Put a bit of order in the src directory, group and name things appropriately

This commit is contained in:
Thomas Göttgens
2022-08-10 11:31:29 +02:00
parent 2c37be58ac
commit 5e842dd735
38 changed files with 1051 additions and 1052 deletions

View File

@@ -0,0 +1,160 @@
#ifndef USE_NEW_ESP32_BLUETOOTH
#include <Arduino.h>
#include "../concurrency/LockGuard.h"
#include "../graphics/Screen.h"
#include "../main.h"
#include "BluetoothSoftwareUpdate.h"
#include "NodeDB.h"
#include "PowerFSM.h"
#include "RadioLibInterface.h"
#include "configuration.h"
#include "nimble/BluetoothUtil.h"
#include <CRC32.h>
#include <Update.h>
int16_t updateResultHandle = -1;
static CRC32 crc;
static uint32_t updateExpectedSize, updateActualSize;
static uint8_t update_result;
static uint8_t update_region;
static concurrency::Lock *updateLock;
/// Handle writes & reads to total size
int update_size_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg)
{
concurrency::LockGuard g(updateLock);
// Check if there is enough to OTA Update
chr_readwrite32le(&updateExpectedSize, ctxt);
if (ctxt->op == BLE_GATT_ACCESS_OP_WRITE_CHR && updateExpectedSize != 0) {
updateActualSize = 0;
crc.reset();
if (Update.isRunning())
Update.abort();
bool canBegin = Update.begin(updateExpectedSize, update_region);
DEBUG_MSG("Setting region %d update size %u, result %d\n", update_region, updateExpectedSize, canBegin);
if (!canBegin) {
// Indicate failure by forcing the size to 0 (client will read it back)
updateExpectedSize = 0;
} else {
// This totally breaks abstraction to up up into the app layer for this, but quick hack to make sure we only
// talk to one service during the sw update.
// DEBUG_MSG("FIXME, crufty shutdown of mesh bluetooth for sw update.");
// void stopMeshBluetoothService();
// stopMeshBluetoothService();
screen->startFirmwareUpdateScreen();
if (RadioLibInterface::instance)
RadioLibInterface::instance->disable(); // FIXME, nasty hack - the RF95 ISR/SPI code on ESP32 can fail while we
// are writing flash - shut the radio off during updates
}
}
return 0;
}
#define MAX_BLOCKSIZE_FOR_BT 512
/// Handle writes to data
int update_data_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg)
{
concurrency::LockGuard g(updateLock);
static uint8_t
data[MAX_BLOCKSIZE_FOR_BT]; // we temporarily copy here because I'm worried that a fast sender might be able overwrite srcbuf
uint16_t len = 0;
auto rc = ble_hs_mbuf_to_flat(ctxt->om, data, sizeof(data), &len);
assert(rc == 0);
// DEBUG_MSG("Writing %u\n", len);
crc.update(data, len);
Update.write(data, len);
updateActualSize += len;
powerFSM.trigger(EVENT_FIRMWARE_UPDATE);
return 0;
}
/// Handle writes to crc32
int update_crc32_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg)
{
concurrency::LockGuard g(updateLock);
uint32_t expectedCRC = 0;
chr_readwrite32le(&expectedCRC, ctxt);
uint32_t actualCRC = crc.finalize();
DEBUG_MSG("expected CRC %u\n", expectedCRC);
uint8_t result = 0xff;
if (updateActualSize != updateExpectedSize) {
DEBUG_MSG("Expected %u bytes, but received %u bytes!\n", updateExpectedSize, updateActualSize);
result = 0xe1; // FIXME, use real error codes
} else if (actualCRC != expectedCRC) // Check the CRC before asking the update to happen.
{
DEBUG_MSG("Invalid CRC! expected=%u, actual=%u\n", expectedCRC, actualCRC);
result = 0xe0; // FIXME, use real error codes
} else {
if (Update.end()) {
if (update_region == U_SPIFFS) {
DEBUG_MSG("Filesystem updated!\n");
nodeDB.saveToDisk(); // Since we just wiped the filesystem, we need to save our current state
} else {
DEBUG_MSG("Appload updated, rebooting in 5 seconds!\n");
rebootAtMsec = millis() + 5000;
}
} else {
DEBUG_MSG("Error Occurred. Error #: %d\n", Update.getError());
}
result = Update.getError();
}
if (RadioLibInterface::instance)
RadioLibInterface::instance->startReceive(); // Resume radio
assert(updateResultHandle >= 0);
update_result = result;
DEBUG_MSG("BLE notify update result\n");
auto res = ble_gattc_notify(curConnectionHandle, updateResultHandle);
assert(res == 0);
return 0;
}
int update_result_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg)
{
return chr_readwrite8(&update_result, sizeof(update_result), ctxt);
}
int update_region_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg)
{
return chr_readwrite8(&update_region, sizeof(update_region), ctxt);
}
/*
See bluetooth-api.md
*/
void reinitUpdateService()
{
if (!updateLock)
updateLock = new concurrency::Lock();
auto res = ble_gatts_count_cfg(gatt_update_svcs); // assigns handles? see docstring for note about clearing the handle list
// before calling SLEEP SUPPORT
assert(res == 0);
res = ble_gatts_add_svcs(gatt_update_svcs);
assert(res == 0);
}
#endif //#ifndef USE_NEW_ESP32_BLUETOOTH

View File

@@ -0,0 +1,29 @@
#ifndef USE_NEW_ESP32_BLUETOOTH
#pragma once
#include "nimble/NimbleDefs.h"
void reinitUpdateService();
#ifdef __cplusplus
extern "C" {
#endif
int update_size_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg);
int update_data_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg);
int update_result_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg);
int update_crc32_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg);
int update_region_callback(uint16_t conn_handle, uint16_t attr_handle, struct ble_gatt_access_ctxt *ctxt, void *arg);
extern const struct ble_gatt_svc_def gatt_update_svcs[];
extern const ble_uuid128_t update_result_uuid, update_region_uuid;
extern int16_t updateResultHandle;
#ifdef __cplusplus
};
#endif
#endif //#ifndef USE_NEW_ESP32_BLUETOOTH

View File

@@ -0,0 +1,12 @@
#pragma once
#include "BLECharacteristic.h"
#include "PowerFSM.h" // FIXME - someday I want to make this OTA thing a separate lb at at that point it can't touch this
/**
* A characterstic with a set of overridable callbacks
*/
class CallbackCharacteristic : public BLECharacteristic, public BLECharacteristicCallbacks
{
public:
CallbackCharacteristic(const char *uuid, uint32_t btprops) : BLECharacteristic(uuid, btprops) { setCallbacks(this); }
};

View File

@@ -0,0 +1,259 @@
#ifdef USE_NEW_ESP32_BLUETOOTH
#include "configuration.h"
#include "ESP32Bluetooth.h"
#include "BluetoothCommon.h"
#include "PowerFSM.h"
#include "sleep.h"
#include "main.h"
#include "mesh/PhoneAPI.h"
#include "mesh/mesh-pb-constants.h"
#include <NimBLEDevice.h>
//static BLEService meshBleService = BLEService(BLEUuid(MESH_SERVICE_UUID_16));
//static BLECharacteristic fromNum = BLECharacteristic(BLEUuid(FROMNUM_UUID_16));
//static BLECharacteristic fromRadio = BLECharacteristic(BLEUuid(FROMRADIO_UUID_16));
//static BLECharacteristic toRadio = BLECharacteristic(BLEUuid(TORADIO_UUID_16));
//static BLEDis bledis; // DIS (Device Information Service) helper class instance
//static BLEBas blebas; // BAS (Battery Service) helper class instance
//static BLEDfu bledfu; // DFU software update helper service
// This scratch buffer is used for various bluetooth reads/writes - but it is safe because only one bt operation can be in
// proccess at once
// static uint8_t trBytes[_max(_max(_max(_max(ToRadio_size, RadioConfig_size), User_size), MyNodeInfo_size), FromRadio_size)];
static uint8_t fromRadioBytes[FromRadio_size];
NimBLECharacteristic *FromNumCharacteristic;
NimBLEServer *bleServer;
static bool passkeyShowing;
static uint32_t doublepressed;
/**
* Subclasses can use this as a hook to provide custom notifications for their transport (i.e. bluetooth notifies)
*/
void BluetoothPhoneAPI::onNowHasData(uint32_t fromRadioNum)
{
PhoneAPI::onNowHasData(fromRadioNum);
DEBUG_MSG("BLE notify fromNum\n");
//fromNum.notify32(fromRadioNum);
uint8_t val[4];
put_le32(val, fromRadioNum);
std::string fromNumByteString(&val[0], &val[0] + sizeof(val));
FromNumCharacteristic->setValue(fromNumByteString);
FromNumCharacteristic->notify();
}
/// Check the current underlying physical link to see if the client is currently connected
bool BluetoothPhoneAPI::checkIsConnected() {
if (bleServer && bleServer->getConnectedCount() > 0) {
return true;
}
return false;
}
PhoneAPI *bluetoothPhoneAPI;
class ESP32BluetoothToRadioCallback : public NimBLECharacteristicCallbacks {
virtual void onWrite(NimBLECharacteristic *pCharacteristic) {
DEBUG_MSG("To Radio onwrite\n");
auto val = pCharacteristic->getValue();
bluetoothPhoneAPI->handleToRadio(val.data(), val.length());
}
};
class ESP32BluetoothFromRadioCallback : public NimBLECharacteristicCallbacks {
virtual void onRead(NimBLECharacteristic *pCharacteristic) {
DEBUG_MSG("From Radio onread\n");
size_t numBytes = bluetoothPhoneAPI->getFromRadio(fromRadioBytes);
std::string fromRadioByteString(fromRadioBytes, fromRadioBytes + numBytes);
pCharacteristic->setValue(fromRadioByteString);
}
};
class ESP32BluetoothServerCallback : public NimBLEServerCallbacks {
virtual uint32_t onPassKeyRequest() {
uint32_t passkey = 0;
if (doublepressed > 0 && (doublepressed + (30 * 1000)) > millis()) {
DEBUG_MSG("User has overridden passkey\n");
passkey = defaultBLEPin;
} else {
DEBUG_MSG("Using random passkey\n");
passkey = random(
100000, 999999); // This is the passkey to be entered on peer - we pick a number >100,000 to ensure 6 digits
}
DEBUG_MSG("*** Enter passkey %d on the peer side ***\n", passkey);
powerFSM.trigger(EVENT_BLUETOOTH_PAIR);
screen->startBluetoothPinScreen(passkey);
passkeyShowing = true;
return passkey;
}
virtual void onAuthenticationComplete(ble_gap_conn_desc *desc) {
DEBUG_MSG("BLE authentication complete\n");
if (passkeyShowing) {
passkeyShowing = false;
screen->stopBluetoothPinScreen();
}
}
};
static ESP32BluetoothToRadioCallback *toRadioCallbacks;
static ESP32BluetoothFromRadioCallback *fromRadioCallbacks;
void ESP32Bluetooth::shutdown()
{
// Shutdown bluetooth for minimum power draw
DEBUG_MSG("Disable bluetooth\n");
//Bluefruit.Advertising.stop();
}
void ESP32Bluetooth::setup()
{
// Initialise the Bluefruit module
DEBUG_MSG("Initialise the ESP32 bluetooth module\n");
//Bluefruit.autoConnLed(false);
//Bluefruit.begin();
// Set the advertised device name (keep it short!)
//Bluefruit.setName(getDeviceName());
// Set the connect/disconnect callback handlers
//Bluefruit.Periph.setConnectCallback(connect_callback);
//Bluefruit.Periph.setDisconnectCallback(disconnect_callback);
// Configure and Start the Device Information Service
DEBUG_MSG("Configuring the Device Information Service\n");
// FIXME, we should set a mfg string based on our HW_VENDOR enum
// bledis.setManufacturer(HW_VENDOR);
//bledis.setModel(optstr(HW_VERSION));
//bledis.setFirmwareRev(optstr(APP_VERSION));
//bledis.begin();
// Start the BLE Battery Service and set it to 100%
//DEBUG_MSG("Configuring the Battery Service\n");
//blebas.begin();
//blebas.write(0); // Unknown battery level for now
//bledfu.begin(); // Install the DFU helper
// Setup the Heart Rate Monitor service using
// BLEService and BLECharacteristic classes
DEBUG_MSG("Configuring the Mesh bluetooth service\n");
//setupMeshService();
// Supposedly debugging works with soft device if you disable advertising
//if (isSoftDeviceAllowed) {
// Setup the advertising packet(s)
// DEBUG_MSG("Setting up the advertising payload(s)\n");
// startAdv();
// DEBUG_MSG("Advertising\n");
//}
//NimBLEDevice::deleteAllBonds();
NimBLEDevice::init(getDeviceName());
NimBLEDevice::setPower(ESP_PWR_LVL_P9);
NimBLEDevice::setSecurityAuth(true, true, true);
NimBLEDevice::setSecurityIOCap(BLE_HS_IO_DISPLAY_ONLY);
bleServer = NimBLEDevice::createServer();
ESP32BluetoothServerCallback *serverCallbacks = new ESP32BluetoothServerCallback();
bleServer->setCallbacks(serverCallbacks);
NimBLEService *bleService = bleServer->createService(MESH_SERVICE_UUID);
//NimBLECharacteristic *pNonSecureCharacteristic = bleService->createCharacteristic("1234", NIMBLE_PROPERTY::READ );
//NimBLECharacteristic *pSecureCharacteristic = bleService->createCharacteristic("1235", NIMBLE_PROPERTY::READ | NIMBLE_PROPERTY::READ_ENC | NIMBLE_PROPERTY::READ_AUTHEN);
//define the characteristics that the app is looking for
NimBLECharacteristic *ToRadioCharacteristic = bleService->createCharacteristic(TORADIO_UUID, NIMBLE_PROPERTY::WRITE | NIMBLE_PROPERTY::WRITE_AUTHEN | NIMBLE_PROPERTY::WRITE_ENC);
NimBLECharacteristic *FromRadioCharacteristic = bleService->createCharacteristic(FROMRADIO_UUID, NIMBLE_PROPERTY::READ | NIMBLE_PROPERTY::READ_AUTHEN | NIMBLE_PROPERTY::READ_ENC);
FromNumCharacteristic = bleService->createCharacteristic(FROMNUM_UUID, NIMBLE_PROPERTY::NOTIFY | NIMBLE_PROPERTY::READ | NIMBLE_PROPERTY::READ_AUTHEN | NIMBLE_PROPERTY::READ_ENC);
bluetoothPhoneAPI = new BluetoothPhoneAPI();
toRadioCallbacks = new ESP32BluetoothToRadioCallback();
ToRadioCharacteristic->setCallbacks(toRadioCallbacks);
fromRadioCallbacks = new ESP32BluetoothFromRadioCallback();
FromRadioCharacteristic->setCallbacks(fromRadioCallbacks);
//uint8_t val[4];
//uint32_t zero = 0;
//put_le32(val, zero);
//std::string fromNumByteString(&val[0], &val[0] + sizeof(val));
//FromNumCharacteristic->setValue(fromNumByteString);
bleService->start();
//pNonSecureCharacteristic->setValue("Hello Non Secure BLE");
//pSecureCharacteristic->setValue("Hello Secure BLE");
//FromRadioCharacteristic->setValue("FromRadioString");
//ToRadioCharacteristic->setCallbacks()
NimBLEAdvertising *pAdvertising = NimBLEDevice::getAdvertising();
pAdvertising->addServiceUUID(MESH_SERVICE_UUID);
pAdvertising->start();
}
/// Given a level between 0-100, update the BLE attribute
void updateBatteryLevel(uint8_t level)
{
//blebas.write(level);
}
void ESP32Bluetooth::clearBonds()
{
DEBUG_MSG("Clearing bluetooth bonds!\n");
//bond_print_list(BLE_GAP_ROLE_PERIPH);
//bond_print_list(BLE_GAP_ROLE_CENTRAL);
//Bluefruit.Periph.clearBonds();
//Bluefruit.Central.clearBonds();
}
void clearNVS() {
NimBLEDevice::deleteAllBonds();
ESP.restart();
}
void disablePin() {
DEBUG_MSG("User Override, disabling bluetooth pin requirement\n");
// keep track of when it was pressed, so we know it was within X seconds
// Flash the LED
setLed(true);
delay(100);
setLed(false);
delay(100);
setLed(true);
delay(100);
setLed(false);
delay(100);
setLed(true);
delay(100);
setLed(false);
doublepressed = millis();
}
#endif

View File

@@ -0,0 +1,33 @@
#ifdef USE_NEW_ESP32_BLUETOOTH
#pragma once
extern uint16_t fromNumValHandle;
class BluetoothPhoneAPI : public PhoneAPI
{
protected:
/**
* Subclasses can use this as a hook to provide custom notifications for their transport (i.e. bluetooth notifies)
*/
virtual void onNowHasData(uint32_t fromRadioNum) override;
/// Check the current underlying physical link to see if the client is currently connected
virtual bool checkIsConnected() override;
};
extern PhoneAPI *bluetoothPhoneAPI;
class ESP32Bluetooth
{
public:
void setup();
void shutdown();
void clearBonds();
};
void setBluetoothEnable(bool on);
void clearNVS();
void disablePin();
#endif

View File

@@ -0,0 +1,78 @@
#include "CryptoEngine.h"
#include "configuration.h"
#include "crypto/includes.h"
#include "crypto/common.h"
// #include "esp_system.h"
#include "crypto/aes.h"
#include "crypto/aes_wrap.h"
#include "mbedtls/aes.h"
class ESP32CryptoEngine : public CryptoEngine
{
mbedtls_aes_context aes;
public:
ESP32CryptoEngine() { mbedtls_aes_init(&aes); }
~ESP32CryptoEngine() { mbedtls_aes_free(&aes); }
/**
* Set the key used for encrypt, decrypt.
*
* As a special case: If all bytes are zero, we assume _no encryption_ and send all data in cleartext.
*
* @param numBytes must be 16 (AES128), 32 (AES256) or 0 (no crypt)
* @param bytes a _static_ buffer that will remain valid for the life of this crypto instance (i.e. this class will cache the
* provided pointer)
*/
virtual void setKey(const CryptoKey &k) override
{
CryptoEngine::setKey(k);
if (key.length != 0) {
auto res = mbedtls_aes_setkey_enc(&aes, key.bytes, key.length * 8);
assert(!res);
}
}
/**
* Encrypt a packet
*
* @param bytes is updated in place
*/
virtual void encrypt(uint32_t fromNode, uint64_t packetId, size_t numBytes, uint8_t *bytes) override
{
if (key.length > 0) {
uint8_t stream_block[16];
static uint8_t scratch[MAX_BLOCKSIZE];
size_t nc_off = 0;
DEBUG_MSG("ESP32 crypt fr=%x, num=%x, numBytes=%d!\n", fromNode, (uint32_t) packetId, numBytes);
initNonce(fromNode, packetId);
assert(numBytes <= MAX_BLOCKSIZE);
memcpy(scratch, bytes, numBytes);
memset(scratch + numBytes, 0,
sizeof(scratch) - numBytes); // Fill rest of buffer with zero (in case cypher looks at it)
auto res = mbedtls_aes_crypt_ctr(&aes, numBytes, &nc_off, nonce, stream_block, scratch, bytes);
assert(!res);
}
}
virtual void decrypt(uint32_t fromNode, uint64_t packetId, size_t numBytes, uint8_t *bytes) override
{
// For CTR, the implementation is the same
encrypt(fromNode, packetId, numBytes, bytes);
}
private:
};
CryptoEngine *crypto = new ESP32CryptoEngine();

View File

@@ -0,0 +1,73 @@
#ifndef USE_NEW_ESP32_BLUETOOTH
#include "BluetoothSoftwareUpdate.h"
// NRF52 wants these constants as byte arrays
// Generated here https://yupana-engineering.com/online-uuid-to-c-array-converter - but in REVERSE BYTE ORDER
// "cb0b9a0b-a84c-4c0d-bdbb-442e3144ee30"
const ble_uuid128_t update_service_uuid =
BLE_UUID128_INIT(0x30, 0xee, 0x44, 0x31, 0x2e, 0x44, 0xbb, 0xbd, 0x0d, 0x4c, 0x4c, 0xa8, 0x0b, 0x9a, 0x0b, 0xcb);
// "e74dd9c0-a301-4a6f-95a1-f0e1dbea8e1e" write|read
const ble_uuid128_t update_size_uuid =
BLE_UUID128_INIT(0x1e, 0x8e, 0xea, 0xdb, 0xe1, 0xf0, 0xa1, 0x95, 0x6f, 0x4a, 0x01, 0xa3, 0xc0, 0xd9, 0x4d, 0xe7);
// "e272ebac-d463-4b98-bc84-5cc1a39ee517" write
const ble_uuid128_t update_data_uuid =
BLE_UUID128_INIT(0x17, 0xe5, 0x9e, 0xa3, 0xc1, 0x5c, 0x84, 0xbc, 0x98, 0x4b, 0x63, 0xd4, 0xac, 0xeb, 0x72, 0xe2);
// "4826129c-c22a-43a3-b066-ce8f0d5bacc6" write
const ble_uuid128_t update_crc32_uuid =
BLE_UUID128_INIT(0xc6, 0xac, 0x5b, 0x0d, 0x8f, 0xce, 0x66, 0xb0, 0xa3, 0x43, 0x2a, 0xc2, 0x9c, 0x12, 0x26, 0x48);
// "5e134862-7411-4424-ac4a-210937432c77" read|notify
const ble_uuid128_t update_result_uuid =
BLE_UUID128_INIT(0x77, 0x2c, 0x43, 0x37, 0x09, 0x21, 0x4a, 0xac, 0x24, 0x44, 0x11, 0x74, 0x62, 0x48, 0x13, 0x5e);
// "5e134862-7411-4424-ac4a-210937432c67" write
const ble_uuid128_t update_region_uuid =
BLE_UUID128_INIT(0x67, 0x2c, 0x43, 0x37, 0x09, 0x21, 0x4a, 0xac, 0x24, 0x44, 0x11, 0x74, 0x62, 0x48, 0x13, 0x5e);
const struct ble_gatt_svc_def gatt_update_svcs[] = {
{
/*** Service: Security test. */
.type = BLE_GATT_SVC_TYPE_PRIMARY,
.uuid = &update_service_uuid.u,
.characteristics =
(struct ble_gatt_chr_def[]){{
.uuid = &update_size_uuid.u,
.access_cb = update_size_callback,
.flags = BLE_GATT_CHR_F_WRITE | BLE_GATT_CHR_F_WRITE_AUTHEN | BLE_GATT_CHR_F_READ |
BLE_GATT_CHR_F_READ_AUTHEN,
},
{
.uuid = &update_data_uuid.u,
.access_cb = update_data_callback,
.flags = BLE_GATT_CHR_F_WRITE | BLE_GATT_CHR_F_WRITE_AUTHEN,
},
{
.uuid = &update_crc32_uuid.u,
.access_cb = update_crc32_callback,
.flags = BLE_GATT_CHR_F_WRITE | BLE_GATT_CHR_F_WRITE_AUTHEN,
},
{
.uuid = &update_result_uuid.u,
.access_cb = update_result_callback,
.flags = BLE_GATT_CHR_F_READ | BLE_GATT_CHR_F_READ_AUTHEN | BLE_GATT_CHR_F_NOTIFY,
},
{
.uuid = &update_region_uuid.u,
.access_cb = update_region_callback,
.flags = BLE_GATT_CHR_F_WRITE | BLE_GATT_CHR_F_WRITE_AUTHEN,
},
{
0, /* No more characteristics in this service. */
}},
},
{
0, /* No more services. */
},
};
#endif //#ifndef USE_NEW_ESP32_BLUETOOTH

View File

@@ -0,0 +1,60 @@
#include "SimpleAllocator.h"
#include "assert.h"
SimpleAllocator::SimpleAllocator() { reset(); }
void *SimpleAllocator::alloc(size_t size)
{
assert(nextFree + size <= sizeof(bytes));
void *res = &bytes[nextFree];
nextFree += size;
Serial.printf("Total simple allocs %u\n", nextFree);
return res;
}
void SimpleAllocator::reset() { nextFree = 0; }
void *operator new(size_t size, SimpleAllocator &p)
{
return p.alloc(size);
}
#if 0
// This was a dumb idea, turn off for now
SimpleAllocator *activeAllocator;
AllocatorScope::AllocatorScope(SimpleAllocator &a)
{
assert(!activeAllocator);
activeAllocator = &a;
}
AllocatorScope::~AllocatorScope()
{
assert(activeAllocator);
activeAllocator = NULL;
}
/// Global new/delete, uses a simple allocator if it is in scope
void *operator new(size_t sz) throw(std::bad_alloc)
{
void *mem = activeAllocator ? activeAllocator->alloc(sz) : malloc(sz);
if (mem)
return mem;
else
throw std::bad_alloc();
}
void operator delete(void *ptr) throw()
{
if (activeAllocator)
Serial.println("Warning: leaking an active allocator object"); // We don't properly handle this yet
else
free(ptr);
}
#endif

View File

@@ -0,0 +1,42 @@
#pragma once
#include <Arduino.h>
#define POOL_SIZE 16384
/**
* An allocator (and placement new operator) that allocates storage from a fixed sized buffer.
* It will panic if that buffer fills up.
* If you are _sure_ no outstanding references to blocks in this buffer still exist, you can call
* reset() to start from scratch.
*
* Currently the only usecase for this class is the ESP32 bluetooth stack, where once we've called deinit(false)
* we are sure all those bluetooth objects no longer exist, and we'll need to recreate them when we restart bluetooth
*/
class SimpleAllocator
{
uint8_t bytes[POOL_SIZE] = {};
uint32_t nextFree = 0;
public:
SimpleAllocator();
void *alloc(size_t size);
/** If you are _sure_ no outstanding references to blocks in this buffer still exist, you can call
* reset() to start from scratch.
* */
void reset();
};
void *operator new(size_t size, SimpleAllocator &p);
/**
* Temporarily makes the specified Allocator be used for _all_ allocations. Useful when calling library routines
* that don't know about pools
*/
class AllocatorScope {
public:
explicit AllocatorScope(SimpleAllocator &a);
~AllocatorScope();
};

View File

@@ -0,0 +1,106 @@
#pragma once
#define ARCH_ESP32
//
// defaults for ESP32 architecture
//
#ifndef HAS_WIFI
#define HAS_WIFI 1
#endif
#ifndef HAS_SCREEN
#define HAS_SCREEN 1
#endif
#ifndef HAS_WIRE
#define HAS_WIRE 1
#endif
#ifndef HAS_GPS
#define HAS_GPS 1
#endif
#ifndef HAS_BUTTON
#define HAS_BUTTON 1
#endif
#ifndef HAS_TELEMETRY
#define HAS_TELEMETRY 1
#endif
#ifndef HAS_RADIO
#define HAS_RADIO 1
#endif
#ifndef HAS_RTC
#define HAS_RTC 1
#endif
//
// set HW_VENDOR
//
// This string must exactly match the case used in release file names or the android updater won't work
#if defined(TBEAM_V10)
#define HW_VENDOR HardwareModel_TBEAM
#elif defined(TBEAM_V07)
#define HW_VENDOR HardwareModel_TBEAM0p7
#elif defined(DIY_V1)
#define HW_VENDOR HardwareModel_DIY_V1
#elif defined(RAK_11200)
#define HW_VENDOR HardwareModel_RAK11200
#elif defined(ARDUINO_HELTEC_WIFI_LORA_32_V2)
#ifdef HELTEC_V2_0
#define HW_VENDOR HardwareModel_HELTEC_V2_0
#endif
#ifdef HELTEC_V2_1
#define HW_VENDOR HardwareModel_HELTEC_V2_1
#endif
#elif defined(ARDUINO_HELTEC_WIFI_LORA_32)
#define HW_VENDOR HardwareModel_HELTEC_V1
#elif defined(TLORA_V1)
#define HW_VENDOR HardwareModel_TLORA_V1
#elif defined(TLORA_V2)
#define HW_VENDOR HardwareModel_TLORA_V2
#elif defined(TLORA_V1_3)
#define HW_VENDOR HardwareModel_TLORA_V1_1p3
#elif defined(TLORA_V2_1_16)
#define HW_VENDOR HardwareModel_TLORA_V2_1_1p6
#elif defined(GENIEBLOCKS)
#define HW_VENDOR HardwareModel_GENIEBLOCKS
#elif defined(PRIVATE_HW)
#define HW_VENDOR HardwareModel_PRIVATE_HW
#elif defined(NANO_G1)
#define HW_VENDOR HardwareModel_NANO_G1
#elif defined(M5STACK)
#define HW_VENDOR HardwareModel_M5STACK
#elif defined(STATION_G1)
#define HW_VENDOR HardwareModel_STATION_G1
#endif
//
// Standard definitions for ESP32 targets
//
#define GPS_SERIAL_NUM 1
#ifndef GPS_RX_PIN
#define GPS_RX_PIN 34
#endif
#ifndef GPS_TX_PIN
#ifdef USE_JTAG
#define GPS_TX_PIN -1
#else
#define GPS_TX_PIN 12
#endif
#endif
// -----------------------------------------------------------------------------
// LoRa SPI
// -----------------------------------------------------------------------------
// NRF52 boards will define this in variant.h
#ifndef RF95_SCK
#define RF95_SCK 5
#define RF95_MISO 19
#define RF95_MOSI 27
#define RF95_NSS 18
#endif
#define SERIAL0_RX_GPIO 3 // Always GPIO3 on ESP32

View File

@@ -0,0 +1,184 @@
#include "BluetoothSoftwareUpdate.h"
#include "PowerFSM.h"
#include "configuration.h"
#include "esp_task_wdt.h"
#include "main.h"
#ifdef USE_NEW_ESP32_BLUETOOTH
#include "ESP32Bluetooth.h"
#include "mesh/http/WiFiAPClient.h"
#else
#include "nimble/BluetoothUtil.h"
#endif
#include "sleep.h"
#include "target_specific.h"
#include "utils.h"
#include <Preferences.h>
#include <driver/rtc_io.h>
#include <nvs.h>
#include <nvs_flash.h>
#ifdef USE_NEW_ESP32_BLUETOOTH
ESP32Bluetooth *esp32Bluetooth;
#endif
void getMacAddr(uint8_t *dmac)
{
assert(esp_efuse_mac_get_default(dmac) == ESP_OK);
}
/*
static void printBLEinfo() {
int dev_num = esp_ble_get_bond_device_num();
esp_ble_bond_dev_t *dev_list = (esp_ble_bond_dev_t *)malloc(sizeof(esp_ble_bond_dev_t) * dev_num);
esp_ble_get_bond_device_list(&dev_num, dev_list);
for (int i = 0; i < dev_num; i++) {
// esp_ble_remove_bond_device(dev_list[i].bd_addr);
}
} */
#ifdef USE_NEW_ESP32_BLUETOOTH
void setBluetoothEnable(bool on) {
if (!isWifiAvailable()) {
if (!esp32Bluetooth) {
esp32Bluetooth = new ESP32Bluetooth();
}
if (on) {
esp32Bluetooth->setup();
} else {
esp32Bluetooth->shutdown();
}
}
}
#endif
void esp32Setup()
{
uint32_t seed = esp_random();
DEBUG_MSG("Setting random seed %u\n", seed);
randomSeed(seed); // ESP docs say this is fairly random
DEBUG_MSG("Total heap: %d\n", ESP.getHeapSize());
DEBUG_MSG("Free heap: %d\n", ESP.getFreeHeap());
DEBUG_MSG("Total PSRAM: %d\n", ESP.getPsramSize());
DEBUG_MSG("Free PSRAM: %d\n", ESP.getFreePsram());
nvs_stats_t nvs_stats;
auto res = nvs_get_stats(NULL, &nvs_stats);
assert(res == ESP_OK);
DEBUG_MSG("NVS: UsedEntries %d, FreeEntries %d, AllEntries %d, NameSpaces %d\n", nvs_stats.used_entries, nvs_stats.free_entries,
nvs_stats.total_entries, nvs_stats.namespace_count);
DEBUG_MSG("Setup Preferences in Flash Storage\n");
// Create object to store our persistant data
Preferences preferences;
preferences.begin("meshtastic", false);
uint32_t rebootCounter = preferences.getUInt("rebootCounter", 0);
rebootCounter++;
preferences.putUInt("rebootCounter", rebootCounter);
preferences.end();
DEBUG_MSG("Number of Device Reboots: %d\n", rebootCounter);
// enableModemSleep();
// Since we are turning on watchdogs rather late in the release schedule, we really don't want to catch any
// false positives. The wait-to-sleep timeout for shutting down radios is 30 secs, so pick 45 for now.
// #define APP_WATCHDOG_SECS 45
#define APP_WATCHDOG_SECS 90
res = esp_task_wdt_init(APP_WATCHDOG_SECS, true);
assert(res == ESP_OK);
res = esp_task_wdt_add(NULL);
assert(res == ESP_OK);
}
#if 0
// Turn off for now
uint32_t axpDebugRead()
{
axp.debugCharging();
DEBUG_MSG("vbus current %f\n", axp.getVbusCurrent());
DEBUG_MSG("charge current %f\n", axp.getBattChargeCurrent());
DEBUG_MSG("bat voltage %f\n", axp.getBattVoltage());
DEBUG_MSG("batt pct %d\n", axp.getBattPercentage());
DEBUG_MSG("is battery connected %d\n", axp.isBatteryConnect());
DEBUG_MSG("is USB connected %d\n", axp.isVBUSPlug());
DEBUG_MSG("is charging %d\n", axp.isChargeing());
return 30 * 1000;
}
Periodic axpDebugOutput(axpDebugRead);
#endif
/// loop code specific to ESP32 targets
void esp32Loop()
{
esp_task_wdt_reset(); // service our app level watchdog
//loopBLE();
// for debug printing
// radio.radioIf.canSleep();
}
void cpuDeepSleep(uint64_t msecToWake)
{
/*
Some ESP32 IOs have internal pullups or pulldowns, which are enabled by default.
If an external circuit drives this pin in deep sleep mode, current consumption may
increase due to current flowing through these pullups and pulldowns.
To isolate a pin, preventing extra current draw, call rtc_gpio_isolate() function.
For example, on ESP32-WROVER module, GPIO12 is pulled up externally.
GPIO12 also has an internal pulldown in the ESP32 chip. This means that in deep sleep,
some current will flow through these external and internal resistors, increasing deep
sleep current above the minimal possible value.
Note: we don't isolate pins that are used for the LORA, LED, i2c, spi or the wake button
*/
static const uint8_t rtcGpios[] = {/* 0, */ 2,
/* 4, */
#ifndef USE_JTAG
13,
/* 14, */ /* 15, */
#endif
/* 25, */ 26, /* 27, */
32, 33, 34, 35,
36, 37
/* 38, 39 */};
for (int i = 0; i < sizeof(rtcGpios); i++)
rtc_gpio_isolate((gpio_num_t)rtcGpios[i]);
// FIXME, disable internal rtc pullups/pulldowns on the non isolated pins. for inputs that we aren't using
// to detect wake and in normal operation the external part drives them hard.
// We want RTC peripherals to stay on
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
#ifdef BUTTON_PIN
// Only GPIOs which are have RTC functionality can be used in this bit map: 0,2,4,12-15,25-27,32-39.
uint64_t gpioMask = (1ULL << BUTTON_PIN);
#ifdef BUTTON_NEED_PULLUP
gpio_pullup_en((gpio_num_t)BUTTON_PIN);
#endif
// Not needed because both of the current boards have external pullups
// FIXME change polarity in hw so we can wake on ANY_HIGH instead - that would allow us to use all three buttons (instead of
// just the first) gpio_pullup_en((gpio_num_t)BUTTON_PIN);
esp_sleep_enable_ext1_wakeup(gpioMask, ESP_EXT1_WAKEUP_ALL_LOW);
#endif
esp_sleep_enable_timer_wakeup(msecToWake * 1000ULL); // call expects usecs
esp_deep_sleep_start(); // TBD mA sleep current (battery)
}

View File

@@ -0,0 +1,120 @@
/*********************************************************************
* SEGGER Microcontroller GmbH & Co. KG *
* The Embedded Experts *
**********************************************************************
* *
* (c) 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG *
* *
* www.segger.com Support: support@segger.com *
* *
**********************************************************************
----------------------------------------------------------------------
File : JLINK_MONITOR.c
Purpose : Implementation of debug monitor for J-Link monitor mode debug on Cortex-M devices.
-------- END-OF-HEADER ---------------------------------------------
*/
#include "JLINK_MONITOR.h"
/*********************************************************************
*
* Configuration
*
**********************************************************************
*/
/*********************************************************************
*
* Defines
*
**********************************************************************
*/
/*********************************************************************
*
* Types
*
**********************************************************************
*/
/*********************************************************************
*
* Static data
*
**********************************************************************
*/
volatile int MAIN_MonCnt; // Incremented in JLINK_MONITOR_OnPoll() while CPU is in debug mode
/*********************************************************************
*
* Local functions
*
**********************************************************************
*/
/*********************************************************************
*
* Global functions
*
**********************************************************************
*/
/*********************************************************************
*
* JLINK_MONITOR_OnExit()
*
* Function description
* Called from DebugMon_Handler(), once per debug exit.
* May perform some target specific operations to be done on debug mode exit.
*
* Notes
* (1) Must not keep the CPU busy for more than 100 ms
*/
void JLINK_MONITOR_OnExit(void) {
//
// Add custom code here
//
// BSP_ClrLED(0);
}
/*********************************************************************
*
* JLINK_MONITOR_OnEnter()
*
* Function description
* Called from DebugMon_Handler(), once per debug entry.
* May perform some target specific operations to be done on debug mode entry
*
* Notes
* (1) Must not keep the CPU busy for more than 100 ms
*/
void JLINK_MONITOR_OnEnter(void) {
//
// Add custom code here
//
// BSP_SetLED(0);
// BSP_ClrLED(1);
}
/*********************************************************************
*
* JLINK_MONITOR_OnPoll()
*
* Function description
* Called periodically from DebugMon_Handler(), to perform some actions that need to be performed periodically during debug mode.
*
* Notes
* (1) Must not keep the CPU busy for more than 100 ms
*/
void JLINK_MONITOR_OnPoll(void) {
//
// Add custom code here
//
MAIN_MonCnt++;
// BSP_ToggleLED(0);
// _Delay(500000);
}
/****** End Of File *************************************************/

View File

@@ -0,0 +1,27 @@
/*********************************************************************
* SEGGER Microcontroller GmbH & Co. KG *
* The Embedded Experts *
**********************************************************************
* *
* (c) 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG *
* *
* www.segger.com Support: support@segger.com *
* *
**********************************************************************
----------------------------------------------------------------------
File : JLINK_MONITOR.h
Purpose : Header file of debug monitor for J-Link monitor mode debug on Cortex-M devices.
-------- END-OF-HEADER ---------------------------------------------
*/
#ifndef JLINK_MONITOR_H
#define JLINK_MONITOR_H
void JLINK_MONITOR_OnExit (void);
void JLINK_MONITOR_OnEnter (void);
void JLINK_MONITOR_OnPoll (void);
#endif
/****** End Of File *************************************************/

View File

@@ -0,0 +1,888 @@
/*********************************************************************
* SEGGER Microcontroller GmbH & Co. KG *
* The Embedded Experts *
**********************************************************************
* *
* (c) 1995 - 2015 SEGGER Microcontroller GmbH & Co. KG *
* *
* www.segger.com Support: support@segger.com *
* *
**********************************************************************
----------------------------------------------------------------------
File : JLINK_MONITOR_ISR_SES.s
Purpose : Implementation of debug monitor for J-Link monitor mode
debug on Cortex-M devices, supporting SES compiler.
-------- END-OF-HEADER ---------------------------------------------
*/
.name JLINK_MONITOR_ISR
.syntax unified
.extern JLINK_MONITOR_OnEnter
.extern JLINK_MONITOR_OnExit
.extern JLINK_MONITOR_OnPoll
.global DebugMon_Handler
/*********************************************************************
*
* Defines, configurable
*
**********************************************************************
*/
#define _MON_VERSION 100 // V x.yy
/*********************************************************************
*
* Defines, fixed
*
**********************************************************************
*/
#define _APP_SP_OFF_R0 0x00
#define _APP_SP_OFF_R1 0x04
#define _APP_SP_OFF_R2 0x08
#define _APP_SP_OFF_R3 0x0C
#define _APP_SP_OFF_R12 0x10
#define _APP_SP_OFF_R14_LR 0x14
#define _APP_SP_OFF_PC 0x18
#define _APP_SP_OFF_XPSR 0x1C
#define _APP_SP_OFF_S0 0x20
#define _APP_SP_OFF_S1 0x24
#define _APP_SP_OFF_S2 0x28
#define _APP_SP_OFF_S3 0x2C
#define _APP_SP_OFF_S4 0x30
#define _APP_SP_OFF_S5 0x34
#define _APP_SP_OFF_S6 0x38
#define _APP_SP_OFF_S7 0x3C
#define _APP_SP_OFF_S8 0x40
#define _APP_SP_OFF_S9 0x44
#define _APP_SP_OFF_S10 0x48
#define _APP_SP_OFF_S11 0x4C
#define _APP_SP_OFF_S12 0x50
#define _APP_SP_OFF_S13 0x54
#define _APP_SP_OFF_S14 0x58
#define _APP_SP_OFF_S15 0x5C
#define _APP_SP_OFF_FPSCR 0x60
#define _NUM_BYTES_BASIC_STACKFRAME 32
#define _NUM_BYTES_EXTENDED_STACKFRAME 72
#define _SYSTEM_DCRDR_OFF 0x00
#define _SYSTEM_DEMCR_OFF 0x04
#define _SYSTEM_DHCSR 0xE000EDF0 // Debug Halting Control and Status Register (DHCSR)
#define _SYSTEM_DCRSR 0xE000EDF4 // Debug Core Register Selector Register (DCRSR)
#define _SYSTEM_DCRDR 0xE000EDF8 // Debug Core Register Data Register (DCRDR)
#define _SYSTEM_DEMCR 0xE000EDFC // Debug Exception and Monitor Control Register (DEMCR)
#define _SYSTEM_FPCCR 0xE000EF34 // Floating-Point Context Control Register (FPCCR)
#define _SYSTEM_FPCAR 0xE000EF38 // Floating-Point Context Address Register (FPCAR)
#define _SYSTEM_FPDSCR 0xE000EF3C // Floating-Point Default Status Control Register (FPDSCR)
#define _SYSTEM_MVFR0 0xE000EF40 // Media and FP Feature Register 0 (MVFR0)
#define _SYSTEM_MVFR1 0xE000EF44 // Media and FP Feature Register 1 (MVFR1)
/*
* Defines for determining if the current debug config supports FPU registers
* For some compilers like IAR EWARM when disabling the FPU in the compiler settings an error is thrown when
*/
#ifdef __FPU_PRESENT
#if __FPU_PRESENT
#define _HAS_FPU_REGS 1
#else
#define _HAS_FPU_REGS 0
#endif
#else
#define _HAS_FPU_REGS 0
#endif
/*********************************************************************
*
* Signature of monitor
*
* Function description
* Needed for targets where also a boot ROM is present that possibly specifies a vector table with a valid debug monitor exception entry
*/
.section .text, "ax"
//
// JLINKMONHANDLER
//
.byte 0x4A
.byte 0x4C
.byte 0x49
.byte 0x4E
.byte 0x4B
.byte 0x4D
.byte 0x4F
.byte 0x4E
.byte 0x48
.byte 0x41
.byte 0x4E
.byte 0x44
.byte 0x4C
.byte 0x45
.byte 0x52
.byte 0x00 // Align to 8-bytes
/*********************************************************************
*
* DebugMon_Handler()
*
* Function description
* Debug monitor handler. CPU enters this handler in case a "halt" request is made from the debugger.
* This handler is also responsible for handling commands that are sent by the debugger.
*
* Notes
* This is actually the ISR for the debug inerrupt (exception no. 12)
*/
.thumb_func
DebugMon_Handler:
/*
General procedure:
DCRDR is used as communication register
DEMCR[19] is used as ready flag
For the command J-Link sends to the monitor: DCRDR[7:0] == Cmd, DCRDR[31:8] == ParamData
1) Monitor sets DEMCR[19] whenever it is ready to receive new commands/data
DEMCR[19] is initially set on debug monitor entry
2) J-Link will clear once it has placed conmmand/data in DCRDR for J-Link
3) Monitor will wait for DEMCR[19] to be cleared
4) Monitor will process command (May cause additional data transfers etc., depends on command
5) No restart-CPU command? => Back to 2), Otherwise => 6)
6) Monitor will clear DEMCR[19] 19 to indicate that it is no longer ready
*/
PUSH {LR}
BL JLINK_MONITOR_OnEnter
POP {LR}
LDR.N R3,_AddrDCRDR // 0xe000edf8 == _SYSTEM_DCRDR
B.N _IndicateMonReady
_WaitProbeReadIndicateMonRdy: // while(_SYSTEM_DEMCR & (1uL << 19)); => Wait until J-Link has read item
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF] // _SYSTEM_DEMCR
LSLS R0,R0,#+12
BMI.N _WaitProbeReadIndicateMonRdy
_IndicateMonReady:
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF] // _SYSTEM_DEMCR |= (1uL << 19); => Set MON_REQ bit, so J-Link knows monitor is ready to receive commands
ORR R0,R0,#0x80000
STR R0,[R3, #+_SYSTEM_DEMCR_OFF]
/*
During command loop:
R0 = Tmp
R1 = Tmp
R2 = Tmp
R3 = &_SYSTEM_DCRDR (allows also access to DEMCR with offset)
R12 = Tmp
Outside command loop R0-R3 and R12 may be overwritten by MONITOR_OnPoll()
*/
_WaitForJLinkCmd: // do {
PUSH {LR}
BL JLINK_MONITOR_OnPoll
POP {LR}
LDR.N R3,_AddrDCRDR // 0xe000edf8 == _SYSTEM_DCRDR
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF]
LSRS R0,R0,#+20 // DEMCR[19] -> Carry Clear? => J-Link has placed command for us
BCS _WaitForJLinkCmd
/*
Perform command
Command is placed by J-Link in DCRDR[7:0] and additional parameter data is stored in DCRDR[31:8]
J-Link clears DEMCR[19] to indicate that it placed a command/data or read data
Monitor sets DEMCR[19] to indicate that it placed data or read data / is ready for a new command
Setting DEMCR[19] indicates "monitor ready for new command / data" and also indicates: "data has been placed in DCRDR by monitor, for J-Link"
Therefore it is responsibility of the commands to respond to the commands accordingly
Commands for debug monitor
Commands must not exceed 0xFF (255) as we only defined 8-bits for command-part. Higher 24-bits are parameter info for current command
Protocol for different commands:
J-Link: Cmd -> DCRDR, DEMCR[19] -> 0 => Cmd placed by probe
*/
LDR R0,[R3, #+_SYSTEM_DCRDR_OFF] // ParamInfo = _SYSTEM_DCRDR
LSRS R1,R0,#+8 // ParamInfo >>= 8
LSLS R0,R0,#+24
LSRS R0,R0,#+24 // Cmd = ParamInfo & 0xFF
//
// switch (Cmd)
//
CMP R0,#+0
BEQ.N _HandleGetMonVersion // case _MON_CMD_GET_MONITOR_VERSION
CMP R0,#+2
BEQ.N _HandleReadReg // case _MON_CMD_READ_REG
BCC.N _HandleRestartCPU // case _MON_CMD_RESTART_CPU
CMP R0,#+3
BEQ.N _HandleWriteReg_Veneer // case _MON_CMD_WRITE_REG
B.N _IndicateMonReady // default : while (1);
/*
Return
_MON_CMD_RESTART_CPU
CPU: DEMCR[19] -> 0 => Monitor no longer ready
*/
_HandleRestartCPU:
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF] // _SYSTEM_DEMCR &= ~(1uL << 19); => Clear MON_REQ to indicate that monitor is no longer active
BIC R0,R0,#0x80000
STR R0,[R3, #+_SYSTEM_DEMCR_OFF]
PUSH {LR}
BL JLINK_MONITOR_OnExit
POP {PC}
//
// Place data section here to not get in trouble with load-offsets
//
.section .text, "ax", %progbits
.align 2
_AddrDCRDR:
.long 0xE000EDF8
_AddrCPACR:
.long 0xE000ED88
.section .text, "ax"
.thumb_func
;/*********************************************************************
;*
;* _HandleGetMonVersion
;*
;*/
_HandleGetMonVersion:
/*
_MON_CMD_GET_MONITOR_VERSION
CPU: Data -> DCRDR, DEMCR[19] -> 1 => Data ready
J-Link: DCRDR -> Read, DEMCR[19] -> 0 => Data read
CPU: DEMCR[19] -> 1 => Mon ready
*/
MOVS R0,#+_MON_VERSION
STR R0,[R3, #+_SYSTEM_DCRDR_OFF] // _SYSTEM_DCRDR = x
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF] // _SYSTEM_DEMCR |= (1uL << 19); => Set MON_REQ bit, so J-Link knows monitor is ready to receive commands
ORR R0,R0,#0x80000
STR R0,[R3, #+_SYSTEM_DEMCR_OFF] // Indicate data ready
B _WaitProbeReadIndicateMonRdy
/*********************************************************************
*
* _HandleReadReg
*
*/
_HandleWriteReg_Veneer:
B.N _HandleWriteReg
_HandleReadReg:
/*
_MON_CMD_READ_REG
CPU: Data -> DCRDR, DEMCR[19] -> 1 => Data ready
J-Link: DCRDR -> Read, DEMCR[19] -> 0 => Data read
CPU: DEMCR[19] -> 1 => Mon ready
Register indexes
0-15: R0-R15 (13 == R13 reserved => is banked ... Has to be read as PSP / MSP. Decision has to be done by J-Link DLL side!)
16: XPSR
17: MSP
18: PSP
19: CFBP CONTROL/FAULTMASK/BASEPRI/PRIMASK (packed into 4 bytes of word. CONTROL = CFBP[31:24], FAULTMASK = CFBP[16:23], BASEPRI = CFBP[15:8], PRIMASK = CFBP[7:0]
20: FPSCR
21-52: FPS0-FPS31
Register usage when entering this "subroutine":
R0 Cmd
R1 ParamInfo
R2 ---
R3 = &_SYSTEM_DCRDR (allows also access to DEMCR with offset)
R12 ---
Table B1-9 EXC_RETURN definition of exception return behavior, with FP extension
LR Return to Return SP Frame type
---------------------------------------------------------
0xFFFFFFE1 Handler mode. MSP Extended
0xFFFFFFE9 Thread mode MSP Extended
0xFFFFFFED Thread mode PSP Extended
0xFFFFFFF1 Handler mode. MSP Basic
0xFFFFFFF9 Thread mode MSP Basic
0xFFFFFFFD Thread mode PSP Basic
So LR[2] == 1 => Return stack == PSP else MSP
R0-R3, R12, PC, xPSR can be read from application stackpointer
Other regs can be read directly
*/
LSRS R2,LR,#+3 // Shift LR[2] into carry => Carry clear means that CPU was running on MSP
ITE CS
MRSCS R2,PSP
MRSCC R2,MSP
CMP R1,#+4 // if (RegIndex < 4) { (R0-R3)
BCS _HandleReadRegR4
LDR R0,[R2, R1, LSL #+2] // v = [SP + Rx * 4] (R0-R3)
B.N _HandleReadRegDone
_HandleReadRegR4:
CMP R1,#+5 // if (RegIndex < 5) { (R4)
BCS _HandleReadRegR5
MOV R0,R4
B.N _HandleReadRegDone
_HandleReadRegR5:
CMP R1,#+6 // if (RegIndex < 6) { (R5)
BCS _HandleReadRegR6
MOV R0,R5
B.N _HandleReadRegDone
_HandleReadRegR6:
CMP R1,#+7 // if (RegIndex < 7) { (R6)
BCS _HandleReadRegR7
MOV R0,R6
B.N _HandleReadRegDone
_HandleReadRegR7:
CMP R1,#+8 // if (RegIndex < 8) { (R7)
BCS _HandleReadRegR8
MOV R0,R7
B.N _HandleReadRegDone
_HandleReadRegR8:
CMP R1,#+9 // if (RegIndex < 9) { (R8)
BCS _HandleReadRegR9
MOV R0,R8
B.N _HandleReadRegDone
_HandleReadRegR9:
CMP R1,#+10 // if (RegIndex < 10) { (R9)
BCS _HandleReadRegR10
MOV R0,R9
B.N _HandleReadRegDone
_HandleReadRegR10:
CMP R1,#+11 // if (RegIndex < 11) { (R10)
BCS _HandleReadRegR11
MOV R0,R10
B.N _HandleReadRegDone
_HandleReadRegR11:
CMP R1,#+12 // if (RegIndex < 12) { (R11)
BCS _HandleReadRegR12
MOV R0,R11
B.N _HandleReadRegDone
_HandleReadRegR12:
CMP R1,#+14 // if (RegIndex < 14) { (R12)
BCS _HandleReadRegR14
LDR R0,[R2, #+_APP_SP_OFF_R12]
B.N _HandleReadRegDone
_HandleReadRegR14:
CMP R1,#+15 // if (RegIndex < 15) { (R14 / LR)
BCS _HandleReadRegR15
LDR R0,[R2, #+_APP_SP_OFF_R14_LR]
B.N _HandleReadRegDone
_HandleReadRegR15:
CMP R1,#+16 // if (RegIndex < 16) { (R15 / PC)
BCS _HandleReadRegXPSR
LDR R0,[R2, #+_APP_SP_OFF_PC]
B.N _HandleReadRegDone
_HandleReadRegXPSR:
CMP R1,#+17 // if (RegIndex < 17) { (xPSR)
BCS _HandleReadRegMSP
LDR R0,[R2, #+_APP_SP_OFF_XPSR]
B.N _HandleReadRegDone
_HandleReadRegMSP:
/*
Stackpointer is tricky because we need to get some info about the SP used in the user app, first
Handle reading R0-R3 which can be read right from application stackpointer
Table B1-9 EXC_RETURN definition of exception return behavior, with FP extension
LR Return to Return SP Frame type
---------------------------------------------------------
0xFFFFFFE1 Handler mode. MSP Extended
0xFFFFFFE9 Thread mode MSP Extended
0xFFFFFFED Thread mode PSP Extended
0xFFFFFFF1 Handler mode. MSP Basic
0xFFFFFFF9 Thread mode MSP Basic
0xFFFFFFFD Thread mode PSP Basic
So LR[2] == 1 => Return stack == PSP else MSP
Per architecture definition: Inside monitor (exception) SP = MSP
Stack pointer handling is complicated because it is different what is pushed on the stack before entering the monitor ISR...
Cortex-M: 8 regs
Cortex-M + forced-stack-alignment: 8 regs + 1 dummy-word if stack was not 8-byte aligned
Cortex-M + FPU: 8 regs + 17 FPU regs + 1 dummy-word + 1-dummy word if stack was not 8-byte aligned
Cortex-M + FPU + lazy mode: 8 regs + 17 dummy-words + 1 dummy-word + 1-dummy word if stack was not 8-byte aligned
*/
CMP R1,#+18 // if (RegIndex < 18) { (MSP)
BCS _HandleReadRegPSP
MRS R0,MSP
LSRS R1,LR,#+3 // LR[2] -> Carry == 0 => CPU was running on MSP => Needs correction
BCS _HandleReadRegDone_Veneer // CPU was running on PSP? => No correction necessary
_HandleSPCorrection:
LSRS R1,LR,#+5 // LR[4] -> Carry == 0 => extended stack frame has been allocated. See ARM DDI0403D, B1.5.7 Stack alignment on exception entry
ITE CS
ADDCS R0,R0,#+_NUM_BYTES_BASIC_STACKFRAME
ADDCC R0,R0,#+_NUM_BYTES_EXTENDED_STACKFRAME
LDR R1,[R2, #+_APP_SP_OFF_XPSR] // Get xPSR from application stack (R2 has been set to app stack on beginning of _HandleReadReg)
LSRS R1,R1,#+5 // xPSR[9] -> Carry == 1 => Stack has been force-aligned before pushing regs. See ARM DDI0403D, B1.5.7 Stack alignment on exception entry
IT CS
ADDCS R0,R0,#+4
B _HandleReadRegDone
_HandleReadRegPSP: // RegIndex == 18
CMP R1,#+19 // if (RegIndex < 19) {
BCS _HandleReadRegCFBP
MRS R0,PSP // PSP is not touched by monitor
LSRS R1,LR,#+3 // LR[2] -> Carry == 1 => CPU was running on PSP => Needs correction
BCC _HandleReadRegDone_Veneer // CPU was running on MSP? => No correction of PSP necessary
B _HandleSPCorrection
_HandleReadRegCFBP:
/*
CFBP is a register that can only be read via debug probe and is a merger of the following regs:
CONTROL/FAULTMASK/BASEPRI/PRIMASK (packed into 4 bytes of word. CONTROL = CFBP[31:24], FAULTMASK = CFBP[16:23], BASEPRI = CFBP[15:8], PRIMASK = CFBP[7:0]
To keep J-Link side the same for monitor and halt mode, we also return CFBP in monitor mode
*/
CMP R1,#+20 // if (RegIndex < 20) { (CFBP)
BCS _HandleReadRegFPU
MOVS R0,#+0
MRS R2,PRIMASK
ORRS R0,R2 // Merge PRIMASK into CFBP[7:0]
MRS R2,BASEPRI
LSLS R2,R2,#+8 // Merge BASEPRI into CFBP[15:8]
ORRS R0,R2
MRS R2,FAULTMASK
LSLS R2,R2,#+16 // Merge FAULTMASK into CFBP[23:16]
ORRS R0,R2
MRS R2,CONTROL
LSRS R1,LR,#3 // LR[2] -> Carry. CONTROL.SPSEL is saved to LR[2] on exception entry => ARM DDI0403D, B1.5.6 Exception entry behavior
IT CS // As J-Link sees value of CONTROL at application time, we need reconstruct original value of CONTROL
ORRCS R2,R2,#+2 // CONTROL.SPSEL (CONTROL[1]) == 0 inside monitor
LSRS R1,LR,#+5 // LR[4] == NOT(CONTROL.FPCA) -> Carry
ITE CS // Merge original value of FPCA (CONTROL[2]) into read data
BICCS R2,R2,#+0x04 // Remember LR contains NOT(CONTROL)
ORRCC R2,R2,#+0x04
LSLS R2,R2,#+24
ORRS R0,R2
B.N _HandleReadRegDone
_HandleReadRegFPU:
#if _HAS_FPU_REGS
CMP R1,#+53 // if (RegIndex < 53) { (20 (FPSCR), 21-52 FPS0-FPS31)
BCS _HandleReadRegDone_Veneer
/*
Read Coprocessor Access Control Register (CPACR) to check if CP10 and CP11 are enabled
If not, access to floating point is not possible
CPACR[21:20] == CP10 enable. 0b01 = Privileged access only. 0b11 = Full access. Other = reserved
CPACR[23:22] == CP11 enable. 0b01 = Privileged access only. 0b11 = Full access. Other = reserved
*/
LDR R0,_AddrCPACR
LDR R0,[R0]
LSLS R0,R0,#+8
LSRS R0,R0,#+28
CMP R0,#+0xF
BEQ _HandleReadRegFPU_Allowed
CMP R0,#+0x5
BNE _HandleReadRegDone_Veneer
_HandleReadRegFPU_Allowed:
CMP R1,#+21 // if (RegIndex < 21) (20 == FPSCR)
BCS _HandleReadRegFPS0_FPS31
LSRS R0,LR,#+5 // CONTROL[2] == FPCA => NOT(FPCA) saved to LR[4]. LR[4] == 0 => Extended stack frame, so FPU regs possibly on stack
BCS _HandleReadFPSCRLazyMode // Remember: NOT(FPCA) is stored to LR. == 0 means: Extended stack frame
LDR R0,=_SYSTEM_FPCCR
LDR R0,[R0]
LSLS R0,R0,#+2 // FPCCR[30] -> Carry == 1 indicates if lazy mode is active, so space on stack is reserved but FPU registers are not saved on stack
BCS _HandleReadFPSCRLazyMode
LDR R0,[R2, #+_APP_SP_OFF_FPSCR]
B _HandleReadRegDone
_HandleReadFPSCRLazyMode:
VMRS R0,FPSCR
B _HandleReadRegDone
_HandleReadRegFPS0_FPS31: // RegIndex == 21-52
LSRS R0,LR,#+5 // CONTROL[2] == FPCA => NOT(FPCA) saved to LR[4]. LR[4] == 0 => Extended stack frame, so FPU regs possibly on stack
BCS _HandleReadFPS0_FPS31LazyMode // Remember: NOT(FPCA) is stored to LR. == 0 means: Extended stack frame
LDR R0,=_SYSTEM_FPCCR
LDR R0,[R0]
LSLS R0,R0,#+2 // FPCCR[30] -> Carry == 1 indicates if lazy mode is active, so space on stack is reserved but FPU registers are not saved on stack
BCS _HandleReadFPS0_FPS31LazyMode
SUBS R1,#+21 // Convert absolute reg index into rel. one
LSLS R1,R1,#+2 // RegIndex to position on stack
ADDS R1,#+_APP_SP_OFF_S0
LDR R0,[R2, R1]
_HandleReadRegDone_Veneer:
B _HandleReadRegDone
_HandleReadFPS0_FPS31LazyMode:
SUBS R1,#+20 // convert abs. RegIndex into rel. one
MOVS R0,#+6
MULS R1,R0,R1
LDR R0,=_HandleReadRegUnknown
SUB R0,R0,R1 // _HandleReadRegUnknown - 6 * ((RegIndex - 21) + 1)
ORR R0,R0,#1 // Thumb bit needs to be set in DestAddr
BX R0
//
// Table for reading FPS0-FPS31
//
VMOV R0,S31 // v = FPSx
B _HandleReadRegDone
VMOV R0,S30
B _HandleReadRegDone
VMOV R0,S29
B _HandleReadRegDone
VMOV R0,S28
B _HandleReadRegDone
VMOV R0,S27
B _HandleReadRegDone
VMOV R0,S26
B _HandleReadRegDone
VMOV R0,S25
B _HandleReadRegDone
VMOV R0,S24
B _HandleReadRegDone
VMOV R0,S23
B _HandleReadRegDone
VMOV R0,S22
B _HandleReadRegDone
VMOV R0,S21
B _HandleReadRegDone
VMOV R0,S20
B _HandleReadRegDone
VMOV R0,S19
B _HandleReadRegDone
VMOV R0,S18
B _HandleReadRegDone
VMOV R0,S17
B _HandleReadRegDone
VMOV R0,S16
B _HandleReadRegDone
VMOV R0,S15
B _HandleReadRegDone
VMOV R0,S14
B _HandleReadRegDone
VMOV R0,S13
B _HandleReadRegDone
VMOV R0,S12
B _HandleReadRegDone
VMOV R0,S11
B _HandleReadRegDone
VMOV R0,S10
B _HandleReadRegDone
VMOV R0,S9
B _HandleReadRegDone
VMOV R0,S8
B _HandleReadRegDone
VMOV R0,S7
B _HandleReadRegDone
VMOV R0,S6
B _HandleReadRegDone
VMOV R0,S5
B _HandleReadRegDone
VMOV R0,S4
B _HandleReadRegDone
VMOV R0,S3
B _HandleReadRegDone
VMOV R0,S2
B _HandleReadRegDone
VMOV R0,S1
B _HandleReadRegDone
VMOV R0,S0
B _HandleReadRegDone
#else
B _HandleReadRegUnknown
_HandleReadRegDone_Veneer:
B _HandleReadRegDone
#endif
_HandleReadRegUnknown:
MOVS R0,#+0 // v = 0
B.N _HandleReadRegDone
_HandleReadRegDone:
// Send register content to J-Link and wait until J-Link has read the data
STR R0,[R3, #+_SYSTEM_DCRDR_OFF] // DCRDR = v;
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF] // _SYSTEM_DEMCR |= (1uL << 19); => Set MON_REQ bit, so J-Link knows monitor is ready to receive commands
ORR R0,R0,#0x80000
STR R0,[R3, #+_SYSTEM_DEMCR_OFF] // Indicate data ready
B _WaitProbeReadIndicateMonRdy
// Data section for register addresses
_HandleWriteReg:
/*
_MON_CMD_WRITE_REG
CPU: DEMCR[19] -> 1 => Mon ready
J-Link: Data -> DCRDR, DEMCR[19] -> 0 => Data placed by probe
CPU: DCRDR -> Read, Process command, DEMCR[19] -> 1 => Data read & mon ready
Register indexes
0-15: R0-R15 (13 == R13 reserved => is banked ... Has to be read as PSP / MSP. Decision has to be done by J-Link DLL side!)
16: XPSR
17: MSP
18: PSP
19: CFBP CONTROL/FAULTMASK/BASEPRI/PRIMASK (packed into 4 bytes of word. CONTROL = CFBP[31:24], FAULTMASK = CFBP[16:23], BASEPRI = CFBP[15:8], PRIMASK = CFBP[7:0]
20: FPSCR
21-52: FPS0-FPS31
Register usage when entering this "subroutine":
R0 Cmd
R1 ParamInfo
R2 ---
R3 = &_SYSTEM_DCRDR (allows also access to DEMCR with offset)
R12 ---
Table B1-9 EXC_RETURN definition of exception return behavior, with FP extension
LR Return to Return SP Frame type
---------------------------------------------------------
0xFFFFFFE1 Handler mode. MSP Extended
0xFFFFFFE9 Thread mode MSP Extended
0xFFFFFFED Thread mode PSP Extended
0xFFFFFFF1 Handler mode. MSP Basic
0xFFFFFFF9 Thread mode MSP Basic
0xFFFFFFFD Thread mode PSP Basic
So LR[2] == 1 => Return stack == PSP else MSP
R0-R3, R12, PC, xPSR can be written via application stackpointer
Other regs can be written directly
Read register data from J-Link into R0
*/
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF] // _SYSTEM_DEMCR |= (1uL << 19); => Monitor is ready to receive register data
ORR R0,R0,#0x80000
STR R0,[R3, #+_SYSTEM_DEMCR_OFF]
_HandleWRegWaitUntilDataRecv:
LDR R0,[R3, #+_SYSTEM_DEMCR_OFF]
LSLS R0,R0,#+12
BMI.N _HandleWRegWaitUntilDataRecv // DEMCR[19] == 0 => J-Link has placed new data for us
LDR R0,[R3, #+_SYSTEM_DCRDR_OFF] // Get register data
//
// Determine application SP
//
LSRS R2,LR,#+3 // Shift LR[2] into carry => Carry clear means that CPU was running on MSP
ITE CS
MRSCS R2,PSP
MRSCC R2,MSP
CMP R1,#+4 // if (RegIndex < 4) { (R0-R3)
BCS _HandleWriteRegR4
STR R0,[R2, R1, LSL #+2] // v = [SP + Rx * 4] (R0-R3)
B.N _HandleWriteRegDone
_HandleWriteRegR4:
CMP R1,#+5 // if (RegIndex < 5) { (R4)
BCS _HandleWriteRegR5
MOV R4,R0
B.N _HandleWriteRegDone
_HandleWriteRegR5:
CMP R1,#+6 // if (RegIndex < 6) { (R5)
BCS _HandleWriteRegR6
MOV R5,R0
B.N _HandleWriteRegDone
_HandleWriteRegR6:
CMP R1,#+7 // if (RegIndex < 7) { (R6)
BCS _HandleWriteRegR7
MOV R6,R0
B.N _HandleWriteRegDone
_HandleWriteRegR7:
CMP R1,#+8 // if (RegIndex < 8) { (R7)
BCS _HandleWriteRegR8
MOV R7,R0
B.N _HandleWriteRegDone
_HandleWriteRegR8:
CMP R1,#+9 // if (RegIndex < 9) { (R8)
BCS _HandleWriteRegR9
MOV R8,R0
B.N _HandleWriteRegDone
_HandleWriteRegR9:
CMP R1,#+10 // if (RegIndex < 10) { (R9)
BCS _HandleWriteRegR10
MOV R9,R0
B.N _HandleWriteRegDone
_HandleWriteRegR10:
CMP R1,#+11 // if (RegIndex < 11) { (R10)
BCS _HandleWriteRegR11
MOV R10,R0
B.N _HandleWriteRegDone
_HandleWriteRegR11:
CMP R1,#+12 // if (RegIndex < 12) { (R11)
BCS _HandleWriteRegR12
MOV R11,R0
B.N _HandleWriteRegDone
_HandleWriteRegR12:
CMP R1,#+14 // if (RegIndex < 14) { (R12)
BCS _HandleWriteRegR14
STR R0,[R2, #+_APP_SP_OFF_R12]
B.N _HandleWriteRegDone
_HandleWriteRegR14:
CMP R1,#+15 // if (RegIndex < 15) { (R14 / LR)
BCS _HandleWriteRegR15
STR R0,[R2, #+_APP_SP_OFF_R14_LR]
B.N _HandleWriteRegDone
_HandleWriteRegR15:
CMP R1,#+16 // if (RegIndex < 16) { (R15 / PC)
BCS _HandleWriteRegXPSR
STR R0,[R2, #+_APP_SP_OFF_PC]
B.N _HandleWriteRegDone
_HandleWriteRegXPSR:
CMP R1,#+17 // if (RegIndex < 17) { (xPSR)
BCS _HandleWriteRegMSP
STR R0,[R2, #+_APP_SP_OFF_XPSR]
B.N _HandleWriteRegDone
_HandleWriteRegMSP:
//
// For now, SP cannot be modified because it is needed to jump back from monitor mode
//
CMP R1,#+18 // if (RegIndex < 18) { (MSP)
BCS _HandleWriteRegPSP
B.N _HandleWriteRegDone
_HandleWriteRegPSP: // RegIndex == 18
CMP R1,#+19 // if (RegIndex < 19) {
BCS _HandleWriteRegCFBP
B.N _HandleWriteRegDone
_HandleWriteRegCFBP:
/*
CFBP is a register that can only be read via debug probe and is a merger of the following regs:
CONTROL/FAULTMASK/BASEPRI/PRIMASK (packed into 4 bytes of word. CONTROL = CFBP[31:24], FAULTMASK = CFBP[16:23], BASEPRI = CFBP[15:8], PRIMASK = CFBP[7:0]
To keep J-Link side the same for monitor and halt mode, we also return CFBP in monitor mode
*/
CMP R1,#+20 // if (RegIndex < 20) { (CFBP)
BCS _HandleWriteRegFPU
LSLS R1,R0,#+24
LSRS R1,R1,#+24 // Extract CFBP[7:0] => PRIMASK
MSR PRIMASK,R1
LSLS R1,R0,#+16
LSRS R1,R1,#+24 // Extract CFBP[15:8] => BASEPRI
MSR BASEPRI,R1
LSLS R1,R0,#+8 // Extract CFBP[23:16] => FAULTMASK
LSRS R1,R1,#+24
MSR FAULTMASK,R1
LSRS R1,R0,#+24 // Extract CFBP[31:24] => CONTROL
LSRS R0,R1,#2 // Current CONTROL[1] -> Carry
ITE CS // Update saved CONTROL.SPSEL (CONTROL[1]). CONTROL.SPSEL is saved to LR[2] on exception entry => ARM DDI0403D, B1.5.6 Exception entry behavior
ORRCS LR,LR,#+4
BICCC LR,LR,#+4
BIC R1,R1,#+2 // CONTROL.SPSEL (CONTROL[1]) == 0 inside monitor. Otherwise behavior is UNPREDICTABLE
LSRS R0,R1,#+3 // New CONTROL.FPCA (CONTROL[2]) -> Carry
ITE CS // CONTROL[2] == FPCA => NOT(FPCA) saved to LR[4]. LR[4] == 0 => Extended stack frame, so FPU regs possibly on stack
BICCS LR,LR,#+0x10 // Remember: NOT(FPCA) is stored to LR. == 0 means: Extended stack frame
ORRCC LR,LR,#+0x10
MRS R0,CONTROL
LSRS R0,R0,#+3 // CONTROL[2] -> Carry
ITE CS // Preserve original value of current CONTROL[2]
ORRCS R1,R1,#+0x04
BICCC R1,R1,#+0x04
MSR CONTROL,R1
ISB // Necessary after writing to CONTROL, see ARM DDI0403D, B1.4.4 The special-purpose CONTROL register
B.N _HandleWriteRegDone
_HandleWriteRegFPU:
#if _HAS_FPU_REGS
CMP R1,#+53 // if (RegIndex < 53) { (20 (FPSCR), 21-52 FPS0-FPS31)
BCS _HandleWriteRegDone_Veneer
/*
Read Coprocessor Access Control Register (CPACR) to check if CP10 and CP11 are enabled
If not, access to floating point is not possible
CPACR[21:20] == CP10 enable. 0b01 = Privileged access only. 0b11 = Full access. Other = reserved
CPACR[23:22] == CP11 enable. 0b01 = Privileged access only. 0b11 = Full access. Other = reserved
*/
MOV R12,R0 // Save register data
LDR R0,_AddrCPACR
LDR R0,[R0]
LSLS R0,R0,#+8
LSRS R0,R0,#+28
CMP R0,#+0xF
BEQ _HandleWriteRegFPU_Allowed
CMP R0,#+0x5
BNE _HandleWriteRegDone_Veneer
_HandleWriteRegFPU_Allowed:
CMP R1,#+21 // if (RegIndex < 21) (20 == FPSCR)
BCS _HandleWriteRegFPS0_FPS31
LSRS R0,LR,#+5 // CONTROL[2] == FPCA => NOT(FPCA) saved to LR[4]. LR[4] == 0 => Extended stack frame, so FPU regs possibly on stack
BCS _HandleWriteFPSCRLazyMode // Remember: NOT(FPCA) is stored to LR. == 0 means: Extended stack frame
LDR R0,=_SYSTEM_FPCCR
LDR R0,[R0]
LSLS R0,R0,#+2 // FPCCR[30] -> Carry == 1 indicates if lazy mode is active, so space on stack is reserved but FPU registers are not saved on stack
BCS _HandleWriteFPSCRLazyMode
STR R12,[R2, #+_APP_SP_OFF_FPSCR]
B _HandleWriteRegDone
_HandleWriteFPSCRLazyMode:
VMSR FPSCR,R12
B _HandleWriteRegDone
_HandleWriteRegFPS0_FPS31: // RegIndex == 21-52
LDR R0,=_SYSTEM_FPCCR
LDR R0,[R0]
LSLS R0,R0,#+2 // FPCCR[30] -> Carry == 1 indicates if lazy mode is active, so space on stack is reserved but FPU registers are not saved on stack
BCS _HandleWriteFPS0_FPS31LazyMode
LSRS R0,LR,#+5 // CONTROL[2] == FPCA => NOT(FPCA) saved to LR[4]. LR[4] == 0 => Extended stack frame, so FPU regs possibly on stack
BCS _HandleWriteFPS0_FPS31LazyMode // Remember: NOT(FPCA) is stored to LR. == 0 means: Extended stack frame
SUBS R1,#+21 // Convert absolute reg index into rel. one
LSLS R1,R1,#+2 // RegIndex to position on stack
ADDS R1,#+_APP_SP_OFF_S0
STR R12,[R2, R1]
_HandleWriteRegDone_Veneer:
B _HandleWriteRegDone
_HandleWriteFPS0_FPS31LazyMode:
SUBS R1,#+20 // Convert abs. RegIndex into rel. one
MOVS R0,#+6
MULS R1,R0,R1
LDR R0,=_HandleReadRegUnknown
SUB R0,R0,R1 // _HandleReadRegUnknown - 6 * ((RegIndex - 21) + 1)
ORR R0,R0,#1 // Thumb bit needs to be set in DestAddr
BX R0
//
// Table for reading FPS0-FPS31
//
VMOV S31,R12 // v = FPSx
B _HandleWriteRegDone
VMOV S30,R12
B _HandleWriteRegDone
VMOV S29,R12
B _HandleWriteRegDone
VMOV S28,R12
B _HandleWriteRegDone
VMOV S27,R12
B _HandleWriteRegDone
VMOV S26,R12
B _HandleWriteRegDone
VMOV S25,R12
B _HandleWriteRegDone
VMOV S24,R12
B _HandleWriteRegDone
VMOV S23,R12
B _HandleWriteRegDone
VMOV S22,R12
B _HandleWriteRegDone
VMOV S21,R12
B _HandleWriteRegDone
VMOV S20,R12
B _HandleWriteRegDone
VMOV S19,R12
B _HandleWriteRegDone
VMOV S18,R12
B _HandleWriteRegDone
VMOV S17,R12
B _HandleWriteRegDone
VMOV S16,R12
B _HandleWriteRegDone
VMOV S15,R12
B _HandleWriteRegDone
VMOV S14,R12
B _HandleWriteRegDone
VMOV S13,R12
B _HandleWriteRegDone
VMOV S12,R12
B _HandleWriteRegDone
VMOV S11,R12
B _HandleWriteRegDone
VMOV S10,R12
B _HandleWriteRegDone
VMOV S9,R12
B _HandleWriteRegDone
VMOV S8,R12
B _HandleWriteRegDone
VMOV S7,R12
B _HandleWriteRegDone
VMOV S6,R12
B _HandleWriteRegDone
VMOV S5,R12
B _HandleWriteRegDone
VMOV S4,R12
B _HandleWriteRegDone
VMOV S3,R12
B _HandleWriteRegDone
VMOV S2,R12
B _HandleWriteRegDone
VMOV S1,R12
B _HandleWriteRegDone
VMOV S0,R12
B _HandleWriteRegDone
#else
B _HandleWriteRegUnknown
#endif
_HandleWriteRegUnknown:
B.N _HandleWriteRegDone
_HandleWriteRegDone:
B _IndicateMonReady // Indicate that monitor has read data, processed command and is ready for a new one
.end
/****** End Of File *************************************************/

View File

@@ -0,0 +1,284 @@
#include "configuration.h"
#include "NRF52Bluetooth.h"
#include "BluetoothCommon.h"
#include "main.h"
#include "mesh/PhoneAPI.h"
#include "mesh/mesh-pb-constants.h"
#include <bluefruit.h>
#include <utility/bonding.h>
static BLEService meshBleService = BLEService(BLEUuid(MESH_SERVICE_UUID_16));
static BLECharacteristic fromNum = BLECharacteristic(BLEUuid(FROMNUM_UUID_16));
static BLECharacteristic fromRadio = BLECharacteristic(BLEUuid(FROMRADIO_UUID_16));
static BLECharacteristic toRadio = BLECharacteristic(BLEUuid(TORADIO_UUID_16));
static BLEDis bledis; // DIS (Device Information Service) helper class instance
static BLEBas blebas; // BAS (Battery Service) helper class instance
static BLEDfu bledfu; // DFU software update helper service
// This scratch buffer is used for various bluetooth reads/writes - but it is safe because only one bt operation can be in
// proccess at once
// static uint8_t trBytes[_max(_max(_max(_max(ToRadio_size, RadioConfig_size), User_size), MyNodeInfo_size), FromRadio_size)];
static uint8_t fromRadioBytes[FromRadio_size];
static uint8_t toRadioBytes[ToRadio_size];
static bool bleConnected;
class BluetoothPhoneAPI : public PhoneAPI
{
/**
* Subclasses can use this as a hook to provide custom notifications for their transport (i.e. bluetooth notifies)
*/
virtual void onNowHasData(uint32_t fromRadioNum) override
{
PhoneAPI::onNowHasData(fromRadioNum);
DEBUG_MSG("BLE notify fromNum\n");
fromNum.notify32(fromRadioNum);
}
/// Check the current underlying physical link to see if the client is currently connected
virtual bool checkIsConnected() override {
return bleConnected;
}
};
static BluetoothPhoneAPI *bluetoothPhoneAPI;
void connect_callback(uint16_t conn_handle)
{
// Get the reference to current connection
BLEConnection *connection = Bluefruit.Connection(conn_handle);
char central_name[32] = {0};
connection->getPeerName(central_name, sizeof(central_name));
DEBUG_MSG("BLE Connected to %s\n", central_name);
bleConnected = true;
}
/**
* Callback invoked when a connection is dropped
* @param conn_handle connection where this event happens
* @param reason is a BLE_HCI_STATUS_CODE which can be found in ble_hci.h
*/
void disconnect_callback(uint16_t conn_handle, uint8_t reason)
{
// FIXME - we currently assume only one active connection
bleConnected = false;
DEBUG_MSG("BLE Disconnected, reason = 0x%x\n", reason);
}
void cccd_callback(uint16_t conn_hdl, BLECharacteristic *chr, uint16_t cccd_value)
{
// Display the raw request packet
DEBUG_MSG("CCCD Updated: %u\n", cccd_value);
// Check the characteristic this CCCD update is associated with in case
// this handler is used for multiple CCCD records.
if (chr->uuid == fromNum.uuid) {
if (chr->notifyEnabled(conn_hdl)) {
DEBUG_MSG("fromNum 'Notify' enabled\n");
} else {
DEBUG_MSG("fromNum 'Notify' disabled\n");
}
}
}
void startAdv(void)
{
// Advertising packet
Bluefruit.Advertising.addFlags(BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE);
// IncludeService UUID
// Bluefruit.ScanResponse.addService(meshBleService);
Bluefruit.ScanResponse.addTxPower();
Bluefruit.ScanResponse.addName();
// Include Name
// Bluefruit.Advertising.addName();
Bluefruit.Advertising.addService(meshBleService);
/* Start Advertising
* - Enable auto advertising if disconnected
* - Interval: fast mode = 20 ms, slow mode = 152.5 ms
* - Timeout for fast mode is 30 seconds
* - Start(timeout) with timeout = 0 will advertise forever (until connected)
*
* For recommended advertising interval
* https://developer.apple.com/library/content/qa/qa1931/_index.html
*/
Bluefruit.Advertising.restartOnDisconnect(true);
Bluefruit.Advertising.setInterval(32, 244); // in unit of 0.625 ms
Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode
Bluefruit.Advertising.start(0); // 0 = Don't stop advertising after n seconds. FIXME, we should stop advertising after X
}
// Just ack that the caller is allowed to read
static void authorizeRead(uint16_t conn_hdl)
{
ble_gatts_rw_authorize_reply_params_t reply = {.type = BLE_GATTS_AUTHORIZE_TYPE_READ};
reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS;
sd_ble_gatts_rw_authorize_reply(conn_hdl, &reply);
}
/**
* client is starting read, pull the bytes from our API class
*/
void fromRadioAuthorizeCb(uint16_t conn_hdl, BLECharacteristic *chr, ble_gatts_evt_read_t *request)
{
if (request->offset == 0) {
// If the read is long, we will get multiple authorize invocations - we only populate data on the first
size_t numBytes = bluetoothPhoneAPI->getFromRadio(fromRadioBytes);
// DEBUG_MSG("fromRadioAuthorizeCb numBytes=%u\n", numBytes);
// if (numBytes >= 2) DEBUG_MSG("fromRadio bytes %x %x\n", fromRadioBytes[0], fromRadioBytes[1]);
// Someone is going to read our value as soon as this callback returns. So fill it with the next message in the queue
// or make empty if the queue is empty
fromRadio.write(fromRadioBytes, numBytes);
} else {
// DEBUG_MSG("Ignoring successor read\n");
}
authorizeRead(conn_hdl);
}
void toRadioWriteCb(uint16_t conn_hdl, BLECharacteristic *chr, uint8_t *data, uint16_t len)
{
DEBUG_MSG("toRadioWriteCb data %p, len %u\n", data, len);
bluetoothPhoneAPI->handleToRadio(data, len);
}
/**
* client is starting read, pull the bytes from our API class
*/
void fromNumAuthorizeCb(uint16_t conn_hdl, BLECharacteristic *chr, ble_gatts_evt_read_t *request)
{
DEBUG_MSG("fromNumAuthorizeCb\n");
authorizeRead(conn_hdl);
}
void setupMeshService(void)
{
bluetoothPhoneAPI = new BluetoothPhoneAPI();
meshBleService.begin();
// Note: You must call .begin() on the BLEService before calling .begin() on
// any characteristic(s) within that service definition.. Calling .begin() on
// a BLECharacteristic will cause it to be added to the last BLEService that
// was 'begin()'ed!
fromNum.setProperties(CHR_PROPS_NOTIFY | CHR_PROPS_READ);
fromNum.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS); // FIXME, secure this!!!
fromNum.setFixedLen(
0); // Variable len (either 0 or 4) FIXME consider changing protocol so it is fixed 4 byte len, where 0 means empty
fromNum.setMaxLen(4);
fromNum.setCccdWriteCallback(cccd_callback); // Optionally capture CCCD updates
// We don't yet need to hook the fromNum auth callback
// fromNum.setReadAuthorizeCallback(fromNumAuthorizeCb);
fromNum.write32(0); // Provide default fromNum of 0
fromNum.begin();
// uint8_t hrmdata[2] = {0b00000110, 0x40}; // Set the characteristic to use 8-bit values, with the sensor connected and
// detected
// hrmc.write(hrmdata, 2);
fromRadio.setProperties(CHR_PROPS_READ);
fromRadio.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS); // FIXME secure this!
fromRadio.setMaxLen(sizeof(fromRadioBytes));
fromRadio.setReadAuthorizeCallback(
fromRadioAuthorizeCb,
false); // We don't call this callback via the adafruit queue, because we can safely run in the BLE context
fromRadio.setBuffer(fromRadioBytes, sizeof(fromRadioBytes)); // we preallocate our fromradio buffer so we won't waste space
// for two copies
fromRadio.begin();
toRadio.setProperties(CHR_PROPS_WRITE);
toRadio.setPermission(SECMODE_OPEN, SECMODE_OPEN); // FIXME secure this!
toRadio.setFixedLen(0);
toRadio.setMaxLen(512);
toRadio.setBuffer(toRadioBytes, sizeof(toRadioBytes));
toRadio.setWriteCallback(
toRadioWriteCb,
false); // We don't call this callback via the adafruit queue, because we can safely run in the BLE context
toRadio.begin();
}
// FIXME, turn off soft device access for debugging
static bool isSoftDeviceAllowed = true;
void NRF52Bluetooth::shutdown()
{
// Shutdown bluetooth for minimum power draw
DEBUG_MSG("Disable NRF52 bluetooth\n");
Bluefruit.Advertising.stop();
}
void NRF52Bluetooth::setup()
{
// Initialise the Bluefruit module
DEBUG_MSG("Initialise the Bluefruit nRF52 module\n");
Bluefruit.autoConnLed(false);
Bluefruit.begin();
// Clear existing data.
Bluefruit.Advertising.stop();
Bluefruit.Advertising.clearData();
Bluefruit.ScanResponse.clearData();
// Set the advertised device name (keep it short!)
Bluefruit.setName(getDeviceName());
// Set the connect/disconnect callback handlers
Bluefruit.Periph.setConnectCallback(connect_callback);
Bluefruit.Periph.setDisconnectCallback(disconnect_callback);
// Configure and Start the Device Information Service
DEBUG_MSG("Configuring the Device Information Service\n");
// FIXME, we should set a mfg string based on our HW_VENDOR enum
// bledis.setManufacturer(HW_VENDOR);
bledis.setModel(optstr(HW_VERSION));
bledis.setFirmwareRev(optstr(APP_VERSION));
bledis.begin();
// Start the BLE Battery Service and set it to 100%
DEBUG_MSG("Configuring the Battery Service\n");
blebas.begin();
blebas.write(0); // Unknown battery level for now
bledfu.begin(); // Install the DFU helper
// Setup the Heart Rate Monitor service using
// BLEService and BLECharacteristic classes
DEBUG_MSG("Configuring the Mesh bluetooth service\n");
setupMeshService();
// Supposedly debugging works with soft device if you disable advertising
if (isSoftDeviceAllowed) {
// Setup the advertising packet(s)
DEBUG_MSG("Setting up the advertising payload(s)\n");
startAdv();
DEBUG_MSG("Advertising\n");
}
}
/// Given a level between 0-100, update the BLE attribute
void updateBatteryLevel(uint8_t level)
{
blebas.write(level);
}
void NRF52Bluetooth::clearBonds()
{
DEBUG_MSG("Clearing bluetooth bonds!\n");
bond_print_list(BLE_GAP_ROLE_PERIPH);
bond_print_list(BLE_GAP_ROLE_CENTRAL);
Bluefruit.Periph.clearBonds();
Bluefruit.Central.clearBonds();
}

View File

@@ -0,0 +1,10 @@
#pragma once
class NRF52Bluetooth
{
public:
void setup();
void shutdown();
void clearBonds();
};

View File

@@ -0,0 +1,49 @@
#include "configuration.h"
#include "CryptoEngine.h"
#include <Adafruit_nRFCrypto.h>
#include "aes-256/tiny-aes.h"
class NRF52CryptoEngine : public CryptoEngine
{
public:
NRF52CryptoEngine() {}
~NRF52CryptoEngine() {}
/**
* Encrypt a packet
*
* @param bytes is updated in place
*/
virtual void encrypt(uint32_t fromNode, uint64_t packetId, size_t numBytes, uint8_t *bytes) override
{
if (key.length > 16) {
DEBUG_MSG("Software encrypt fr=%x, num=%x, numBytes=%d!\n", fromNode, (uint32_t) packetId, numBytes);
AES_ctx ctx;
initNonce(fromNode, packetId);
AES_init_ctx_iv(&ctx, key.bytes, nonce);
AES_CTR_xcrypt_buffer(&ctx, bytes, numBytes);
} else if (key.length > 0) {
DEBUG_MSG("nRF52 encrypt fr=%x, num=%x, numBytes=%d!\n", fromNode, (uint32_t) packetId, numBytes);
nRFCrypto.begin();
nRFCrypto_AES ctx;
uint8_t myLen = ctx.blockLen(numBytes);
char encBuf[myLen] = {0};
initNonce(fromNode, packetId);
ctx.begin();
ctx.Process((char*)bytes, numBytes, nonce, key.bytes, key.length, encBuf, ctx.encryptFlag, ctx.ctrMode);
ctx.end();
nRFCrypto.end();
memcpy(bytes, encBuf, numBytes);
}
}
virtual void decrypt(uint32_t fromNode, uint64_t packetId, size_t numBytes, uint8_t *bytes) override
{
// For CTR, the implementation is the same
encrypt(fromNode, packetId, numBytes, bytes);
}
private:
};
CryptoEngine *crypto = new NRF52CryptoEngine();

View File

@@ -0,0 +1,229 @@
/*
AES-256 Software Implementation
based on https://github.com/kokke/tiny-AES-C/ which is in public domain
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
For AES192/256 the key size is proportionally larger.
*/
#include <string.h>
#include "tiny-aes.h"
#define Nb 4
#define Nk 8
#define Nr 14
typedef uint8_t state_t[4][4];
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
#define getSBoxValue(num) (sbox[(num)])
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
uint8_t tempa[4];
for (unsigned i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
for (unsigned i = Nk; i < Nb * (Nr + 1); ++i)
{
unsigned k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
if (i % Nk == 0)
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
if (i % Nk == 4)
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
unsigned j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
KeyExpansion(ctx->RoundKey, key);
}
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{
for (uint8_t i = 0; i < 4; ++i)
{
for (uint8_t j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
static void SubBytes(state_t* state)
{
for (uint8_t i = 0; i < 4; ++i)
{
for (uint8_t j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
static void ShiftRows(state_t* state)
{
uint8_t temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
static void MixColumns(state_t* state)
{
for (uint8_t i = 0; i < 4; ++i)
{
uint8_t t = (*state)[i][0];
uint8_t Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
uint8_t Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
static void Cipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
AddRoundKey(0, state, RoundKey);
for (round = 1; ; ++round)
{
SubBytes(state);
ShiftRows(state);
if (round == Nr) {
break;
}
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
AddRoundKey(Nr, state, RoundKey);
}
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{
uint8_t buffer[AES_BLOCKLEN];
size_t i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
{
if (bi == AES_BLOCKLEN)
{
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t*)buffer,ctx->RoundKey);
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
{
if (ctx->Iv[bi] == 255)
{
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}

View File

@@ -0,0 +1,23 @@
#ifndef _TINY_AES_H_
#define _TINY_AES_H_
#include <stdint.h>
#include <stddef.h>
#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only
// #define AES_KEYLEN 32
#define AES_keyExpSize 240
struct AES_ctx
{
uint8_t RoundKey[AES_keyExpSize];
uint8_t Iv[AES_BLOCKLEN];
};
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
#endif // _TINY_AES_H_

View File

@@ -0,0 +1,32 @@
#include "configuration.h"
#include "rtos.h"
#include <assert.h>
#include <stdlib.h>
/**
* Custom new/delete to panic if out out memory
*/
void *operator new(size_t size)
{
auto p = rtos_malloc(size);
assert(p);
return p;
}
void *operator new[](size_t size)
{
auto p = rtos_malloc(size);
assert(p);
return p;
}
void operator delete(void *ptr)
{
rtos_free(ptr);
}
void operator delete[](void *ptr)
{
rtos_free(ptr);
}

View File

@@ -0,0 +1,93 @@
#pragma once
#define ARCH_NRF52
//
// defaults for NRF52 architecture
//
#ifndef HAS_SCREEN
#define HAS_SCREEN 1
#endif
#ifndef HAS_WIRE
#define HAS_WIRE 1
#endif
#ifndef HAS_GPS
#define HAS_GPS 1
#endif
#ifndef HAS_BUTTON
#define HAS_BUTTON 1
#endif
#ifndef HAS_TELEMETRY
#define HAS_TELEMETRY 1
#endif
#ifndef HAS_RADIO
#define HAS_RADIO 1
#endif
//
// set HW_VENDOR
//
// This string must exactly match the case used in release file names or the android updater won't work
#ifdef ARDUINO_NRF52840_PCA10056
#define HW_VENDOR HardwareModel_NRF52840DK
#elif defined(ARDUINO_NRF52840_PPR)
#define HW_VENDOR HardwareModel_PPR
#elif defined(RAK4630)
#define HW_VENDOR HardwareModel_RAK4631
#elif defined(TTGO_T_ECHO)
#define HW_VENDOR HardwareModel_T_ECHO
#elif defined(NORDIC_PCA10059)
#define HW_VENDOR HardwareModel_NRF52840_PCA10059
#elif defined(PRIVATE_HW)
#define HW_VENDOR HardwareModel_PRIVATE_HW
#else
#define HW_VENDOR HardwareModel_NRF52_UNKNOWN
#endif
//
// Standard definitions for NRF52 targets
//
#ifdef ARDUINO_NRF52840_PCA10056
// This board uses 0 to be mean LED on
#undef LED_INVERTED
#define LED_INVERTED 1
#endif
#ifndef TTGO_T_ECHO
#define GPS_UBLOX
#endif
#define LED_PIN PIN_LED1 // LED1 on nrf52840-DK
#ifdef PIN_BUTTON1
#define BUTTON_PIN PIN_BUTTON1
#endif
#ifdef PIN_BUTTON2
#define BUTTON_PIN_ALT PIN_BUTTON2
#endif
#ifdef PIN_BUTTON_TOUCH
#define BUTTON_PIN_TOUCH PIN_BUTTON_TOUCH
#endif
// Always include the SEGGER code on NRF52 - because useful for debugging
#include "SEGGER_RTT.h"
// The channel we send stdout data to
#define SEGGER_STDOUT_CH 0
// Debug printing to segger console
#define SEGGER_MSG(...) SEGGER_RTT_printf(SEGGER_STDOUT_CH, __VA_ARGS__)
// If we are not on a NRF52840 (which has built in USB-ACM serial support) and we don't have serial pins hooked up, then we MUST
// use SEGGER for debug output
#if !defined(PIN_SERIAL_RX) && !defined(NRF52840_XXAA)
// No serial ports on this board - ONLY use segger in memory console
#define USE_SEGGER
#endif

View File

@@ -0,0 +1,115 @@
#include "configuration.h"
#include <core_cm4.h>
// Based on reading/modifying https://blog.feabhas.com/2013/02/developing-a-generic-hard-fault-handler-for-arm-cortex-m3cortex-m4/
enum { r0, r1, r2, r3, r12, lr, pc, psr };
// we can't use the regular DEBUG_MSG for these crash dumps because it depends on threading still being running. Instead use the
// segger in memory tool
#define FAULT_MSG(...) SEGGER_MSG(__VA_ARGS__)
// Per http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Cihcfefj.html
static void printUsageErrorMsg(uint32_t cfsr)
{
FAULT_MSG("Usage fault: ");
cfsr >>= SCB_CFSR_USGFAULTSR_Pos; // right shift to lsb
if ((cfsr & (1 << 9)) != 0)
FAULT_MSG("Divide by zero\n");
else if ((cfsr & (1 << 8)) != 0)
FAULT_MSG("Unaligned\n");
else if ((cfsr & (1 << 1)) != 0)
FAULT_MSG("Invalid state\n");
else if ((cfsr & (1 << 0)) != 0)
FAULT_MSG("Invalid instruction\n");
else
FAULT_MSG("FIXME add to printUsageErrorMsg!\n");
}
static void printBusErrorMsg(uint32_t cfsr)
{
FAULT_MSG("Bus fault: ");
cfsr >>= SCB_CFSR_BUSFAULTSR_Pos; // right shift to lsb
if ((cfsr & (1 << 0)) != 0)
FAULT_MSG("Instruction bus error\n");
if ((cfsr & (1 << 1)) != 0)
FAULT_MSG("Precise data bus error\n");
if ((cfsr & (1 << 2)) != 0)
FAULT_MSG("Imprecise data bus error\n");
}
static void printMemErrorMsg(uint32_t cfsr)
{
FAULT_MSG("Memory fault: ");
cfsr >>= SCB_CFSR_MEMFAULTSR_Pos; // right shift to lsb
if ((cfsr & (1 << 0)) != 0)
FAULT_MSG("Instruction access violation\n");
if ((cfsr & (1 << 1)) != 0)
FAULT_MSG("Data access violation\n");
}
extern "C" void HardFault_Impl(uint32_t stack[])
{
FAULT_MSG("Hard Fault occurred! SCB->HFSR = 0x%08lx\n", SCB->HFSR);
if ((SCB->HFSR & SCB_HFSR_FORCED_Msk) != 0) {
FAULT_MSG("Forced Hard Fault: SCB->CFSR = 0x%08lx\n", SCB->CFSR);
if ((SCB->CFSR & SCB_CFSR_USGFAULTSR_Msk) != 0) {
printUsageErrorMsg(SCB->CFSR);
}
if ((SCB->CFSR & SCB_CFSR_BUSFAULTSR_Msk) != 0) {
printBusErrorMsg(SCB->CFSR);
}
if ((SCB->CFSR & SCB_CFSR_MEMFAULTSR_Msk) != 0) {
printMemErrorMsg(SCB->CFSR);
}
FAULT_MSG("r0 = 0x%08lx\n", stack[r0]);
FAULT_MSG("r1 = 0x%08lx\n", stack[r1]);
FAULT_MSG("r2 = 0x%08lx\n", stack[r2]);
FAULT_MSG("r3 = 0x%08lx\n", stack[r3]);
FAULT_MSG("r12 = 0x%08lx\n", stack[r12]);
FAULT_MSG("lr = 0x%08lx\n", stack[lr]);
FAULT_MSG("pc = 0x%08lx\n", stack[pc]);
FAULT_MSG("psr = 0x%08lx\n", stack[psr]);
}
FAULT_MSG("Done with fault report - Waiting to reboot\n");
asm volatile("bkpt #01"); // Enter the debugger if one is connected
// Don't spin, so that the debugger will let the user step to next instruction
// while (1) ;
}
#ifndef INC_FREERTOS_H
// This is a generic cortex M entrypoint that doesn't assume freertos
extern "C" void HardFault_Handler(void)
{
asm volatile(" mrs r0,msp\n"
" b HardFault_Impl \n");
}
#else
/* The prototype shows it is a naked function - in effect this is just an
assembly function. */
extern "C" void HardFault_Handler( void ) __attribute__( ( naked ) );
/* The fault handler implementation calls a function called
prvGetRegistersFromStack(). */
extern "C" void HardFault_Handler(void)
{
__asm volatile
(
" tst lr, #4 \n"
" ite eq \n"
" mrseq r0, msp \n"
" mrsne r0, psp \n"
" ldr r1, [r0, #24] \n"
" ldr r2, handler2_address_const \n"
" bx r2 \n"
" handler2_address_const: .word HardFault_Impl \n"
);
}
#endif

View File

@@ -0,0 +1,2 @@
#include "target_specific.h"

View File

@@ -0,0 +1,199 @@
#include "configuration.h"
#include <SPI.h>
#include <Wire.h>
#include <assert.h>
#include <ble_gap.h>
#include <memory.h>
#include <stdio.h>
#include <Adafruit_nRFCrypto.h>
// #include <Adafruit_USBD_Device.h>
#include "NRF52Bluetooth.h"
#include "error.h"
#ifdef BQ25703A_ADDR
#include "BQ25713.h"
#endif
static inline void debugger_break(void)
{
__asm volatile("bkpt #0x01\n\t"
"mov pc, lr\n\t");
}
bool loopCanSleep() {
// turn off sleep only while connected via USB
// return true;
return !Serial; // the bool operator on the nrf52 serial class returns true if connected to a PC currently
// return !(TinyUSBDevice.mounted() && !TinyUSBDevice.suspended());
}
// handle standard gcc assert failures
void __attribute__((noreturn)) __assert_func(const char *file, int line, const char *func, const char *failedexpr)
{
DEBUG_MSG("assert failed %s: %d, %s, test=%s\n", file, line, func, failedexpr);
// debugger_break(); FIXME doesn't work, possibly not for segger
// Reboot cpu
NVIC_SystemReset();
}
void getMacAddr(uint8_t *dmac)
{
const uint8_t *src = (const uint8_t *)NRF_FICR->DEVICEADDR;
dmac[5] = src[0];
dmac[4] = src[1];
dmac[3] = src[2];
dmac[2] = src[3];
dmac[1] = src[4];
dmac[0] = src[5] | 0xc0; // MSB high two bits get set elsewhere in the bluetooth stack
}
static void initBrownout()
{
auto vccthresh = POWER_POFCON_THRESHOLD_V17;
auto err_code = sd_power_pof_enable(POWER_POFCON_POF_Enabled);
assert(err_code == NRF_SUCCESS);
err_code = sd_power_pof_threshold_set(vccthresh);
assert(err_code == NRF_SUCCESS);
// We don't bother with setting up brownout if soft device is disabled - because during production we always use softdevice
}
NRF52Bluetooth *nrf52Bluetooth;
static bool bleOn = false;
static const bool useSoftDevice = true; // Set to false for easier debugging
void setBluetoothEnable(bool on)
{
if (on != bleOn) {
if (on) {
if (!nrf52Bluetooth) {
if (!useSoftDevice)
DEBUG_MSG("DISABLING NRF52 BLUETOOTH WHILE DEBUGGING\n");
else {
nrf52Bluetooth = new NRF52Bluetooth();
nrf52Bluetooth->setup();
// We delay brownout init until after BLE because BLE starts soft device
initBrownout();
}
}
} else {
if (nrf52Bluetooth)
nrf52Bluetooth->shutdown();
}
bleOn = on;
}
}
/**
* Override printf to use the SEGGER output library (note - this does not effect the printf method on the debug console)
*/
int printf(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
auto res = SEGGER_RTT_vprintf(0, fmt, &args);
va_end(args);
return res;
}
void checkSDEvents()
{
if (useSoftDevice) {
uint32_t evt;
while (NRF_SUCCESS == sd_evt_get(&evt)) {
switch (evt) {
case NRF_EVT_POWER_FAILURE_WARNING:
RECORD_CRITICALERROR(CriticalErrorCode_Brownout);
break;
default:
DEBUG_MSG("Unexpected SDevt %d\n", evt);
break;
}
}
} else {
if (NRF_POWER->EVENTS_POFWARN)
RECORD_CRITICALERROR(CriticalErrorCode_Brownout);
}
}
void nrf52Loop()
{
checkSDEvents();
}
void nrf52Setup()
{
auto why = NRF_POWER->RESETREAS;
// per
// https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Fpower.html
DEBUG_MSG("Reset reason: 0x%x\n", why);
// Per
// https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/monitor-mode-debugging-with-j-link-and-gdbeclipse
// This is the recommended setting for Monitor Mode Debugging
NVIC_SetPriority(DebugMonitor_IRQn, 6UL);
#ifdef BQ25703A_ADDR
auto *bq = new BQ25713();
if (!bq->setup())
DEBUG_MSG("ERROR! Charge controller init failed\n");
#endif
// Init random seed
union seedParts {
uint32_t seed32;
uint8_t seed8[4];
} seed;
nRFCrypto.begin();
nRFCrypto.Random.generate(seed.seed8, sizeof(seed.seed8));
DEBUG_MSG("Setting random seed %u\n", seed.seed32);
randomSeed(seed.seed32);
nRFCrypto.end();
}
void cpuDeepSleep(uint64_t msecToWake)
{
// FIXME, configure RTC or button press to wake us
// FIXME, power down SPI, I2C, RAMs
#if HAS_WIRE
Wire.end();
#endif
SPI.end();
// This may cause crashes as debug messages continue to flow.
Serial.end();
#ifdef PIN_SERIAL_RX1
Serial1.end();
#endif
setBluetoothEnable(false);
// FIXME, use system off mode with ram retention for key state?
// FIXME, use non-init RAM per
// https://devzone.nordicsemi.com/f/nordic-q-a/48919/ram-retention-settings-with-softdevice-enabled
auto ok = sd_power_system_off();
if (ok != NRF_SUCCESS) {
DEBUG_MSG("FIXME: Ignoring soft device (EasyDMA pending?) and forcing "
"system-off!\n");
NRF_POWER->SYSTEMOFF = 1;
}
// The following code should not be run, because we are off
while (1) {
delay(5000);
DEBUG_MSG(".");
}
}
void clearBonds() {
if (!nrf52Bluetooth) {
nrf52Bluetooth = new NRF52Bluetooth();
nrf52Bluetooth->setup();
}
nrf52Bluetooth->clearBonds();
}

View File

@@ -0,0 +1,5 @@
#pragma once
// dummy file to keep old arduino code happy
#define PROGMEM
#define pgm_read_byte(addr) (*((unsigned const char *)addr))

View File

@@ -0,0 +1,79 @@
#include "AES.h"
#include "CTR.h"
#include "CryptoEngine.h"
#include "configuration.h"
/** A platform independent AES engine implemented using Tiny-AES
*/
class CrossPlatformCryptoEngine : public CryptoEngine
{
CTRCommon *ctr = NULL;
public:
CrossPlatformCryptoEngine() {}
~CrossPlatformCryptoEngine() {}
/**
* Set the key used for encrypt, decrypt.
*
* As a special case: If all bytes are zero, we assume _no encryption_ and send all data in cleartext.
*
* @param numBytes must be 16 (AES128), 32 (AES256) or 0 (no crypt)
* @param bytes a _static_ buffer that will remain valid for the life of this crypto instance (i.e. this class will cache the
* provided pointer)
*/
virtual void setKey(const CryptoKey &k) override
{
CryptoEngine::setKey(k);
DEBUG_MSG("Installing AES%d key!\n", key.length * 8);
if (ctr) {
delete ctr;
ctr = NULL;
}
if (key.length != 0) {
if (key.length == 16)
ctr = new CTR<AES128>();
else
ctr = new CTR<AES256>();
ctr->setKey(key.bytes, key.length);
}
}
/**
* Encrypt a packet
*
* @param bytes is updated in place
*/
virtual void encrypt(uint32_t fromNode, uint64_t packetId, size_t numBytes, uint8_t *bytes) override
{
if (key.length > 0) {
//uint8_t stream_block[16];
static uint8_t scratch[MAX_BLOCKSIZE];
//size_t nc_off = 0;
// DEBUG_MSG("ESP32 encrypt!\n");
initNonce(fromNode, packetId);
assert(numBytes <= MAX_BLOCKSIZE);
memcpy(scratch, bytes, numBytes);
memset(scratch + numBytes, 0,
sizeof(scratch) - numBytes); // Fill rest of buffer with zero (in case cypher looks at it)
ctr->setIV(nonce, sizeof(nonce));
ctr->setCounterSize(4);
ctr->encrypt(bytes, scratch, numBytes);
}
}
virtual void decrypt(uint32_t fromNode, uint64_t packetId, size_t numBytes, uint8_t *bytes) override
{
// For CTR, the implementation is the same
encrypt(fromNode, packetId, numBytes, bytes);
}
private:
};
CryptoEngine *crypto = new CrossPlatformCryptoEngine();

View File

@@ -0,0 +1,104 @@
#include "CryptoEngine.h"
#include "PortduinoGPIO.h"
#include "SPIChip.h"
#include "mesh/RF95Interface.h"
#include "sleep.h"
#include "target_specific.h"
#include <Utility.h>
#include <assert.h>
#include <linux/gpio/LinuxGPIOPin.h>
// FIXME - move setBluetoothEnable into a HALPlatform class
void setBluetoothEnable(bool on)
{
// not needed
}
void cpuDeepSleep(uint64_t msecs)
{
notImplemented("cpuDeepSleep");
}
void updateBatteryLevel(uint8_t level) NOT_IMPLEMENTED("updateBatteryLevel");
/** a simulated pin for busted IRQ hardware
* Porduino helper class to do this i2c based polling:
*/
class PolledIrqPin : public GPIOPin
{
public:
PolledIrqPin() : GPIOPin(LORA_DIO1, "loraIRQ") {}
/// Read the low level hardware for this pin
virtual PinStatus readPinHardware()
{
if (isrPinStatus < 0)
return LOW; // No interrupt handler attached, don't bother polling i2c right now
else {
extern RadioInterface *rIf; // FIXME, temporary hack until we know if we need to keep this
assert(rIf);
RadioLibInterface *rIf95 = static_cast<RadioLibInterface *>(rIf);
bool p = rIf95->isIRQPending();
log(SysGPIO, LogDebug, "PolledIrqPin::readPinHardware(%s, %d, %d)", getName(), getPinNum(), p);
return p ? HIGH : LOW;
}
}
};
static GPIOPin *loraIrq;
/** apps run under portduino can optionally define a portduinoSetup() to
* use portduino specific init code (such as gpioBind) to setup portduino on their host machine,
* before running 'arduino' code.
*/
void portduinoSetup()
{
printf("Setting up Meshtastic on Porduino...\n");
#ifdef PORTDUINO_LINUX_HARDWARE
SPI.begin(); // We need to create SPI
bool usePineLora = !spiChip->isSimulated();
if(usePineLora) {
printf("Connecting to PineLora board...\n");
// FIXME: remove this hack once interrupts are confirmed to work on new pine64 board
// loraIrq = new PolledIrqPin();
loraIrq = new LinuxGPIOPin(LORA_DIO1, "ch341", "int", "loraIrq"); // or "err"?
loraIrq->setSilent();
gpioBind(loraIrq);
// BUSY hw was busted on current board - just use the simulated pin (which will read low)
auto busy = new LinuxGPIOPin(SX126X_BUSY, "ch341", "slct", "loraBusy");
busy->setSilent();
gpioBind(busy);
gpioBind(new LinuxGPIOPin(SX126X_RESET, "ch341", "ini", "loraReset"));
auto loraCs = new LinuxGPIOPin(SX126X_CS, "ch341", "cs0", "loraCs");
loraCs->setSilent();
gpioBind(loraCs);
}
else
#endif
{
auto fakeBusy = new SimGPIOPin(SX126X_BUSY, "fakeBusy");
fakeBusy->writePin(LOW);
fakeBusy->setSilent(true);
gpioBind(fakeBusy);
auto cs = new SimGPIOPin(SX126X_CS, "fakeLoraCS");
cs->setSilent(true);
gpioBind(cs);
gpioBind(new SimGPIOPin(SX126X_RESET, "fakeLoraReset"));
gpioBind(new SimGPIOPin(LORA_DIO1, "fakeLoraIrq"));
}
// gpioBind((new SimGPIOPin(LORA_RESET, "LORA_RESET")));
// gpioBind((new SimGPIOPin(RF95_NSS, "RF95_NSS"))->setSilent());
}

View File

@@ -0,0 +1,16 @@
#pragma once
#define ARCH_PORTDUINO
//
// defaults for NRF52 architecture
//
//
// set HW_VENDOR
//
#define HW_VENDOR HardwareModel_PORTDUINO
#define HAS_RTC 1
#define HAS_WIFI 1

View File

@@ -0,0 +1,7 @@
#pragma once
#define ARCH_RP2040
#if defined(PRIVATE_HW)
#define HW_VENDOR HardwareModel_PRIVATE_HW
#endif

View File

@@ -0,0 +1,30 @@
#include "configuration.h"
#include <stdio.h>
#include <pico/unique_id.h>
void setBluetoothEnable(bool on)
{
// not needed
}
void cpuDeepSleep(uint64_t msecs)
{
// not needed
}
void updateBatteryLevel(uint8_t level)
{
// not needed
}
void getMacAddr(uint8_t *dmac)
{
pico_unique_board_id_t src;
pico_get_unique_board_id(&src);
dmac[5] = src.id[0];
dmac[4] = src.id[1];
dmac[3] = src.id[2];
dmac[2] = src.id[3];
dmac[1] = src.id[4];
dmac[0] = src.id[5];
}

View File

@@ -0,0 +1,36 @@
#include "configuration.h"
#include "CryptoEngine.h"
#include "aes.hpp"
class RP2040CryptoEngine : public CryptoEngine
{
public:
RP2040CryptoEngine() {}
~RP2040CryptoEngine() {}
/**
* Encrypt a packet
*
* @param bytes is updated in place
*/
virtual void encrypt(uint32_t fromNode, uint64_t packetNum, size_t numBytes, uint8_t *bytes) override
{
if (key.length > 0) {
AES_ctx ctx;
initNonce(fromNode, packetNum);
AES_init_ctx_iv(&ctx, key.bytes, nonce);
AES_CTR_xcrypt_buffer(&ctx, bytes, numBytes);
}
}
virtual void decrypt(uint32_t fromNode, uint64_t packetNum, size_t numBytes, uint8_t *bytes) override
{
// For CTR, the implementation is the same
encrypt(fromNode, packetNum, numBytes, bytes);
}
private:
};
CryptoEngine *crypto = new RP2040CryptoEngine();