||
/// \param[in] mosi master out slave in pin used
|
||||
/// \param[in] sck clock pin used
|
||||
void RHSoftwareSPI::setPins(uint8_t miso, uint8_t mosi, uint8_t sck)
|
||||
{
|
||||
_miso = miso;
|
||||
_mosi = mosi;
|
||||
_sck = sck;
|
||||
|
||||
pinMode(_miso, INPUT);
|
||||
pinMode(_mosi, OUTPUT);
|
||||
pinMode(_sck, OUTPUT);
|
||||
digitalWrite(_sck, _clockPolarity);
|
||||
}
|
||||
|
||||
|
||||
void RHSoftwareSPI::delayPeriod()
|
||||
{
|
||||
for (uint8_t count = 0; count < _delayCounts; count++)
|
||||
{
|
||||
__asm__ __volatile__ ("nop");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,90 +0,0 @@
|
||||
// SoftwareSPI.h
|
||||
// Author: Chris Lapa (chris@lapa.com.au)
|
||||
// Copyright (C) 2014 Chris Lapa
|
||||
// Contributed by Chris Lapa
|
||||
|
||||
#ifndef RHSoftwareSPI_h
|
||||
#define RHSoftwareSPI_h
|
||||
|
||||
#include <RHGenericSPI.h>
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
/// \class RHSoftwareSPI RHSoftwareSPI.h <RHSoftwareSPI.h>
|
||||
/// \brief Encapsulate a software SPI interface
|
||||
///
|
||||
/// This concrete subclass of RHGenericSPI enapsulates a bit-banged software SPI interface.
|
||||
/// Caution: this software SPI interface will be much slower than hardware SPI on most
|
||||
/// platforms.
|
||||
///
|
||||
/// SPI transactions are not supported, and associated functions do nothing.
|
||||
///
|
||||
/// \par Usage
|
||||
///
|
||||
/// Usage varies slightly depending on what driver you are using.
|
||||
///
|
||||
/// For RF22, for example:
|
||||
/// \code
|
||||
/// #include <RHSoftwareSPI.h>
|
||||
/// RHSoftwareSPI spi;
|
||||
/// RH_RF22 driver(SS, 2, spi);
|
||||
/// RHReliableDatagram(driver, CLIENT_ADDRESS);
|
||||
/// void setup()
|
||||
/// {
|
||||
/// spi.setPins(6, 5, 7); // Or whatever SPI pins you need
|
||||
/// ....
|
||||
/// }
|
||||
/// \endcode
|
||||
class RHSoftwareSPI : public RHGenericSPI
|
||||
{
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
/// Creates an instance of a bit-banged software SPI interface.
|
||||
/// Sets the SPI pins to the defaults of
|
||||
/// MISO = 12, MOSI = 11, SCK = 13. If you need other assigments, call setPins() before
|
||||
/// calling manager.init() or driver.init().
|
||||
/// \param[in] frequency One of RHGenericSPI::Frequency to select the SPI bus frequency. The frequency
|
||||
/// is mapped to the closest available bus frequency on the platform. CAUTION: the achieved
|
||||
/// frequency will almost certainly be very much slower on most platforms. eg on Arduino Uno, the
|
||||
/// the clock rate is likely to be at best around 46kHz.
|
||||
/// \param[in] bitOrder Select the SPI bus bit order, one of RHGenericSPI::BitOrderMSBFirst or
|
||||
/// RHGenericSPI::BitOrderLSBFirst.
|
||||
/// \param[in] dataMode Selects the SPI bus data mode. One of RHGenericSPI::DataMode
|
||||
RHSoftwareSPI(Frequency frequency = Frequency1MHz, BitOrder bitOrder = BitOrderMSBFirst, DataMode dataMode = DataMode0);
|
||||
|
||||
/// Transfer a single octet to and from the SPI interface
|
||||
/// \param[in] data The octet to send
|
||||
/// \return The octet read from SPI while the data octet was sent.
|
||||
uint8_t transfer(uint8_t data);
|
||||
|
||||
/// Initialise the software SPI library
|
||||
/// Call this after configuring the SPI interface and before using it to transfer data.
|
||||
/// Initializes the SPI bus by setting SCK, MOSI, and SS to outputs, pulling SCK and MOSI low, and SS high.
|
||||
void begin();
|
||||
|
||||
/// Disables the SPI bus usually, in this case
|
||||
/// there is no hardware controller to disable.
|
||||
void end();
|
||||
|
||||
/// Sets the pins used by this SoftwareSPIClass instance.
|
||||
/// The defaults are: MISO = 12, MOSI = 11, SCK = 13.
|
||||
/// \param[in] miso master in slave out pin used
|
||||
/// \param[in] mosi master out slave in pin used
|
||||
/// \param[in] sck clock pin used
|
||||
void setPins(uint8_t miso = 12, uint8_t mosi = 11, uint8_t sck = 13);
|
||||
|
||||
private:
|
||||
|
||||
/// Delay routine for bus timing.
|
||||
void delayPeriod();
|
||||
|
||||
private:
|
||||
uint8_t _miso;
|
||||
uint8_t _mosi;
|
||||
uint8_t _sck;
|
||||
uint8_t _delayCounts;
|
||||
uint8_t _clockPolarity;
|
||||
uint8_t _clockPhase;
|
||||
};
|
||||
|
||||
#endif
|
||||
@@ -1,651 +0,0 @@
|
||||
// RH_RF95.cpp
|
||||
//
|
||||
// Copyright (C) 2011 Mike McCauley
|
||||
// $Id: RH_RF95.cpp,v 1.22 2020/01/05 07:02:23 mikem Exp mikem $
|
||||
|
||||
#include <RH_RF95.h>
|
||||
|
||||
// Interrupt vectors for the 3 Arduino interrupt pins
|
||||
// Each interrupt can be handled by a different instance of RH_RF95, allowing you to have
|
||||
// 2 or more LORAs per Arduino
|
||||
RH_RF95 *RH_RF95::_deviceForInterrupt[RH_RF95_NUM_INTERRUPTS] = {0, 0, 0};
|
||||
uint8_t RH_RF95::_interruptCount = 0; // Index into _deviceForInterrupt for next device
|
||||
|
||||
// These are indexed by the values of ModemConfigChoice
|
||||
// Stored in flash (program) memory to save SRAM
|
||||
PROGMEM static const RH_RF95::ModemConfig MODEM_CONFIG_TABLE[] = {
|
||||
// 1d, 1e, 26
|
||||
{0x72, 0x74, 0x04}, // Bw125Cr45Sf128 (the chip default), AGC enabled
|
||||
{0x92, 0x74, 0x04}, // Bw500Cr45Sf128, AGC enabled
|
||||
{0x48, 0x94, 0x04}, // Bw31_25Cr48Sf512, AGC enabled
|
||||
{0x78, 0xc4, 0x0c}, // Bw125Cr48Sf4096, AGC enabled
|
||||
|
||||
};
|
||||
|
||||
RH_RF95::RH_RF95(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI &spi)
|
||||
: RHSPIDriver(slaveSelectPin, spi), _rxBufValid(0)
|
||||
{
|
||||
_interruptPin = interruptPin;
|
||||
_myInterruptIndex = 0xff; // Not allocated yet
|
||||
}
|
||||
|
||||
bool RH_RF95::init()
|
||||
{
|
||||
if (!RHSPIDriver::init())
|
||||
return false;
|
||||
|
||||
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
|
||||
interruptNumber = _interruptPin;
|
||||
#endif
|
||||
|
||||
// Tell the low level SPI interface we will use SPI within this interrupt
|
||||
// spiUsingInterrupt(interruptNumber);
|
||||
|
||||
// No way to check the device type :-(
|
||||
|
||||
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
|
||||
// ARM M4 requires the below. else pin interrupt doesn't work properly.
|
||||
// On all other platforms, its innocuous, belt and braces
|
||||
pinMode(_interruptPin, INPUT);
|
||||
|
||||
bool isWakeFromDeepSleep =
|
||||
false; // true if we think we are waking from deep sleep AND the rf95 seems to have a valid configuration
|
||||
|
||||
if (!isWakeFromDeepSleep) {
|
||||
// Set sleep mode, so we can also set LORA mode:
|
||||
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE);
|
||||
delay(10); // Wait for sleep mode to take over from say, CAD
|
||||
// Check we are in sleep mode, with LORA set
|
||||
if (spiRead(RH_RF95_REG_01_OP_MODE) != (RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE)) {
|
||||
// Serial.println(spiRead(RH_RF95_REG_01_OP_MODE), HEX);
|
||||
return false; // No device present?
|
||||
}
|
||||
|
||||
// Set up FIFO
|
||||
// We configure so that we can use the entire 256 byte FIFO for either receive
|
||||
// or transmit, but not both at the same time
|
||||
spiWrite(RH_RF95_REG_0E_FIFO_TX_BASE_ADDR, 0);
|
||||
spiWrite(RH_RF95_REG_0F_FIFO_RX_BASE_ADDR, 0);
|
||||
|
||||
// Packet format is preamble + explicit-header + payload + crc
|
||||
// Explicit Header Mode
|
||||
// payload is TO + FROM + ID + FLAGS + message data
|
||||
// RX mode is implmented with RXCONTINUOUS
|
||||
// max message data length is 255 - 4 = 251 octets
|
||||
|
||||
setModeIdle();
|
||||
|
||||
// Set up default configuration
|
||||
// No Sync Words in LORA mode.
|
||||
setModemConfig(Bw125Cr45Sf128); // Radio default
|
||||
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
|
||||
setPreambleLength(8); // Default is 8
|
||||
// An innocuous ISM frequency, same as RF22's
|
||||
setFrequency(434.0);
|
||||
// Lowish power
|
||||
setTxPower(13);
|
||||
|
||||
Serial.printf("IRQ flag mask 0x%x\n", spiRead(RH_RF95_REG_11_IRQ_FLAGS_MASK));
|
||||
} else {
|
||||
// FIXME
|
||||
// restore mode base off reading RS95 registers
|
||||
|
||||
// Only let CPU enter deep sleep if RF95 is sitting waiting on a receive or is in idle or sleep.
|
||||
}
|
||||
|
||||
// geeksville: we do this last, because if there is an interrupt pending from during the deep sleep, this attach will cause it
|
||||
// to be taken.
|
||||
|
||||
// Set up interrupt handler
|
||||
// Since there are a limited number of interrupt glue functions isr*() available,
|
||||
// we can only support a limited number of devices simultaneously
|
||||
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
|
||||
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
|
||||
// yourself based on knwledge of what Arduino board you are running on.
|
||||
if (_myInterruptIndex == 0xff) {
|
||||
// First run, no interrupt allocated yet
|
||||
if (_interruptCount <= RH_RF95_NUM_INTERRUPTS)
|
||||
_myInterruptIndex = _interruptCount++;
|
||||
else
|
||||
return false; // Too many devices, not enough interrupt vectors
|
||||
}
|
||||
_deviceForInterrupt[_myInterruptIndex] = this;
|
||||
|
||||
return enableInterrupt();
|
||||
}
|
||||
|
||||
// If on a platform without level trigger definitions, just use RISING and suck it up.
|
||||
#ifndef ONHIGH
|
||||
#define ONHIGH RISING
|
||||
#endif
|
||||
|
||||
bool RH_RF95::enableInterrupt()
|
||||
{
|
||||
// Determine the interrupt number that corresponds to the interruptPin
|
||||
int interruptNumber = digitalPinToInterrupt(_interruptPin);
|
||||
if (interruptNumber == NOT_AN_INTERRUPT)
|
||||
return false;
|
||||
|
||||
if (_myInterruptIndex == 0)
|
||||
attachInterrupt(interruptNumber, isr0, ONHIGH);
|
||||
else if (_myInterruptIndex == 1)
|
||||
attachInterrupt(interruptNumber, isr1, ONHIGH);
|
||||
else if (_myInterruptIndex == 2)
|
||||
attachInterrupt(interruptNumber, isr2, ONHIGH);
|
||||
else
|
||||
return false; // Too many devices, not enough interrupt vectors
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void RH_INTERRUPT_ATTR RH_RF95::disableInterrupt()
|
||||
{
|
||||
int interruptNumber = digitalPinToInterrupt(_interruptPin);
|
||||
detachInterrupt(interruptNumber);
|
||||
}
|
||||
|
||||
void RH_RF95::prepareDeepSleep()
|
||||
{
|
||||
// Determine the interrupt number that corresponds to the interruptPin
|
||||
int interruptNumber = digitalPinToInterrupt(_interruptPin);
|
||||
|
||||
detachInterrupt(interruptNumber);
|
||||
}
|
||||
|
||||
bool RH_RF95::isReceiving()
|
||||
{
|
||||
// 0x0b == Look for header info valid, signal synchronized or signal detected
|
||||
uint8_t reg = spiRead(RH_RF95_REG_18_MODEM_STAT) & 0x1f;
|
||||
// Serial.printf("reg %x\n", reg);
|
||||
return _mode == RHModeRx && (reg & (RH_RF95_MODEM_STATUS_SIGNAL_DETECTED | RH_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED |
|
||||
RH_RF95_MODEM_STATUS_HEADER_INFO_VALID)) != 0;
|
||||
}
|
||||
|
||||
void RH_INTERRUPT_ATTR RH_RF95::handleInterruptLevel0()
|
||||
{
|
||||
disableInterrupt(); // Disable our interrupt until our helper thread can run (because the IRQ will remain asserted until we
|
||||
// talk to it via SPI)
|
||||
pendingInterrupt = true;
|
||||
}
|
||||
|
||||
// C++ level interrupt handler for this instance
|
||||
// LORA is unusual in that it has several interrupt lines, and not a single, combined one.
|
||||
// On MiniWirelessLoRa, only one of the several interrupt lines (DI0) from the RFM95 is usefuly
|
||||
// connnected to the processor.
|
||||
// We use this to get RxDone and TxDone interrupts
|
||||
void RH_RF95::handleInterrupt()
|
||||
{
|
||||
// Read the interrupt register
|
||||
uint8_t irq_flags = spiRead(RH_RF95_REG_12_IRQ_FLAGS);
|
||||
|
||||
// ack all interrupts
|
||||
// note from radiohead author wrt old code (with IMO wrong fix)
|
||||
// Sigh: on some processors, for some unknown reason, doing this only once does not actually
|
||||
// clear the radio's interrupt flag. So we do it twice. Why? (kevinh - I think the root cause we want level
|
||||
// triggered interrupts here - not edge. Because edge allows us to miss handling secondard interrupts that occurred
|
||||
// while this ISR was running. Better to instead, configure the interrupts as level triggered and clear pending
|
||||
// at the _beginning_ of the ISR. If any interrupts occur while handling the ISR, the signal will remain asserted and
|
||||
// our ISR will be reinvoked to handle that case)
|
||||
spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
|
||||
|
||||
// Note: there can be substantial latency between ISR assertion and this function being run, therefore
|
||||
// multiple flags might be set. Handle them all
|
||||
|
||||
// Note: we are running the chip in continuous receive mode (currently, so RX_TIMEOUT shouldn't ever occur)
|
||||
bool haveRxError = irq_flags & (RH_RF95_RX_TIMEOUT | RH_RF95_PAYLOAD_CRC_ERROR);
|
||||
if (haveRxError) {
|
||||
_rxBad++;
|
||||
clearRxBuf();
|
||||
} else if (irq_flags & RH_RF95_RX_DONE) {
|
||||
// Read the RegHopChannel register to check if CRC presence is signalled
|
||||
// in the header. If not it might be a stray (noise) packet.*
|
||||
uint8_t crc_present = spiRead(RH_RF95_REG_1C_HOP_CHANNEL) & RH_RF95_RX_PAYLOAD_CRC_IS_ON;
|
||||
|
||||
if (!crc_present) {
|
||||
_rxBad++;
|
||||
clearRxBuf();
|
||||
} else {
|
||||
// Have received a packet
|
||||
uint8_t len = spiRead(RH_RF95_REG_13_RX_NB_BYTES);
|
||||
|
||||
// Reset the fifo read ptr to the beginning of the packet
|
||||
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, spiRead(RH_RF95_REG_10_FIFO_RX_CURRENT_ADDR));
|
||||
spiBurstRead(RH_RF95_REG_00_FIFO, _buf, len);
|
||||
_bufLen = len;
|
||||
|
||||
// Remember the last signal to noise ratio, LORA mode
|
||||
// Per page 111, SX1276/77/78/79 datasheet
|
||||
_lastSNR = (int8_t)spiRead(RH_RF95_REG_19_PKT_SNR_VALUE) / 4;
|
||||
|
||||
// Remember the RSSI of this packet, LORA mode
|
||||
// this is according to the doc, but is it really correct?
|
||||
// weakest receiveable signals are reported RSSI at about -66
|
||||
_lastRssi = spiRead(RH_RF95_REG_1A_PKT_RSSI_VALUE);
|
||||
// Adjust the RSSI, datasheet page 87
|
||||
if (_lastSNR < 0)
|
||||
_lastRssi = _lastRssi + _lastSNR;
|
||||
else
|
||||
_lastRssi = (int)_lastRssi * 16 / 15;
|
||||
if (_usingHFport)
|
||||
_lastRssi -= 157;
|
||||
else
|
||||
_lastRssi -= 164;
|
||||
|
||||
// We have received a message.
|
||||
validateRxBuf();
|
||||
if (_rxBufValid)
|
||||
setModeIdle(); // Got one
|
||||
}
|
||||
}
|
||||
|
||||
if (irq_flags & RH_RF95_TX_DONE) {
|
||||
_txGood++;
|
||||
setModeIdle();
|
||||
}
|
||||
|
||||
if (_mode == RHModeCad && (irq_flags & RH_RF95_CAD_DONE)) {
|
||||
_cad = irq_flags & RH_RF95_CAD_DETECTED;
|
||||
setModeIdle();
|
||||
}
|
||||
|
||||
enableInterrupt(); // Let ISR run again
|
||||
}
|
||||
|
||||
void RH_RF95::loop()
|
||||
{
|
||||
while (pendingInterrupt) {
|
||||
pendingInterrupt = false; // If the flag was set, it is _guaranteed_ the ISR won't be running, because it masked itself
|
||||
handleInterrupt();
|
||||
}
|
||||
}
|
||||
|
||||
// These are low level functions that call the interrupt handler for the correct
|
||||
// instance of RH_RF95.
|
||||
// 3 interrupts allows us to have 3 different devices
|
||||
void RH_INTERRUPT_ATTR RH_RF95::isr0()
|
||||
{
|
||||
if (_deviceForInterrupt[0])
|
||||
_deviceForInterrupt[0]->handleInterruptLevel0();
|
||||
}
|
||||
void RH_INTERRUPT_ATTR RH_RF95::isr1()
|
||||
{
|
||||
if (_deviceForInterrupt[1])
|
||||
_deviceForInterrupt[1]->handleInterruptLevel0();
|
||||
}
|
||||
void RH_INTERRUPT_ATTR RH_RF95::isr2()
|
||||
{
|
||||
if (_deviceForInterrupt[2])
|
||||
_deviceForInterrupt[2]->handleInterruptLevel0();
|
||||
}
|
||||
|
||||
// Check whether the latest received message is complete and uncorrupted
|
||||
void RH_RF95::validateRxBuf()
|
||||
{
|
||||
if (_bufLen < 4)
|
||||
return; // Too short to be a real message
|
||||
// Extract the 4 headers
|
||||
_rxHeaderTo = _buf[0];
|
||||
_rxHeaderFrom = _buf[1];
|
||||
_rxHeaderId = _buf[2];
|
||||
_rxHeaderFlags = _buf[3];
|
||||
if (_promiscuous || _rxHeaderTo == _thisAddress || _rxHeaderTo == RH_BROADCAST_ADDRESS) {
|
||||
_rxGood++;
|
||||
_rxBufValid = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool RH_RF95::available()
|
||||
{
|
||||
if (_mode == RHModeTx)
|
||||
return false;
|
||||
setModeRx();
|
||||
return _rxBufValid; // Will be set by the interrupt handler when a good message is received
|
||||
}
|
||||
|
||||
void RH_RF95::clearRxBuf()
|
||||
{
|
||||
ATOMIC_BLOCK_START;
|
||||
_rxBufValid = false;
|
||||
_bufLen = 0;
|
||||
ATOMIC_BLOCK_END;
|
||||
}
|
||||
|
||||
/// Note: This routine might be called from inside the RF95 ISR
|
||||
bool RH_RF95::send(const uint8_t *data, uint8_t len)
|
||||
{
|
||||
if (len > RH_RF95_MAX_MESSAGE_LEN)
|
||||
return false;
|
||||
|
||||
setModeIdle();
|
||||
|
||||
// Position at the beginning of the FIFO
|
||||
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, 0);
|
||||
// The headers
|
||||
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderTo);
|
||||
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFrom);
|
||||
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderId);
|
||||
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFlags);
|
||||
// The message data
|
||||
spiBurstWrite(RH_RF95_REG_00_FIFO, data, len);
|
||||
spiWrite(RH_RF95_REG_22_PAYLOAD_LENGTH, len + RH_RF95_HEADER_LEN);
|
||||
|
||||
setModeTx(); // Start the transmitter
|
||||
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
|
||||
return true;
|
||||
}
|
||||
|
||||
bool RH_RF95::printRegisters()
|
||||
{
|
||||
#ifdef RH_HAVE_SERIAL
|
||||
uint8_t registers[] = {0x01, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10,
|
||||
0x11, 0x12, 0x13, 0x014, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c,
|
||||
0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27};
|
||||
|
||||
uint8_t i;
|
||||
for (i = 0; i < sizeof(registers); i++) {
|
||||
Serial.print(registers[i], HEX);
|
||||
Serial.print(": ");
|
||||
Serial.println(spiRead(registers[i]), HEX);
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
uint8_t RH_RF95::maxMessageLength()
|
||||
{
|
||||
return RH_RF95_MAX_MESSAGE_LEN;
|
||||
}
|
||||
|
||||
bool RH_RF95::setFrequency(float centre)
|
||||
{
|
||||
// Frf = FRF / FSTEP
|
||||
uint32_t frf = (centre * 1000000.0) / RH_RF95_FSTEP;
|
||||
spiWrite(RH_RF95_REG_06_FRF_MSB, (frf >> 16) & 0xff);
|
||||
spiWrite(RH_RF95_REG_07_FRF_MID, (frf >> 8) & 0xff);
|
||||
spiWrite(RH_RF95_REG_08_FRF_LSB, frf & 0xff);
|
||||
_usingHFport = (centre >= 779.0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void RH_RF95::setModeIdle()
|
||||
{
|
||||
if (_mode != RHModeIdle) {
|
||||
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_STDBY);
|
||||
_mode = RHModeIdle;
|
||||
}
|
||||
}
|
||||
|
||||
bool RH_RF95::sleep()
|
||||
{
|
||||
if (_mode != RHModeSleep) {
|
||||
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP);
|
||||
_mode = RHModeSleep;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void RH_RF95::setModeRx()
|
||||
{
|
||||
if (_mode != RHModeRx) {
|
||||
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_RXCONTINUOUS);
|
||||
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x00); // Interrupt on RxDone
|
||||
_mode = RHModeRx;
|
||||
}
|
||||
}
|
||||
|
||||
void RH_RF95::setModeTx()
|
||||
{
|
||||
if (_mode != RHModeTx) {
|
||||
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_TX);
|
||||
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x40); // Interrupt on TxDone
|
||||
_mode = RHModeTx;
|
||||
}
|
||||
}
|
||||
|
||||
void RH_RF95::setTxPower(int8_t power, bool useRFO)
|
||||
{
|
||||
// Sigh, different behaviours depending on whther the module use PA_BOOST or the RFO pin
|
||||
// for the transmitter output
|
||||
if (useRFO) {
|
||||
if (power > 14)
|
||||
power = 14;
|
||||
if (power < -1)
|
||||
power = -1;
|
||||
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_MAX_POWER | (power + 1));
|
||||
} else {
|
||||
if (power > 23)
|
||||
power = 23;
|
||||
if (power < 5)
|
||||
power = 5;
|
||||
|
||||
// For RH_RF95_PA_DAC_ENABLE, manual says '+20dBm on PA_BOOST when OutputPower=0xf'
|
||||
// RH_RF95_PA_DAC_ENABLE actually adds about 3dBm to all power levels. We will us it
|
||||
// for 21, 22 and 23dBm
|
||||
if (power > 20) {
|
||||
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_ENABLE);
|
||||
power -= 3;
|
||||
} else {
|
||||
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_DISABLE);
|
||||
}
|
||||
|
||||
// RFM95/96/97/98 does not have RFO pins connected to anything. Only PA_BOOST
|
||||
// pin is connected, so must use PA_BOOST
|
||||
// Pout = 2 + OutputPower.
|
||||
// The documentation is pretty confusing on this topic: PaSelect says the max power is 20dBm,
|
||||
// but OutputPower claims it would be 17dBm.
|
||||
// My measurements show 20dBm is correct
|
||||
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_PA_SELECT | (power - 5));
|
||||
}
|
||||
}
|
||||
|
||||
// Sets registers from a canned modem configuration structure
|
||||
void RH_RF95::setModemRegisters(const ModemConfig *config)
|
||||
{
|
||||
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, config->reg_1d);
|
||||
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, config->reg_1e);
|
||||
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, config->reg_26);
|
||||
}
|
||||
|
||||
// Set one of the canned FSK Modem configs
|
||||
// Returns true if its a valid choice
|
||||
bool RH_RF95::setModemConfig(ModemConfigChoice index)
|
||||
{
|
||||
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
|
||||
return false;
|
||||
|
||||
ModemConfig cfg;
|
||||
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF95::ModemConfig));
|
||||
setModemRegisters(&cfg);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void RH_RF95::setPreambleLength(uint16_t bytes)
|
||||
{
|
||||
spiWrite(RH_RF95_REG_20_PREAMBLE_MSB, bytes >> 8);
|
||||
spiWrite(RH_RF95_REG_21_PREAMBLE_LSB, bytes & 0xff);
|
||||
}
|
||||
|
||||
bool RH_RF95::isChannelActive()
|
||||
{
|
||||
// Set mode RHModeCad
|
||||
if (_mode != RHModeCad) {
|
||||
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_CAD);
|
||||
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x80); // Interrupt on CadDone
|
||||
_mode = RHModeCad;
|
||||
}
|
||||
|
||||
while (_mode == RHModeCad)
|
||||
YIELD;
|
||||
|
||||
return _cad;
|
||||
}
|
||||
|
||||
void RH_RF95::enableTCXO()
|
||||
{
|
||||
while ((spiRead(RH_RF95_REG_4B_TCXO) & RH_RF95_TCXO_TCXO_INPUT_ON) != RH_RF95_TCXO_TCXO_INPUT_ON) {
|
||||
sleep();
|
||||
spiWrite(RH_RF95_REG_4B_TCXO, (spiRead(RH_RF95_REG_4B_TCXO) | RH_RF95_TCXO_TCXO_INPUT_ON));
|
||||
}
|
||||
}
|
||||
|
||||
// From section 4.1.5 of SX1276/77/78/79
|
||||
// Ferror = FreqError * 2**24 * BW / Fxtal / 500
|
||||
int RH_RF95::frequencyError()
|
||||
{
|
||||
int32_t freqerror = 0;
|
||||
|
||||
// Convert 2.5 bytes (5 nibbles, 20 bits) to 32 bit signed int
|
||||
// Caution: some C compilers make errors with eg:
|
||||
// freqerror = spiRead(RH_RF95_REG_28_FEI_MSB) << 16
|
||||
// so we go more carefully.
|
||||
freqerror = spiRead(RH_RF95_REG_28_FEI_MSB);
|
||||
freqerror <<= 8;
|
||||
freqerror |= spiRead(RH_RF95_REG_29_FEI_MID);
|
||||
freqerror <<= 8;
|
||||
freqerror |= spiRead(RH_RF95_REG_2A_FEI_LSB);
|
||||
// Sign extension into top 3 nibbles
|
||||
if (freqerror & 0x80000)
|
||||
freqerror |= 0xfff00000;
|
||||
|
||||
int error = 0; // In hertz
|
||||
float bw_tab[] = {7.8, 10.4, 15.6, 20.8, 31.25, 41.7, 62.5, 125, 250, 500};
|
||||
uint8_t bwindex = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4;
|
||||
if (bwindex < (sizeof(bw_tab) / sizeof(float)))
|
||||
error = (float)freqerror * bw_tab[bwindex] * ((float)(1L << 24) / (float)RH_RF95_FXOSC / 500.0);
|
||||
// else not defined
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
int RH_RF95::lastSNR()
|
||||
{
|
||||
return _lastSNR;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
//
|
||||
// additions below by Brian Norman 9th Nov 2018
|
||||
// brian.n.norman@gmail.com
|
||||
//
|
||||
// Routines intended to make changing BW, SF and CR
|
||||
// a bit more intuitive
|
||||
//
|
||||
///////////////////////////////////////////////////
|
||||
|
||||
void RH_RF95::setSpreadingFactor(uint8_t sf)
|
||||
{
|
||||
if (sf <= 6)
|
||||
sf = RH_RF95_SPREADING_FACTOR_64CPS;
|
||||
else if (sf == 7)
|
||||
sf = RH_RF95_SPREADING_FACTOR_128CPS;
|
||||
else if (sf == 8)
|
||||
sf = RH_RF95_SPREADING_FACTOR_256CPS;
|
||||
else if (sf == 9)
|
||||
sf = RH_RF95_SPREADING_FACTOR_512CPS;
|
||||
else if (sf == 10)
|
||||
sf = RH_RF95_SPREADING_FACTOR_1024CPS;
|
||||
else if (sf == 11)
|
||||
sf = RH_RF95_SPREADING_FACTOR_2048CPS;
|
||||
else if (sf >= 12)
|
||||
sf = RH_RF95_SPREADING_FACTOR_4096CPS;
|
||||
|
||||
// set the new spreading factor
|
||||
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, (spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_SPREADING_FACTOR) | sf);
|
||||
// check if Low data Rate bit should be set or cleared
|
||||
setLowDatarate();
|
||||
}
|
||||
|
||||
void RH_RF95::setSignalBandwidth(long sbw)
|
||||
{
|
||||
uint8_t bw; // register bit pattern
|
||||
|
||||
if (sbw <= 7800)
|
||||
bw = RH_RF95_BW_7_8KHZ;
|
||||
else if (sbw <= 10400)
|
||||
bw = RH_RF95_BW_10_4KHZ;
|
||||
else if (sbw <= 15600)
|
||||
bw = RH_RF95_BW_15_6KHZ;
|
||||
else if (sbw <= 20800)
|
||||
bw = RH_RF95_BW_20_8KHZ;
|
||||
else if (sbw <= 31250)
|
||||
bw = RH_RF95_BW_31_25KHZ;
|
||||
else if (sbw <= 41700)
|
||||
bw = RH_RF95_BW_41_7KHZ;
|
||||
else if (sbw <= 62500)
|
||||
bw = RH_RF95_BW_62_5KHZ;
|
||||
else if (sbw <= 125000)
|
||||
bw = RH_RF95_BW_125KHZ;
|
||||
else if (sbw <= 250000)
|
||||
bw = RH_RF95_BW_250KHZ;
|
||||
else
|
||||
bw = RH_RF95_BW_500KHZ;
|
||||
|
||||
// top 4 bits of reg 1D control bandwidth
|
||||
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_BW) | bw);
|
||||
// check if low data rate bit should be set or cleared
|
||||
setLowDatarate();
|
||||
}
|
||||
|
||||
void RH_RF95::setCodingRate4(uint8_t denominator)
|
||||
{
|
||||
int cr = RH_RF95_CODING_RATE_4_5;
|
||||
|
||||
// if (denominator <= 5)
|
||||
// cr = RH_RF95_CODING_RATE_4_5;
|
||||
if (denominator == 6)
|
||||
cr = RH_RF95_CODING_RATE_4_6;
|
||||
else if (denominator == 7)
|
||||
cr = RH_RF95_CODING_RATE_4_7;
|
||||
else if (denominator >= 8)
|
||||
cr = RH_RF95_CODING_RATE_4_8;
|
||||
|
||||
// CR is bits 3..1 of RH_RF95_REG_1D_MODEM_CONFIG1
|
||||
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_CODING_RATE) | cr);
|
||||
}
|
||||
|
||||
void RH_RF95::setLowDatarate()
|
||||
{
|
||||
// called after changing bandwidth and/or spreading factor
|
||||
// Semtech modem design guide AN1200.13 says
|
||||
// "To avoid issues surrounding drift of the crystal reference oscillator due to either temperature change
|
||||
// or motion,the low data rate optimization bit is used. Specifically for 125 kHz bandwidth and SF = 11 and 12,
|
||||
// this adds a small overhead to increase robustness to reference frequency variations over the timescale of the LoRa
|
||||
// packet."
|
||||
|
||||
// read current value for BW and SF
|
||||
uint8_t BW = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4; // bw is in bits 7..4
|
||||
uint8_t SF = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) >> 4; // sf is in bits 7..4
|
||||
|
||||
// calculate symbol time (see Semtech AN1200.22 section 4)
|
||||
float bw_tab[] = {7800, 10400, 15600, 20800, 31250, 41700, 62500, 125000, 250000, 500000};
|
||||
|
||||
float bandwidth = bw_tab[BW];
|
||||
|
||||
float symbolTime = 1000.0 * pow(2, SF) / bandwidth; // ms
|
||||
|
||||
// the symbolTime for SF 11 BW 125 is 16.384ms.
|
||||
// and, according to this :-
|
||||
// https://www.thethingsnetwork.org/forum/t/a-point-to-note-lora-low-data-rate-optimisation-flag/12007
|
||||
// the LDR bit should be set if the Symbol Time is > 16ms
|
||||
// So the threshold used here is 16.0ms
|
||||
|
||||
// the LDR is bit 3 of RH_RF95_REG_26_MODEM_CONFIG3
|
||||
uint8_t current = spiRead(RH_RF95_REG_26_MODEM_CONFIG3) & ~RH_RF95_LOW_DATA_RATE_OPTIMIZE; // mask off the LDR bit
|
||||
if (symbolTime > 16.0)
|
||||
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current | RH_RF95_LOW_DATA_RATE_OPTIMIZE);
|
||||
else
|
||||
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current);
|
||||
}
|
||||
|
||||
void RH_RF95::setPayloadCRC(bool on)
|
||||
{
|
||||
// Payload CRC is bit 2 of register 1E
|
||||
uint8_t current = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_PAYLOAD_CRC_ON; // mask off the CRC
|
||||
|
||||
if (on)
|
||||
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current | RH_RF95_PAYLOAD_CRC_ON);
|
||||
else
|
||||
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current);
|
||||
}
|
||||
@@ -1,890 +0,0 @@
|
||||
// RH_RF95.h
|
||||
//
|
||||
// Definitions for HopeRF LoRa radios per:
|
||||
// http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
|
||||
// http://www.hoperf.cn/upload/rfchip/RF96_97_98.pdf
|
||||
//
|
||||
// Author: Mike McCauley (mikem@airspayce.com)
|
||||
// Copyright (C) 2014 Mike McCauley
|
||||
// $Id: RH_RF95.h,v 1.23 2019/11/02 02:34:22 mikem Exp $
|
||||
//
|
||||
|
||||
#ifndef RH_RF95_h
|
||||
#define RH_RF95_h
|
||||
|
||||
#include <RHSPIDriver.h>
|
||||
|
||||
// This is the maximum number of interrupts the driver can support
|
||||
// Most Arduinos can handle 2, Megas can handle more
|
||||
#define RH_RF95_NUM_INTERRUPTS 3
|
||||
|
||||
// Max number of octets the LORA Rx/Tx FIFO can hold
|
||||
#define RH_RF95_FIFO_SIZE 255
|
||||
|
||||
// This is the maximum number of bytes that can be carried by the LORA.
|
||||
// We use some for headers, keeping fewer for RadioHead messages
|
||||
#define RH_RF95_MAX_PAYLOAD_LEN RH_RF95_FIFO_SIZE
|
||||
|
||||
// The length of the headers we add.
|
||||
// The headers are inside the LORA's payload
|
||||
#define RH_RF95_HEADER_LEN 4
|
||||
|
||||
// This is the maximum message length that can be supported by this driver.
|
||||
// Can be pre-defined to a smaller size (to save SRAM) prior to including this header
|
||||
// Here we allow for 1 byte message length, 4 bytes headers, user data and 2 bytes of FCS
|
||||
#ifndef RH_RF95_MAX_MESSAGE_LEN
|
||||
#define RH_RF95_MAX_MESSAGE_LEN (RH_RF95_MAX_PAYLOAD_LEN - RH_RF95_HEADER_LEN)
|
||||
#endif
|
||||
|
||||
// The crystal oscillator frequency of the module
|
||||
#define RH_RF95_FXOSC 32000000.0
|
||||
|
||||
// The Frequency Synthesizer step = RH_RF95_FXOSC / 2^^19
|
||||
#define RH_RF95_FSTEP (RH_RF95_FXOSC / 524288)
|
||||
|
||||
// Register names (LoRa Mode, from table 85)
|
||||
#define RH_RF95_REG_00_FIFO 0x00
|
||||
#define RH_RF95_REG_01_OP_MODE 0x01
|
||||
#define RH_RF95_REG_02_RESERVED 0x02
|
||||
#define RH_RF95_REG_03_RESERVED 0x03
|
||||
#define RH_RF95_REG_04_RESERVED 0x04
|
||||
#define RH_RF95_REG_05_RESERVED 0x05
|
||||
#define RH_RF95_REG_06_FRF_MSB 0x06
|
||||
#define RH_RF95_REG_07_FRF_MID 0x07
|
||||
#define RH_RF95_REG_08_FRF_LSB 0x08
|
||||
#define RH_RF95_REG_09_PA_CONFIG 0x09
|
||||
#define RH_RF95_REG_0A_PA_RAMP 0x0a
|
||||
#define RH_RF95_REG_0B_OCP 0x0b
|
||||
#define RH_RF95_REG_0C_LNA 0x0c
|
||||
#define RH_RF95_REG_0D_FIFO_ADDR_PTR 0x0d
|
||||
#define RH_RF95_REG_0E_FIFO_TX_BASE_ADDR 0x0e
|
||||
#define RH_RF95_REG_0F_FIFO_RX_BASE_ADDR 0x0f
|
||||
#define RH_RF95_REG_10_FIFO_RX_CURRENT_ADDR 0x10
|
||||
#define RH_RF95_REG_11_IRQ_FLAGS_MASK 0x11
|
||||
#define RH_RF95_REG_12_IRQ_FLAGS 0x12
|
||||
#define RH_RF95_REG_13_RX_NB_BYTES 0x13
|
||||
#define RH_RF95_REG_14_RX_HEADER_CNT_VALUE_MSB 0x14
|
||||
#define RH_RF95_REG_15_RX_HEADER_CNT_VALUE_LSB 0x15
|
||||
#define RH_RF95_REG_16_RX_PACKET_CNT_VALUE_MSB 0x16
|
||||
#define RH_RF95_REG_17_RX_PACKET_CNT_VALUE_LSB 0x17
|
||||
#define RH_RF95_REG_18_MODEM_STAT 0x18
|
||||
#define RH_RF95_REG_19_PKT_SNR_VALUE 0x19
|
||||
#define RH_RF95_REG_1A_PKT_RSSI_VALUE 0x1a
|
||||
#define RH_RF95_REG_1B_RSSI_VALUE 0x1b
|
||||
#define RH_RF95_REG_1C_HOP_CHANNEL 0x1c
|
||||
#define RH_RF95_REG_1D_MODEM_CONFIG1 0x1d
|
||||
#define RH_RF95_REG_1E_MODEM_CONFIG2 0x1e
|
||||
#define RH_RF95_REG_1F_SYMB_TIMEOUT_LSB 0x1f
|
||||
#define RH_RF95_REG_20_PREAMBLE_MSB 0x20
|
||||
#define RH_RF95_REG_21_PREAMBLE_LSB 0x21
|
||||
#define RH_RF95_REG_22_PAYLOAD_LENGTH 0x22
|
||||
#define RH_RF95_REG_23_MAX_PAYLOAD_LENGTH 0x23
|
||||
#define RH_RF95_REG_24_HOP_PERIOD 0x24
|
||||
#define RH_RF95_REG_25_FIFO_RX_BYTE_ADDR 0x25
|
||||
#define RH_RF95_REG_26_MODEM_CONFIG3 0x26
|
||||
|
||||
#define RH_RF95_REG_27_PPM_CORRECTION 0x27
|
||||
#define RH_RF95_REG_28_FEI_MSB 0x28
|
||||
#define RH_RF95_REG_29_FEI_MID 0x29
|
||||
#define RH_RF95_REG_2A_FEI_LSB 0x2a
|
||||
#define RH_RF95_REG_2C_RSSI_WIDEBAND 0x2c
|
||||
#define RH_RF95_REG_31_DETECT_OPTIMIZE 0x31
|
||||
#define RH_RF95_REG_33_INVERT_IQ 0x33
|
||||
#define RH_RF95_REG_37_DETECTION_THRESHOLD 0x37
|
||||
#define RH_RF95_REG_39_SYNC_WORD 0x39
|
||||
|
||||
#define RH_RF95_REG_40_DIO_MAPPING1 0x40
|
||||
#define RH_RF95_REG_41_DIO_MAPPING2 0x41
|
||||
#define RH_RF95_REG_42_VERSION 0x42
|
||||
|
||||
#define RH_RF95_REG_4B_TCXO 0x4b
|
||||
#define RH_RF95_REG_4D_PA_DAC 0x4d
|
||||
#define RH_RF95_REG_5B_FORMER_TEMP 0x5b
|
||||
#define RH_RF95_REG_61_AGC_REF 0x61
|
||||
#define RH_RF95_REG_62_AGC_THRESH1 0x62
|
||||
#define RH_RF95_REG_63_AGC_THRESH2 0x63
|
||||
#define RH_RF95_REG_64_AGC_THRESH3 0x64
|
||||
|
||||
// RH_RF95_REG_01_OP_MODE 0x01
|
||||
#define RH_RF95_LONG_RANGE_MODE 0x80
|
||||
#define RH_RF95_ACCESS_SHARED_REG 0x40
|
||||
#define RH_RF95_LOW_FREQUENCY_MODE 0x08
|
||||
#define RH_RF95_MODE 0x07
|
||||
#define RH_RF95_MODE_SLEEP 0x00
|
||||
#define RH_RF95_MODE_STDBY 0x01
|
||||
#define RH_RF95_MODE_FSTX 0x02
|
||||
#define RH_RF95_MODE_TX 0x03
|
||||
#define RH_RF95_MODE_FSRX 0x04
|
||||
#define RH_RF95_MODE_RXCONTINUOUS 0x05
|
||||
#define RH_RF95_MODE_RXSINGLE 0x06
|
||||
#define RH_RF95_MODE_CAD 0x07
|
||||
|
||||
// RH_RF95_REG_09_PA_CONFIG 0x09
|
||||
#define RH_RF95_PA_SELECT 0x80
|
||||
#define RH_RF95_MAX_POWER 0x70
|
||||
#define RH_RF95_OUTPUT_POWER 0x0f
|
||||
|
||||
// RH_RF95_REG_0A_PA_RAMP 0x0a
|
||||
#define RH_RF95_LOW_PN_TX_PLL_OFF 0x10
|
||||
#define RH_RF95_PA_RAMP 0x0f
|
||||
#define RH_RF95_PA_RAMP_3_4MS 0x00
|
||||
#define RH_RF95_PA_RAMP_2MS 0x01
|
||||
#define RH_RF95_PA_RAMP_1MS 0x02
|
||||
#define RH_RF95_PA_RAMP_500US 0x03
|
||||
#define RH_RF95_PA_RAMP_250US 0x04
|
||||
#define RH_RF95_PA_RAMP_125US 0x05
|
||||
#define RH_RF95_PA_RAMP_100US 0x06
|
||||
#define RH_RF95_PA_RAMP_62US 0x07
|
||||
#define RH_RF95_PA_RAMP_50US 0x08
|
||||
#define RH_RF95_PA_RAMP_40US 0x09
|
||||
#define RH_RF95_PA_RAMP_31US 0x0a
|
||||
#define RH_RF95_PA_RAMP_25US 0x0b
|
||||
#define RH_RF95_PA_RAMP_20US 0x0c
|
||||
#define RH_RF95_PA_RAMP_15US 0x0d
|
||||
#define RH_RF95_PA_RAMP_12US 0x0e
|
||||
#define RH_RF95_PA_RAMP_10US 0x0f
|
||||
|
||||
// RH_RF95_REG_0B_OCP 0x0b
|
||||
#define RH_RF95_OCP_ON 0x20
|
||||
#define RH_RF95_OCP_TRIM 0x1f
|
||||
|
||||
// RH_RF95_REG_0C_LNA 0x0c
|
||||
#define RH_RF95_LNA_GAIN 0xe0
|
||||
#define RH_RF95_LNA_GAIN_G1 0x20
|
||||
#define RH_RF95_LNA_GAIN_G2 0x40
|
||||
#define RH_RF95_LNA_GAIN_G3 0x60
|
||||
#define RH_RF95_LNA_GAIN_G4 0x80
|
||||
#define RH_RF95_LNA_GAIN_G5 0xa0
|
||||
#define RH_RF95_LNA_GAIN_G6 0xc0
|
||||
#define RH_RF95_LNA_BOOST_LF 0x18
|
||||
#define RH_RF95_LNA_BOOST_LF_DEFAULT 0x00
|
||||
#define RH_RF95_LNA_BOOST_HF 0x03
|
||||
#define RH_RF95_LNA_BOOST_HF_DEFAULT 0x00
|
||||
#define RH_RF95_LNA_BOOST_HF_150PC 0x03
|
||||
|
||||
// RH_RF95_REG_11_IRQ_FLAGS_MASK 0x11
|
||||
#define RH_RF95_RX_TIMEOUT_MASK 0x80
|
||||
#define RH_RF95_RX_DONE_MASK 0x40
|
||||
#define RH_RF95_PAYLOAD_CRC_ERROR_MASK 0x20
|
||||
#define RH_RF95_VALID_HEADER_MASK 0x10
|
||||
#define RH_RF95_TX_DONE_MASK 0x08
|
||||
#define RH_RF95_CAD_DONE_MASK 0x04
|
||||
#define RH_RF95_FHSS_CHANGE_CHANNEL_MASK 0x02
|
||||
#define RH_RF95_CAD_DETECTED_MASK 0x01
|
||||
|
||||
// RH_RF95_REG_12_IRQ_FLAGS 0x12
|
||||
#define RH_RF95_RX_TIMEOUT 0x80
|
||||
#define RH_RF95_RX_DONE 0x40
|
||||
#define RH_RF95_PAYLOAD_CRC_ERROR 0x20
|
||||
#define RH_RF95_VALID_HEADER 0x10
|
||||
#define RH_RF95_TX_DONE 0x08
|
||||
#define RH_RF95_CAD_DONE 0x04
|
||||
#define RH_RF95_FHSS_CHANGE_CHANNEL 0x02
|
||||
#define RH_RF95_CAD_DETECTED 0x01
|
||||
|
||||
// RH_RF95_REG_18_MODEM_STAT 0x18
|
||||
#define RH_RF95_RX_CODING_RATE 0xe0
|
||||
#define RH_RF95_MODEM_STATUS_CLEAR 0x10
|
||||
#define RH_RF95_MODEM_STATUS_HEADER_INFO_VALID 0x08
|
||||
#define RH_RF95_MODEM_STATUS_RX_ONGOING 0x04
|
||||
#define RH_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED 0x02
|
||||
#define RH_RF95_MODEM_STATUS_SIGNAL_DETECTED 0x01
|
||||
|
||||
// RH_RF95_REG_1C_HOP_CHANNEL 0x1c
|
||||
#define RH_RF95_PLL_TIMEOUT 0x80
|
||||
#define RH_RF95_RX_PAYLOAD_CRC_IS_ON 0x40
|
||||
#define RH_RF95_FHSS_PRESENT_CHANNEL 0x3f
|
||||
|
||||
// RH_RF95_REG_1D_MODEM_CONFIG1 0x1d
|
||||
#define RH_RF95_BW 0xf0
|
||||
|
||||
#define RH_RF95_BW_7_8KHZ 0x00
|
||||
#define RH_RF95_BW_10_4KHZ 0x10
|
||||
#define RH_RF95_BW_15_6KHZ 0x20
|
||||
#define RH_RF95_BW_20_8KHZ 0x30
|
||||
#define RH_RF95_BW_31_25KHZ 0x40
|
||||
#define RH_RF95_BW_41_7KHZ 0x50
|
||||
#define RH_RF95_BW_62_5KHZ 0x60
|
||||
#define RH_RF95_BW_125KHZ 0x70
|
||||
#define RH_RF95_BW_250KHZ 0x80
|
||||
#define RH_RF95_BW_500KHZ 0x90
|
||||
#define RH_RF95_CODING_RATE 0x0e
|
||||
#define RH_RF95_CODING_RATE_4_5 0x02
|
||||
#define RH_RF95_CODING_RATE_4_6 0x04
|
||||
#define RH_RF95_CODING_RATE_4_7 0x06
|
||||
#define RH_RF95_CODING_RATE_4_8 0x08
|
||||
#define RH_RF95_IMPLICIT_HEADER_MODE_ON 0x01
|
||||
|
||||
// RH_RF95_REG_1E_MODEM_CONFIG2 0x1e
|
||||
#define RH_RF95_SPREADING_FACTOR 0xf0
|
||||
#define RH_RF95_SPREADING_FACTOR_64CPS 0x60
|
||||
#define RH_RF95_SPREADING_FACTOR_128CPS 0x70
|
||||
#define RH_RF95_SPREADING_FACTOR_256CPS 0x80
|
||||
#define RH_RF95_SPREADING_FACTOR_512CPS 0x90
|
||||
#define RH_RF95_SPREADING_FACTOR_1024CPS 0xa0
|
||||
#define RH_RF95_SPREADING_FACTOR_2048CPS 0xb0
|
||||
#define RH_RF95_SPREADING_FACTOR_4096CPS 0xc0
|
||||
#define RH_RF95_TX_CONTINUOUS_MODE 0x08
|
||||
|
||||
#define RH_RF95_PAYLOAD_CRC_ON 0x04
|
||||
#define RH_RF95_SYM_TIMEOUT_MSB 0x03
|
||||
|
||||
// RH_RF95_REG_26_MODEM_CONFIG3
|
||||
#define RH_RF95_MOBILE_NODE 0x08 // HopeRF term
|
||||
#define RH_RF95_LOW_DATA_RATE_OPTIMIZE 0x08 // Semtechs term
|
||||
#define RH_RF95_AGC_AUTO_ON 0x04
|
||||
|
||||
// RH_RF95_REG_4B_TCXO 0x4b
|
||||
#define RH_RF95_TCXO_TCXO_INPUT_ON 0x10
|
||||
|
||||
// RH_RF95_REG_4D_PA_DAC 0x4d
|
||||
#define RH_RF95_PA_DAC_DISABLE 0x04
|
||||
#define RH_RF95_PA_DAC_ENABLE 0x07
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
/// \class RH_RF95 RH_RF95.h <RH_RF95.h>
|
||||
/// \brief Driver to send and receive unaddressed, unreliable datagrams via a LoRa
|
||||
/// capable radio transceiver.
|
||||
///
|
||||
/// For Semtech SX1276/77/78/79 and HopeRF RF95/96/97/98 and other similar LoRa capable radios.
|
||||
/// Based on http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
|
||||
/// and http://www.hoperf.cn/upload/rfchip/RF96_97_98.pdf
|
||||
/// and http://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf
|
||||
/// and http://www.semtech.com/images/datasheet/sx1276.pdf
|
||||
/// and http://www.semtech.com/images/datasheet/sx1276_77_78_79.pdf
|
||||
/// FSK/GFSK/OOK modes are not (yet) supported.
|
||||
///
|
||||
/// Works with
|
||||
/// - the excellent MiniWirelessLoRa from Anarduino http://www.anarduino.com/miniwireless
|
||||
/// - The excellent Modtronix inAir4 http://modtronix.com/inair4.html
|
||||
/// and inAir9 modules http://modtronix.com/inair9.html.
|
||||
/// - the excellent Rocket Scream Mini Ultra Pro with the RFM95W
|
||||
/// http://www.rocketscream.com/blog/product/mini-ultra-pro-with-radio/
|
||||
/// - Lora1276 module from NiceRF http://www.nicerf.com/product_view.aspx?id=99
|
||||
/// - Adafruit Feather M0 with RFM95
|
||||
/// - The very fine Talk2 Whisper Node LoRa boards https://wisen.com.au/store/products/whisper-node-lora
|
||||
/// an Arduino compatible board, which include an on-board RFM95/96 LoRa Radio (Semtech SX1276), external antenna,
|
||||
/// run on 2xAAA batteries and support low power operations. RF95 examples work without modification.
|
||||
/// Use Arduino Board Manager to install the Talk2 code support. Upload the code with an FTDI adapter set to 5V.
|
||||
/// - heltec / TTGO ESP32 LoRa OLED
|
||||
/// https://www.aliexpress.com/item/Internet-Development-Board-SX1278-ESP32-WIFI-chip-0-96-inch-OLED-Bluetooth-WIFI-Lora-Kit-32/32824535649.html
|
||||
///
|
||||
/// \par Overview
|
||||
///
|
||||
/// This class provides basic functions for sending and receiving unaddressed,
|
||||
/// unreliable datagrams of arbitrary length to 251 octets per packet.
|
||||
///
|
||||
/// Manager classes may use this class to implement reliable, addressed datagrams and streams,
|
||||
/// mesh routers, repeaters, translators etc.
|
||||
///
|
||||
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
|
||||
/// modulation scheme.
|
||||
///
|
||||
/// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
|
||||
/// RFM95/96/97/98(W), Semtech SX1276/77/78/79 and compatible radio modules in LoRa mode.
|
||||
///
|
||||
/// The Hope-RF (http://www.hoperf.com) RFM95/96/97/98(W) and Semtech SX1276/77/78/79 is a low-cost ISM transceiver
|
||||
/// chip. It supports FSK, GFSK, OOK over a wide range of frequencies and
|
||||
/// programmable data rates, and it also supports the proprietary LoRA (Long Range) mode, which
|
||||
/// is the only mode supported in this RadioHead driver.
|
||||
///
|
||||
/// This Driver provides functions for sending and receiving messages of up
|
||||
/// to 251 octets on any frequency supported by the radio, in a range of
|
||||
/// predefined Bandwidths, Spreading Factors and Coding Rates. Frequency can be set with
|
||||
/// 61Hz precision to any frequency from 240.0MHz to 960.0MHz. Caution: most modules only support a more limited
|
||||
/// range of frequencies due to antenna tuning.
|
||||
///
|
||||
/// Up to 2 modules can be connected to an Arduino (3 on a Mega),
|
||||
/// permitting the construction of translators and frequency changers, etc.
|
||||
///
|
||||
/// Support for other features such as transmitter power control etc is
|
||||
/// also provided.
|
||||
///
|
||||
/// Tested on MinWirelessLoRa with arduino-1.0.5
|
||||
/// on OpenSuSE 13.1.
|
||||
/// Also tested with Teensy3.1, Modtronix inAir4 and Arduino 1.6.5 on OpenSuSE 13.1
|
||||
///
|
||||
/// \par Packet Format
|
||||
///
|
||||
/// All messages sent and received by this RH_RF95 Driver conform to this packet format:
|
||||
///
|
||||
/// - LoRa mode:
|
||||
/// - 8 symbol PREAMBLE
|
||||
/// - Explicit header with header CRC (handled internally by the radio)
|
||||
/// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
|
||||
/// - 0 to 251 octets DATA
|
||||
/// - CRC (handled internally by the radio)
|
||||
///
|
||||
/// \par Connecting RFM95/96/97/98 and Semtech SX1276/77/78/79 to Arduino
|
||||
///
|
||||
/// We tested with Anarduino MiniWirelessLoRA, which is an Arduino Duemilanove compatible with a RFM96W
|
||||
/// module on-board. Therefore it needs no connections other than the USB
|
||||
/// programming connection and an antenna to make it work.
|
||||
///
|
||||
/// If you have a bare RFM95/96/97/98 that you want to connect to an Arduino, you
|
||||
/// might use these connections (untested): CAUTION: you must use a 3.3V type
|
||||
/// Arduino, otherwise you will also need voltage level shifters between the
|
||||
/// Arduino and the RFM95. CAUTION, you must also ensure you connect an
|
||||
/// antenna.
|
||||
///
|
||||
/// \code
|
||||
/// Arduino RFM95/96/97/98
|
||||
/// GND----------GND (ground in)
|
||||
/// 3V3----------3.3V (3.3V in)
|
||||
/// interrupt 0 pin D2-----------DIO0 (interrupt request out)
|
||||
/// SS pin D10----------NSS (CS chip select in)
|
||||
/// SCK pin D13----------SCK (SPI clock in)
|
||||
/// MOSI pin D11----------MOSI (SPI Data in)
|
||||
/// MISO pin D12----------MISO (SPI Data out)
|
||||
/// \endcode
|
||||
/// With these connections, you can then use the default constructor RH_RF95().
|
||||
/// You can override the default settings for the SS pin and the interrupt in
|
||||
/// the RH_RF95 constructor if you wish to connect the slave select SS to other
|
||||
/// than the normal one for your Arduino (D10 for Diecimila, Uno etc and D53
|
||||
/// for Mega) or the interrupt request to other than pin D2 (Caution,
|
||||
/// different processors have different constraints as to the pins available
|
||||
/// for interrupts).
|
||||
///
|
||||
/// You can connect a Modtronix inAir4 or inAir9 directly to a 3.3V part such as a Teensy 3.1 like
|
||||
/// this (tested).
|
||||
/// \code
|
||||
/// Teensy inAir4 inAir9
|
||||
/// GND----------0V (ground in)
|
||||
/// 3V3----------3.3V (3.3V in)
|
||||
/// interrupt 0 pin D2-----------D0 (interrupt request out)
|
||||
/// SS pin D10----------CS (CS chip select in)
|
||||
/// SCK pin D13----------CK (SPI clock in)
|
||||
/// MOSI pin D11----------SI (SPI Data in)
|
||||
/// MISO pin D12----------SO (SPI Data out)
|
||||
/// \endcode
|
||||
/// With these connections, you can then use the default constructor RH_RF95().
|
||||
/// you must also set the transmitter power with useRFO:
|
||||
/// driver.setTxPower(13, true);
|
||||
///
|
||||
/// Note that if you are using Modtronix inAir4 or inAir9,or any other module which uses the
|
||||
/// transmitter RFO pins and not the PA_BOOST pins
|
||||
/// that you must configure the power transmitter power for -1 to 14 dBm and with useRFO true.
|
||||
/// Failure to do that will result in extremely low transmit powers.
|
||||
///
|
||||
/// If you have an Arduino M0 Pro from arduino.org,
|
||||
/// you should note that you cannot use Pin 2 for the interrupt line
|
||||
/// (Pin 2 is for the NMI only). The same comments apply to Pin 4 on Arduino Zero from arduino.cc.
|
||||
/// Instead you can use any other pin (we use Pin 3) and initialise RH_RF69 like this:
|
||||
/// \code
|
||||
/// // Slave Select is pin 10, interrupt is Pin 3
|
||||
/// RH_RF95 driver(10, 3);
|
||||
/// \endcode
|
||||
///
|
||||
/// If you have a Rocket Scream Mini Ultra Pro with the RFM95W:
|
||||
/// - Ensure you have Arduino SAMD board support 1.6.5 or later in Arduino IDE 1.6.8 or later.
|
||||
/// - The radio SS is hardwired to pin D5 and the DIO0 interrupt to pin D2,
|
||||
/// so you need to initialise the radio like this:
|
||||
/// \code
|
||||
/// RH_RF95 driver(5, 2);
|
||||
/// \endcode
|
||||
/// - The name of the serial port on that board is 'SerialUSB', not 'Serial', so this may be helpful at the top of our
|
||||
/// sample sketches:
|
||||
/// \code
|
||||
/// #define Serial SerialUSB
|
||||
/// \endcode
|
||||
/// - You also need this in setup before radio initialisation
|
||||
/// \code
|
||||
/// // Ensure serial flash is not interfering with radio communication on SPI bus
|
||||
/// pinMode(4, OUTPUT);
|
||||
/// digitalWrite(4, HIGH);
|
||||
/// \endcode
|
||||
/// - and if you have a 915MHz part, you need this after driver/manager intitalisation:
|
||||
/// \code
|
||||
/// rf95.setFrequency(915.0);
|
||||
/// \endcode
|
||||
/// which adds up to modifying sample sketches something like:
|
||||
/// \code
|
||||
/// #include <SPI.h>
|
||||
/// #include <RH_RF95.h>
|
||||
/// RH_RF95 rf95(5, 2); // Rocket Scream Mini Ultra Pro with the RFM95W
|
||||
/// #define Serial SerialUSB
|
||||
///
|
||||
/// void setup()
|
||||
/// {
|
||||
/// // Ensure serial flash is not interfering with radio communication on SPI bus
|
||||
/// pinMode(4, OUTPUT);
|
||||
/// digitalWrite(4, HIGH);
|
||||
///
|
||||
/// Serial.begin(9600);
|
||||
/// while (!Serial) ; // Wait for serial port to be available
|
||||
/// if (!rf95.init())
|
||||
/// Serial.println("init failed");
|
||||
/// rf95.setFrequency(915.0);
|
||||
/// }
|
||||
/// ...
|
||||
/// \endcode
|
||||
///
|
||||
/// For Adafruit Feather M0 with RFM95, construct the driver like this:
|
||||
/// \code
|
||||
/// RH_RF95 rf95(8, 3);
|
||||
/// \endcode
|
||||
///
|
||||
/// If you have a talk2 Whisper Node LoRa board with on-board RF95 radio,
|
||||
/// the example rf95_* sketches work without modification. Initialise the radio like
|
||||
/// with the default constructor:
|
||||
/// \code
|
||||
/// RH_RF95 driver;
|
||||
/// \endcode
|
||||
///
|
||||
/// It is possible to have 2 or more radios connected to one Arduino, provided
|
||||
/// each radio has its own SS and interrupt line (SCK, SDI and SDO are common
|
||||
/// to all radios)
|
||||
///
|
||||
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave
|
||||
/// select pin to be other than the usual SS pin (D53 on Mega 2560), you may
|
||||
/// need to set the usual SS pin to be an output to force the Arduino into SPI
|
||||
/// master mode.
|
||||
///
|
||||
/// Caution: Power supply requirements of the RFM module may be relevant in some circumstances:
|
||||
/// RFM95/96/97/98 modules are capable of pulling 120mA+ at full power, where Arduino's 3.3V line can
|
||||
/// give 50mA. You may need to make provision for alternate power supply for
|
||||
/// the RFM module, especially if you wish to use full transmit power, and/or you have
|
||||
/// other shields demanding power. Inadequate power for the RFM is likely to cause symptoms such as:
|
||||
/// - reset's/bootups terminate with "init failed" messages
|
||||
/// - random termination of communication after 5-30 packets sent/received
|
||||
/// - "fake ok" state, where initialization passes fluently, but communication doesn't happen
|
||||
/// - shields hang Arduino boards, especially during the flashing
|
||||
///
|
||||
/// \par Interrupts
|
||||
///
|
||||
/// The RH_RF95 driver uses interrupts to react to events in the RFM module,
|
||||
/// such as the reception of a new packet, or the completion of transmission
|
||||
/// of a packet. The RH_RF95 driver interrupt service routine reads status from
|
||||
/// and writes data to the the RFM module via the SPI interface. It is very
|
||||
/// important therefore, that if you are using the RH_RF95 driver with another
|
||||
/// SPI based deviced, that you disable interrupts while you transfer data to
|
||||
/// and from that other device. Use cli() to disable interrupts and sei() to
|
||||
/// reenable them.
|
||||
///
|
||||
/// \par Memory
|
||||
///
|
||||
/// The RH_RF95 driver requires non-trivial amounts of memory. The sample
|
||||
/// programs all compile to about 8kbytes each, which will fit in the
|
||||
/// flash proram memory of most Arduinos. However, the RAM requirements are
|
||||
/// more critical. Therefore, you should be vary sparing with RAM use in
|
||||
/// programs that use the RH_RF95 driver.
|
||||
///
|
||||
/// It is often hard to accurately identify when you are hitting RAM limits on Arduino.
|
||||
/// The symptoms can include:
|
||||
/// - Mysterious crashes and restarts
|
||||
/// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
|
||||
/// - Hanging
|
||||
/// - Output from Serial.print() not appearing
|
||||
///
|
||||
/// \par Range
|
||||
///
|
||||
/// We have made some simple range tests under the following conditions:
|
||||
/// - rf95_client base station connected to a VHF discone antenna at 8m height above ground
|
||||
/// - rf95_server mobile connected to 17.3cm 1/4 wavelength antenna at 1m height, no ground plane.
|
||||
/// - Both configured for 13dBm, 434MHz, Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
|
||||
/// - Minimum reported RSSI seen for successful comms was about -91
|
||||
/// - Range over flat ground through heavy trees and vegetation approx 2km.
|
||||
/// - At 20dBm (100mW) otherwise identical conditions approx 3km.
|
||||
/// - At 20dBm, along salt water flat sandy beach, 3.2km.
|
||||
///
|
||||
/// It should be noted that at this data rate, a 12 octet message takes 2 seconds to transmit.
|
||||
///
|
||||
/// At 20dBm (100mW) with Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on.
|
||||
/// (Default medium range) in the conditions described above.
|
||||
/// - Range over flat ground through heavy trees and vegetation approx 2km.
|
||||
///
|
||||
/// Caution: the performance of this radio, especially with narrow bandwidths is strongly dependent on the
|
||||
/// accuracy and stability of the chip clock. HopeRF and Semtech do not appear to
|
||||
/// recommend bandwidths of less than 62.5 kHz
|
||||
/// unless you have the optional Temperature Compensated Crystal Oscillator (TCXO) installed and
|
||||
/// enabled on your radio module. See the refernece manual for more data.
|
||||
/// Also https://lowpowerlab.com/forum/rf-range-antennas-rfm69-library/lora-library-experiences-range/15/
|
||||
/// and http://www.semtech.com/images/datasheet/an120014-xo-guidance-lora-modulation.pdf
|
||||
///
|
||||
/// \par Transmitter Power
|
||||
///
|
||||
/// You can control the transmitter power on the RF transceiver
|
||||
/// with the RH_RF95::setTxPower() function. The argument can be any of
|
||||
/// +5 to +23 (for modules that use PA_BOOST)
|
||||
/// -1 to +14 (for modules that use RFO transmitter pin)
|
||||
/// The default is 13. Eg:
|
||||
/// \code
|
||||
/// driver.setTxPower(10); // use PA_BOOST transmitter pin
|
||||
/// driver.setTxPower(10, true); // use PA_RFO pin transmitter pin
|
||||
/// \endcode
|
||||
///
|
||||
/// We have made some actual power measurements against
|
||||
/// programmed power for Anarduino MiniWirelessLoRa (which has RFM96W-433Mhz installed)
|
||||
/// - MiniWirelessLoRa RFM96W-433Mhz, USB power
|
||||
/// - 30cm RG316 soldered direct to RFM96W module ANT and GND
|
||||
/// - SMA connector
|
||||
/// - 12db attenuator
|
||||
/// - SMA connector
|
||||
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
|
||||
/// - Tektronix TDS220 scope to measure the Vout from power head
|
||||
/// \code
|
||||
/// Program power Measured Power
|
||||
/// dBm dBm
|
||||
/// 5 5
|
||||
/// 7 7
|
||||
/// 9 8
|
||||
/// 11 11
|
||||
/// 13 13
|
||||
/// 15 15
|
||||
/// 17 16
|
||||
/// 19 18
|
||||
/// 20 20
|
||||
/// 21 21
|
||||
/// 22 22
|
||||
/// 23 23
|
||||
/// \endcode
|
||||
///
|
||||
/// We have also measured the actual power output from a Modtronix inAir4 http://modtronix.com/inair4.html
|
||||
/// connected to a Teensy 3.1:
|
||||
/// Teensy 3.1 this is a 3.3V part, connected directly to:
|
||||
/// Modtronix inAir4 with SMA antenna connector, connected as above:
|
||||
/// 10cm SMA-SMA cable
|
||||
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
|
||||
/// - Tektronix TDS220 scope to measure the Vout from power head
|
||||
/// \code
|
||||
/// Program power Measured Power
|
||||
/// dBm dBm
|
||||
/// -1 0
|
||||
/// 1 2
|
||||
/// 3 4
|
||||
/// 5 7
|
||||
/// 7 10
|
||||
/// 9 13
|
||||
/// 11 14.2
|
||||
/// 13 15
|
||||
/// 14 16
|
||||
/// \endcode
|
||||
/// (Caution: we dont claim laboratory accuracy for these power measurements)
|
||||
/// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
|
||||
class RH_RF95 : public RHSPIDriver
|
||||
{
|
||||
public:
|
||||
/// \brief Defines register values for a set of modem configuration registers
|
||||
///
|
||||
/// Defines register values for a set of modem configuration registers
|
||||
/// that can be passed to setModemRegisters() if none of the choices in
|
||||
/// ModemConfigChoice suit your need setModemRegisters() writes the
|
||||
/// register values from this structure to the appropriate registers
|
||||
/// to set the desired spreading factor, coding rate and bandwidth
|
||||
typedef struct {
|
||||
uint8_t reg_1d; ///< Value for register RH_RF95_REG_1D_MODEM_CONFIG1
|
||||
uint8_t reg_1e; ///< Value for register RH_RF95_REG_1E_MODEM_CONFIG2
|
||||
uint8_t reg_26; ///< Value for register RH_RF95_REG_26_MODEM_CONFIG3
|
||||
} ModemConfig;
|
||||
|
||||
/// Choices for setModemConfig() for a selected subset of common
|
||||
/// data rates. If you need another configuration,
|
||||
/// determine the necessary settings and call setModemRegisters() with your
|
||||
/// desired settings. It might be helpful to use the LoRa calculator mentioned in
|
||||
/// http://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf
|
||||
/// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
|
||||
/// definitions and not their integer equivalents: its possible that new values will be
|
||||
/// introduced in later versions (though we will try to avoid it).
|
||||
/// Caution: if you are using slow packet rates and long packets with RHReliableDatagram or subclasses
|
||||
/// you may need to change the RHReliableDatagram timeout for reliable operations.
|
||||
/// Caution: for some slow rates nad with ReliableDatagrams youi may need to increase the reply timeout
|
||||
/// with manager.setTimeout() to
|
||||
/// deal with the long transmission times.
|
||||
typedef enum {
|
||||
Bw125Cr45Sf128 = 0, ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
|
||||
Bw500Cr45Sf128, ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
|
||||
Bw31_25Cr48Sf512, ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
|
||||
Bw125Cr48Sf4096, ///< Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
|
||||
} ModemConfigChoice;
|
||||
|
||||
/// Constructor. You can have multiple instances, but each instance must have its own
|
||||
/// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
|
||||
/// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
|
||||
/// distinct interrupt lines, one for each instance.
|
||||
/// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RH_RF22 before
|
||||
/// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
|
||||
/// \param[in] interruptPin The interrupt Pin number that is connected to the RFM DIO0 interrupt line.
|
||||
/// Defaults to pin 2, as required by Anarduino MinWirelessLoRa module.
|
||||
/// Caution: You must specify an interrupt capable pin.
|
||||
/// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
|
||||
/// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
|
||||
/// On Arduino Zero from arduino.cc, any digital pin other than 4.
|
||||
/// On Arduino M0 Pro from arduino.org, any digital pin other than 2.
|
||||
/// On other Arduinos pins 2 or 3.
|
||||
/// See http://arduino.cc/en/Reference/attachInterrupt for more details.
|
||||
/// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
|
||||
/// On other boards, any digital pin may be used.
|
||||
/// \param[in] spi Pointer to the SPI interface object to use.
|
||||
/// Defaults to the standard Arduino hardware SPI interface
|
||||
RH_RF95(uint8_t slaveSelectPin = SS, uint8_t interruptPin = 2, RHGenericSPI &spi = hardware_spi);
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool init();
|
||||
|
||||
/// The main CPU is about to enter deep sleep, prepare the RF95 so it will be able to wake properly after we reboot
|
||||
/// i.e. confirm we are in idle or rx mode, set a rtcram flag with state we need to restore after boot. Later in boot
|
||||
/// we'll need to be careful not to wipe registers and be ready to handle any pending interrupts that occurred while
|
||||
/// the main CPU was powered down.
|
||||
void prepareDeepSleep();
|
||||
|
||||
/// Prints the value of all chip registers
|
||||
/// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
|
||||
/// For debugging purposes only.
|
||||
/// \return true on success
|
||||
bool printRegisters();
|
||||
|
||||
/// Sets all the registered required to configure the data modem in the RF95/96/97/98, including the bandwidth,
|
||||
/// spreading factor etc. You can use this to configure the modem with custom configurations if none of the
|
||||
/// canned configurations in ModemConfigChoice suit you.
|
||||
/// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
|
||||
void setModemRegisters(const ModemConfig *config);
|
||||
|
||||
/// Select one of the predefined modem configurations. If you need a modem configuration not provided
|
||||
/// here, use setModemRegisters() with your own ModemConfig.
|
||||
/// Caution: the slowest protocols may require a radio module with TCXO temperature controlled oscillator
|
||||
/// for reliable operation.
|
||||
/// \param[in] index The configuration choice.
|
||||
/// \return true if index is a valid choice.
|
||||
bool setModemConfig(ModemConfigChoice index);
|
||||
|
||||
/// Tests whether a new message is available
|
||||
/// from the Driver.
|
||||
/// On most drivers, this will also put the Driver into RHModeRx mode until
|
||||
/// a message is actually received by the transport, when it wil be returned to RHModeIdle.
|
||||
/// This can be called multiple times in a timeout loop
|
||||
/// \return true if a new, complete, error-free uncollected message is available to be retreived by recv()
|
||||
virtual bool available();
|
||||
|
||||
/// Sets the length of the preamble
|
||||
/// in bytes.
|
||||
/// Caution: this should be set to the same
|
||||
/// value on all nodes in your network. Default is 8.
|
||||
/// Sets the message preamble length in RH_RF95_REG_??_PREAMBLE_?SB
|
||||
/// \param[in] bytes Preamble length in bytes.
|
||||
void setPreambleLength(uint16_t bytes);
|
||||
|
||||
/// Returns the maximum message length
|
||||
/// available in this Driver.
|
||||
/// \return The maximum legal message length
|
||||
virtual uint8_t maxMessageLength();
|
||||
|
||||
/// Sets the transmitter and receiver
|
||||
/// centre frequency.
|
||||
/// \param[in] centre Frequency in MHz. 137.0 to 1020.0. Caution: RFM95/96/97/98 comes in several
|
||||
/// different frequency ranges, and setting a frequency outside that range of your radio will probably not work
|
||||
/// \return true if the selected frquency centre is within range
|
||||
bool setFrequency(float centre);
|
||||
|
||||
/// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
|
||||
/// disables them.
|
||||
void setModeIdle();
|
||||
|
||||
/// If current mode is Tx or Idle, changes it to Rx.
|
||||
/// Starts the receiver in the RF95/96/97/98.
|
||||
void setModeRx();
|
||||
|
||||
/// If current mode is Rx or Idle, changes it to Rx. F
|
||||
/// Starts the transmitter in the RF95/96/97/98.
|
||||
void setModeTx();
|
||||
|
||||
/// Sets the transmitter power output level, and configures the transmitter pin.
|
||||
/// Be a good neighbour and set the lowest power level you need.
|
||||
/// Some SX1276/77/78/79 and compatible modules (such as RFM95/96/97/98)
|
||||
/// use the PA_BOOST transmitter pin for high power output (and optionally the PA_DAC)
|
||||
/// while some (such as the Modtronix inAir4 and inAir9)
|
||||
/// use the RFO transmitter pin for lower power but higher efficiency.
|
||||
/// You must set the appropriate power level and useRFO argument for your module.
|
||||
/// Check with your module manufacturer which transmtter pin is used on your module
|
||||
/// to ensure you are setting useRFO correctly.
|
||||
/// Failure to do so will result in very low
|
||||
/// transmitter power output.
|
||||
/// Caution: legal power limits may apply in certain countries.
|
||||
/// After init(), the power will be set to 13dBm, with useRFO false (ie PA_BOOST enabled).
|
||||
/// \param[in] power Transmitter power level in dBm. For RFM95/96/97/98 LORA with useRFO false,
|
||||
/// valid values are from +5 to +23.
|
||||
/// For Modtronix inAir4 and inAir9 with useRFO true (ie RFO pins in use),
|
||||
/// valid values are from -1 to 14.
|
||||
/// \param[in] useRFO If true, enables the use of the RFO transmitter pins instead of
|
||||
/// the PA_BOOST pin (false). Choose the correct setting for your module.
|
||||
void setTxPower(int8_t power, bool useRFO = false);
|
||||
|
||||
/// Sets the radio into low-power sleep mode.
|
||||
/// If successful, the transport will stay in sleep mode until woken by
|
||||
/// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
|
||||
/// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
|
||||
/// \return true if sleep mode was successfully entered.
|
||||
virtual bool sleep();
|
||||
|
||||
// Bent G Christensen (bentor@gmail.com), 08/15/2016
|
||||
/// Use the radio's Channel Activity Detect (CAD) function to detect channel activity.
|
||||
/// Sets the RF95 radio into CAD mode and waits until CAD detection is complete.
|
||||
/// To be used in a listen-before-talk mechanism (Collision Avoidance)
|
||||
/// with a reasonable time backoff algorithm.
|
||||
/// This is called automatically by waitCAD().
|
||||
/// \return true if channel is in use.
|
||||
virtual bool isChannelActive();
|
||||
|
||||
/// Enable TCXO mode
|
||||
/// Call this immediately after init(), to force your radio to use an external
|
||||
/// frequency source, such as a Temperature Compensated Crystal Oscillator (TCXO), if available.
|
||||
/// See the comments in the main documentation about the sensitivity of this radio to
|
||||
/// clock frequency especially when using narrow bandwidths.
|
||||
/// Leaves the module in sleep mode.
|
||||
/// Caution, this function has not been tested by us.
|
||||
/// Caution, the TCXO model radios are not low power when in sleep (consuming
|
||||
/// about ~600 uA, reported by Phang Moh Lim.<br>
|
||||
void enableTCXO();
|
||||
|
||||
/// Returns the last measured frequency error.
|
||||
/// The LoRa receiver estimates the frequency offset between the receiver centre frequency
|
||||
/// and that of the received LoRa signal. This function returns the estimates offset (in Hz)
|
||||
/// of the last received message. Caution: this measurement is not absolute, but is measured
|
||||
/// relative to the local receiver's oscillator.
|
||||
/// Apparent errors may be due to the transmitter, the receiver or both.
|
||||
/// \return The estimated centre frequency offset in Hz of the last received message.
|
||||
/// If the modem bandwidth selector in
|
||||
/// register RH_RF95_REG_1D_MODEM_CONFIG1 is invalid, returns 0.
|
||||
int frequencyError();
|
||||
|
||||
/// Returns the Signal-to-noise ratio (SNR) of the last received message, as measured
|
||||
/// by the receiver.
|
||||
/// \return SNR of the last received message in dB
|
||||
int lastSNR();
|
||||
|
||||
/// brian.n.norman@gmail.com 9th Nov 2018
|
||||
/// Sets the radio spreading factor.
|
||||
/// valid values are 6 through 12.
|
||||
/// Out of range values below 6 are clamped to 6
|
||||
/// Out of range values above 12 are clamped to 12
|
||||
/// See Semtech DS SX1276/77/78/79 page 27 regarding SF6 configuration.
|
||||
///
|
||||
/// \param[in] uint8_t sf (spreading factor 6..12)
|
||||
/// \return nothing
|
||||
void setSpreadingFactor(uint8_t sf);
|
||||
|
||||
/// brian.n.norman@gmail.com 9th Nov 2018
|
||||
/// Sets the radio signal bandwidth
|
||||
/// sbw ranges and resultant settings are as follows:-
|
||||
/// sbw range actual bw (kHz)
|
||||
/// 0-7800 7.8
|
||||
/// 7801-10400 10.4
|
||||
/// 10401-15600 15.6
|
||||
/// 15601-20800 20.8
|
||||
/// 20801-31250 31.25
|
||||
/// 31251-41700 41.7
|
||||
/// 41701-62500 62.5
|
||||
/// 62501-12500 125.0
|
||||
/// 12501-250000 250.0
|
||||
/// >250000 500.0
|
||||
/// NOTE caution Earlier - Semtech do not recommend BW below 62.5 although, in testing
|
||||
/// I managed 31.25 with two devices in close proximity.
|
||||
/// \param[in] sbw long, signal bandwidth e.g. 125000
|
||||
void setSignalBandwidth(long sbw);
|
||||
|
||||
/// brian.n.norman@gmail.com 9th Nov 2018
|
||||
/// Sets the coding rate to 4/5, 4/6, 4/7 or 4/8.
|
||||
/// Valid denominator values are 5, 6, 7 or 8. A value of 5 sets the coding rate to 4/5 etc.
|
||||
/// Values below 5 are clamped at 5
|
||||
/// values above 8 are clamped at 8
|
||||
/// \param[in] denominator uint8_t range 5..8
|
||||
void setCodingRate4(uint8_t denominator);
|
||||
|
||||
/// brian.n.norman@gmail.com 9th Nov 2018
|
||||
/// sets the low data rate flag if symbol time exceeds 16ms
|
||||
/// ref: https://www.thethingsnetwork.org/forum/t/a-point-to-note-lora-low-data-rate-optimisation-flag/12007
|
||||
/// called by setBandwidth() and setSpreadingfactor() since these affect the symbol time.
|
||||
void setLowDatarate();
|
||||
|
||||
/// brian.n.norman@gmail.com 9th Nov 2018
|
||||
/// allows the payload CRC bit to be turned on/off. Normally this should be left on
|
||||
/// so that packets with a bad CRC are rejected
|
||||
/// \patam[in] on bool, true turns the payload CRC on, false turns it off
|
||||
void setPayloadCRC(bool on);
|
||||
|
||||
/// Return true if we are currently receiving a packet
|
||||
bool isReceiving();
|
||||
|
||||
void loop(); // Perform idle processing
|
||||
|
||||
protected:
|
||||
/// This is a low level function to handle the interrupts for one instance of RH_RF95.
|
||||
/// Called automatically by isr*()
|
||||
/// Should not need to be called by user code.
|
||||
virtual void handleInterrupt();
|
||||
|
||||
/// This is the only code called in ISR context, it just queues up our helper thread to run handleInterrupt();
|
||||
void RH_INTERRUPT_ATTR handleInterruptLevel0();
|
||||
|
||||
/// Examine the revceive buffer to determine whether the message is for this node
|
||||
void validateRxBuf();
|
||||
|
||||
/// Clear our local receive buffer
|
||||
void clearRxBuf();
|
||||
|
||||
/// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
|
||||
/// Then optionally waits for Channel Activity Detection (CAD)
|
||||
/// to show the channnel is clear (if the radio supports CAD) by calling waitCAD().
|
||||
/// Then loads a message into the transmitter and starts the transmitter. Note that a message length
|
||||
/// of 0 is permitted.
|
||||
/// \param[in] data Array of data to be sent
|
||||
/// \param[in] len Number of bytes of data to send
|
||||
/// specify the maximum time in ms to wait. If 0 (the default) do not wait for CAD before transmitting.
|
||||
/// \return true if the message length was valid and it was correctly queued for transmit. Return false
|
||||
/// if CAD was requested and the CAD timeout timed out before clear channel was detected.
|
||||
virtual bool send(const uint8_t *data, uint8_t len);
|
||||
|
||||
private:
|
||||
/// Low level interrupt service routine for device connected to interrupt 0
|
||||
static void isr0();
|
||||
|
||||
/// Low level interrupt service routine for device connected to interrupt 1
|
||||
static void isr1();
|
||||
|
||||
/// Low level interrupt service routine for device connected to interrupt 1
|
||||
static void isr2();
|
||||
|
||||
/// Array of instances connected to interrupts 0 and 1
|
||||
static RH_RF95 *_deviceForInterrupt[];
|
||||
|
||||
/// Index of next interrupt number to use in _deviceForInterrupt
|
||||
static uint8_t _interruptCount;
|
||||
|
||||
bool enableInterrupt(); // enable our IRQ
|
||||
void disableInterrupt(); // disable our IRQ
|
||||
|
||||
volatile bool pendingInterrupt = false;
|
||||
|
||||
/// The configured interrupt pin connected to this instance
|
||||
uint8_t _interruptPin;
|
||||
|
||||
/// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
|
||||
/// else 0xff
|
||||
uint8_t _myInterruptIndex;
|
||||
|
||||
// True if we are using the HF port (779.0 MHz and above)
|
||||
bool _usingHFport;
|
||||
|
||||
// Last measured SNR, dB
|
||||
int8_t _lastSNR;
|
||||
|
||||
protected:
|
||||
/// Number of octets in the buffer
|
||||
volatile uint8_t _bufLen;
|
||||
|
||||
/// The receiver/transmitter buffer
|
||||
uint8_t _buf[RH_RF95_MAX_PAYLOAD_LEN];
|
||||
|
||||
/// True when there is a valid message in the buffer
|
||||
volatile bool _rxBufValid;
|
||||
};
|
||||
|
||||
/// @example rf95_client.pde
|
||||
/// @example rf95_server.pde
|
||||
/// @example rf95_encrypted_client.pde
|
||||
/// @example rf95_encrypted_server.pde
|
||||
/// @example rf95_reliable_datagram_client.pde
|
||||
/// @example rf95_reliable_datagram_server.pde
|
||||
|
||||
#endif
|
||||
@@ -1,71 +0,0 @@
|
||||
/*
|
||||
* This is port of Dean Camera's ATOMIC_BLOCK macros for AVR to ARM Cortex M3
|
||||
* v1.0
|
||||
* Mark Pendrith, Nov 27, 2012.
|
||||
*
|
||||
* From Mark:
|
||||
* >When I ported the macros I emailed Dean to ask what attribution would be
|
||||
* >appropriate, and here is his response:
|
||||
* >
|
||||
* >>Mark,
|
||||
* >>I think it's great that you've ported the macros; consider them
|
||||
* >>public domain, to do with whatever you wish. I hope you find them >useful .
|
||||
* >>
|
||||
* >>Cheers!
|
||||
* >>- Dean
|
||||
*/
|
||||
|
||||
#ifdef __arm__
|
||||
#ifndef _CORTEX_M3_ATOMIC_H_
|
||||
#define _CORTEX_M3_ATOMIC_H_
|
||||
|
||||
static __inline__ uint32_t __get_primask(void) \
|
||||
{ uint32_t primask = 0; \
|
||||
__asm__ volatile ("MRS %[result], PRIMASK\n\t":[result]"=r"(primask)::); \
|
||||
return primask; } // returns 0 if interrupts enabled, 1 if disabled
|
||||
|
||||
static __inline__ void __set_primask(uint32_t setval) \
|
||||
{ __asm__ volatile ("MSR PRIMASK, %[value]\n\t""dmb\n\t""dsb\n\t""isb\n\t"::[value]"r"(setval):);
|
||||
__asm__ volatile ("" ::: "memory");}
|
||||
|
||||
static __inline__ uint32_t __iSeiRetVal(void) \
|
||||
{ __asm__ volatile ("CPSIE i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
|
||||
__asm__ volatile ("" ::: "memory"); return 1; }
|
||||
|
||||
static __inline__ uint32_t __iCliRetVal(void) \
|
||||
{ __asm__ volatile ("CPSID i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
|
||||
__asm__ volatile ("" ::: "memory"); return 1; }
|
||||
|
||||
static __inline__ void __iSeiParam(const uint32_t *__s) \
|
||||
{ __asm__ volatile ("CPSIE i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
|
||||
__asm__ volatile ("" ::: "memory"); (void)__s; }
|
||||
|
||||
static __inline__ void __iCliParam(const uint32_t *__s) \
|
||||
{ __asm__ volatile ("CPSID i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
|
||||
__asm__ volatile ("" ::: "memory"); (void)__s; }
|
||||
|
||||
static __inline__ void __iRestore(const uint32_t *__s) \
|
||||
{ __set_primask(*__s); __asm__ volatile ("dmb\n\t""dsb\n\t""isb\n\t"); \
|
||||
__asm__ volatile ("" ::: "memory"); }
|
||||
|
||||
|
||||
#define ATOMIC_BLOCK(type) \
|
||||
for ( type, __ToDo = __iCliRetVal(); __ToDo ; __ToDo = 0 )
|
||||
|
||||
#define ATOMIC_RESTORESTATE \
|
||||
uint32_t primask_save __attribute__((__cleanup__(__iRestore))) = __get_primask()
|
||||
|
||||
#define ATOMIC_FORCEON \
|
||||
uint32_t primask_save __attribute__((__cleanup__(__iSeiParam))) = 0
|
||||
|
||||
#define NONATOMIC_BLOCK(type) \
|
||||
for ( type, __ToDo = __iSeiRetVal(); __ToDo ; __ToDo = 0 )
|
||||
|
||||
#define NONATOMIC_RESTORESTATE \
|
||||
uint32_t primask_save __attribute__((__cleanup__(__iRestore))) = __get_primask()
|
||||
|
||||
#define NONATOMIC_FORCEOFF \
|
||||
uint32_t primask_save __attribute__((__cleanup__(__iCliParam))) = 0
|
||||
|
||||
#endif
|
||||
#endif
|
||||
1595
src/rf95/RadioHead.h
1595
src/rf95/RadioHead.h
File diff suppressed because it is too large
Load Diff
@@ -1,22 +0,0 @@
|
||||
#include "CustomRF95.h"
|
||||
#include "NodeDB.h"
|
||||
#include "assert.h"
|
||||
#include "configuration.h"
|
||||
#include <assert.h>
|
||||
#include <pb_decode.h>
|
||||
#include <pb_encode.h>
|
||||
|
||||
RadioInterface::RadioInterface() {}
|
||||
|
||||
ErrorCode SimRadio::send(MeshPacket *p)
|
||||
{
|
||||
DEBUG_MSG("SimRadio.send\n");
|
||||
packetPool.release(p);
|
||||
return ERRNO_OK;
|
||||
}
|
||||
|
||||
void RadioInterface::deliverToReceiver(MeshPacket *p)
|
||||
{
|
||||
assert(rxDest);
|
||||
assert(rxDest->enqueue(p, 0)); // NOWAIT - fixme, if queue is full, delete older messages
|
||||
}
|
||||
@@ -1,130 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "MemoryPool.h"
|
||||
#include "MeshTypes.h"
|
||||
#include "PointerQueue.h"
|
||||
#include "mesh.pb.h"
|
||||
#include <RH_RF95.h>
|
||||
|
||||
#define MAX_TX_QUEUE 16 // max number of packets which can be waiting for transmission
|
||||
|
||||
/**
|
||||
* Basic operations all radio chipsets must implement.
|
||||
*
|
||||
* This defines the SOLE API for talking to radios (because soon we will have alternate radio implementations)
|
||||
*/
|
||||
class RadioInterface
|
||||
{
|
||||
friend class MeshRadio; // for debugging we let that class touch pool
|
||||
PointerQueue<MeshPacket> *rxDest = NULL;
|
||||
|
||||
protected:
|
||||
MeshPacket *sendingPacket = NULL; // The packet we are currently sending
|
||||
|
||||
/**
|
||||
* Enqueue a received packet for the registered receiver
|
||||
*/
|
||||
void deliverToReceiver(MeshPacket *p);
|
||||
|
||||
public:
|
||||
/** pool is the pool we will alloc our rx packets from
|
||||
* rxDest is where we will send any rx packets, it becomes receivers responsibility to return packet to the pool
|
||||
*/
|
||||
RadioInterface();
|
||||
|
||||
/**
|
||||
* Set where to deliver received packets. This method should only be used by the Router class
|
||||
*/
|
||||
void setReceiver(PointerQueue<MeshPacket> *_rxDest) { rxDest = _rxDest; }
|
||||
|
||||
virtual void loop() {} // Idle processing
|
||||
|
||||
/**
|
||||
* Return true if we think the board can go to sleep (i.e. our tx queue is empty, we are not sending or receiving)
|
||||
*
|
||||
* This method must be used before putting the CPU into deep or light sleep.
|
||||
*/
|
||||
bool canSleep() { return true; }
|
||||
|
||||
/// Prepare hardware for sleep. Call this _only_ for deep sleep, not needed for light sleep.
|
||||
virtual bool sleep() { return true; }
|
||||
|
||||
/**
|
||||
* Send a packet (possibly by enquing in a private fifo). This routine will
|
||||
* later free() the packet to pool. This routine is not allowed to stall.
|
||||
* If the txmit queue is full it might return an error
|
||||
*/
|
||||
virtual ErrorCode send(MeshPacket *p) = 0;
|
||||
};
|
||||
|
||||
class SimRadio : public RadioInterface
|
||||
{
|
||||
public:
|
||||
virtual ErrorCode send(MeshPacket *p);
|
||||
|
||||
// methods from radiohead
|
||||
|
||||
/// Sets the address of this node. Defaults to 0xFF. Subclasses or the user may want to change this.
|
||||
/// This will be used to test the adddress in incoming messages. In non-promiscuous mode,
|
||||
/// only messages with a TO header the same as thisAddress or the broadcast addess (0xFF) will be accepted.
|
||||
/// In promiscuous mode, all messages will be accepted regardless of the TO header.
|
||||
/// In a conventional multinode system, all nodes will have a unique address
|
||||
/// (which you could store in EEPROM).
|
||||
/// You would normally set the header FROM address to be the same as thisAddress (though you dont have to,
|
||||
/// allowing the possibilty of address spoofing).
|
||||
/// \param[in] thisAddress The address of this node.
|
||||
virtual void setThisAddress(uint8_t thisAddress) {}
|
||||
|
||||
/// Initialise the Driver transport hardware and software.
|
||||
/// Make sure the Driver is properly configured before calling init().
|
||||
/// \return true if initialisation succeeded.
|
||||
virtual bool init() { return true; }
|
||||
|
||||
/// Sets the transmitter and receiver
|
||||
/// centre frequency.
|
||||
/// \param[in] centre Frequency in MHz. 137.0 to 1020.0. Caution: RFM95/96/97/98 comes in several
|
||||
/// different frequency ranges, and setting a frequency outside that range of your radio will probably not work
|
||||
/// \return true if the selected frquency centre is within range
|
||||
bool setFrequency(float centre) { return true; }
|
||||
|
||||
/// Select one of the predefined modem configurations. If you need a modem configuration not provided
|
||||
/// here, use setModemRegisters() with your own ModemConfig.
|
||||
/// Caution: the slowest protocols may require a radio module with TCXO temperature controlled oscillator
|
||||
/// for reliable operation.
|
||||
/// \param[in] index The configuration choice.
|
||||
/// \return true if index is a valid choice.
|
||||
bool setModemConfig(RH_RF95::ModemConfigChoice index) { return true; }
|
||||
|
||||
/// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
|
||||
/// disables them.
|
||||
void setModeIdle() {}
|
||||
|
||||
/// If current mode is Tx or Idle, changes it to Rx.
|
||||
/// Starts the receiver in the RF95/96/97/98.
|
||||
void setModeRx() {}
|
||||
|
||||
/// Returns the operating mode of the library.
|
||||
/// \return the current mode, one of RF69_MODE_*
|
||||
virtual RHGenericDriver::RHMode mode() { return RHGenericDriver::RHModeIdle; }
|
||||
|
||||
/// Sets the transmitter power output level, and configures the transmitter pin.
|
||||
/// Be a good neighbour and set the lowest power level you need.
|
||||
/// Some SX1276/77/78/79 and compatible modules (such as RFM95/96/97/98)
|
||||
/// use the PA_BOOST transmitter pin for high power output (and optionally the PA_DAC)
|
||||
/// while some (such as the Modtronix inAir4 and inAir9)
|
||||
/// use the RFO transmitter pin for lower power but higher efficiency.
|
||||
/// You must set the appropriate power level and useRFO argument for your module.
|
||||
/// Check with your module manufacturer which transmtter pin is used on your module
|
||||
/// to ensure you are setting useRFO correctly.
|
||||
/// Failure to do so will result in very low
|
||||
/// transmitter power output.
|
||||
/// Caution: legal power limits may apply in certain countries.
|
||||
/// After init(), the power will be set to 13dBm, with useRFO false (ie PA_BOOST enabled).
|
||||
/// \param[in] power Transmitter power level in dBm. For RFM95/96/97/98 LORA with useRFO false,
|
||||
/// valid values are from +5 to +23.
|
||||
/// For Modtronix inAir4 and inAir9 with useRFO true (ie RFO pins in use),
|
||||
/// valid values are from -1 to 14.
|
||||
/// \param[in] useRFO If true, enables the use of the RFO transmitter pins instead of
|
||||
/// the PA_BOOST pin (false). Choose the correct setting for your module.
|
||||
void setTxPower(int8_t power, bool useRFO = false) {}
|
||||
};
|
||||
@@ -1,22 +0,0 @@
|
||||
In old lib code:
|
||||
* pass header all the way down to device
|
||||
* have device send header using the same code it uses to send payload
|
||||
* have device treat received header as identical to payload
|
||||
* use new MessageHeader in existing app (make sure it is packed properly)
|
||||
|
||||
In the sudomesh code:
|
||||
* move this rf95 lib into the layer2 project
|
||||
* make RadioInterface the new layer one API (move over set radio options)
|
||||
* change meshtastic app to use new layer one API
|
||||
|
||||
Now meshtastic is sharing layer one with disaster radio.
|
||||
* change mesthastic app to use new layer two API (make sure broadcast still works for max TTL of 1)
|
||||
|
||||
Now meshtastic is sharing layer two with disaster radio.
|
||||
|
||||
* make simulation code work with new API
|
||||
* make disaster radio app work with new API
|
||||
|
||||
later:
|
||||
* implement naive flooding in the layer2 lib, use TTL limit max depth of broadcast
|
||||
* allow packets to be filtered at the device level RX time based on dest addr (to avoid waking main CPU unnecessarily)
|
||||
@@ -21,7 +21,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <OLEDDisplay.h>
|
||||
#include <Wire.h>
|
||||
|
||||
#include "GPS.h"
|
||||
#include "NodeDB.h"
|
||||
@@ -55,7 +54,6 @@ static void drawBootScreen(OLEDDisplay *display, OLEDDisplayUiState *state, int1
|
||||
// draw an xbm image.
|
||||
// Please note that everything that should be transitioned
|
||||
// needs to be drawn relative to x and y
|
||||
|
||||
display->drawXbm(x + 32, y, icon_width, icon_height, (const uint8_t *)icon_bits);
|
||||
|
||||
display->setFont(ArialMT_Plain_16);
|
||||
@@ -315,16 +313,16 @@ static void drawNodeInfo(OLEDDisplay *display, OLEDDisplayUiState *state, int16_
|
||||
const char *username = node->has_user ? node->user.long_name : "Unknown Name";
|
||||
|
||||
static char signalStr[20];
|
||||
snprintf(signalStr, sizeof(signalStr), "Signal: %ld", node->snr);
|
||||
snprintf(signalStr, sizeof(signalStr), "Signal: %.0f", node->snr);
|
||||
|
||||
uint32_t agoSecs = sinceLastSeen(node);
|
||||
static char lastStr[20];
|
||||
if (agoSecs < 120) // last 2 mins?
|
||||
snprintf(lastStr, sizeof(lastStr), "%lu seconds ago", agoSecs);
|
||||
snprintf(lastStr, sizeof(lastStr), "%u seconds ago", agoSecs);
|
||||
else if (agoSecs < 120 * 60) // last 2 hrs
|
||||
snprintf(lastStr, sizeof(lastStr), "%lu minutes ago", agoSecs / 60);
|
||||
snprintf(lastStr, sizeof(lastStr), "%u minutes ago", agoSecs / 60);
|
||||
else
|
||||
snprintf(lastStr, sizeof(lastStr), "%lu hours ago", agoSecs / 60 / 60);
|
||||
snprintf(lastStr, sizeof(lastStr), "%u hours ago", agoSecs / 60 / 60);
|
||||
|
||||
static float simRadian;
|
||||
simRadian += 0.1; // For testing, have the compass spin unless both
|
||||
@@ -412,6 +410,7 @@ void Screen::handleSetOn(bool on)
|
||||
if (on) {
|
||||
DEBUG_MSG("Turning on screen\n");
|
||||
dispdev.displayOn();
|
||||
dispdev.displayOn();
|
||||
} else {
|
||||
DEBUG_MSG("Turning off screen\n");
|
||||
dispdev.displayOff();
|
||||
@@ -594,7 +593,7 @@ void Screen::handleStartBluetoothPinScreen(uint32_t pin)
|
||||
|
||||
static FrameCallback btFrames[] = {drawFrameBluetooth};
|
||||
|
||||
snprintf(btPIN, sizeof(btPIN), "%06lu", pin);
|
||||
snprintf(btPIN, sizeof(btPIN), "%06u", pin);
|
||||
|
||||
ui.disableAllIndicators();
|
||||
ui.setFrames(btFrames, 1);
|
||||
|
||||
@@ -8,7 +8,6 @@
|
||||
|
||||
#include "main.h"
|
||||
#include "target_specific.h"
|
||||
#include <Wire.h>
|
||||
|
||||
#ifndef NO_ESP32
|
||||
#include "esp32/pm.h"
|
||||
|
||||
@@ -139,6 +139,13 @@ static const uint8_t SCK = PIN_SPI_SCK;
|
||||
#define EXTERNAL_FLASH_DEVICES MX25R6435F
|
||||
#define EXTERNAL_FLASH_USE_QSPI
|
||||
|
||||
// CUSTOM GPIOs the SX1262MB2CAS shield when installed on the NRF52840-DK development board
|
||||
#define SX1262_CS (32 + 8) // P1.08
|
||||
#define SX1262_DIO1 (32 + 6) // P1.06
|
||||
#define SX1262_BUSY (32 + 4) // P1.04
|
||||
#define SX1262_RESET (0 + 3) // P0.03
|
||||
#define SX1262_ANT_SW (32 + 10) // P1.10
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user