remove radiohead

This commit is contained in:
geeksville
2020-04-30 21:42:11 -07:00
parent 1f1d683f4f
commit 4e106f4098
24 changed files with 24 additions and 5518 deletions

View File

@@ -55,13 +55,13 @@ bool MeshRadio::init()
#endif
// we now expect interfaces to operate in promiscous mode
// radioIf.setThisAddress(nodeDB.getNodeNum()); // Note: we must do this here, because the nodenum isn't inited at constructor time.
// radioIf.setThisAddress(nodeDB.getNodeNum()); // Note: we must do this here, because the nodenum isn't inited at constructor
// time.
applySettings();
if (!radioIf.init()) {
DEBUG_MSG("LoRa radio init failed\n");
DEBUG_MSG("Uncomment '#define SERIAL_DEBUG' in RH_RF95.cpp for detailed debug info\n");
return false;
}
@@ -93,7 +93,7 @@ void MeshRadio::applySettings()
{
// Set up default configuration
// No Sync Words in LORA mode.
radioIf.modemConfig = (RH_RF95::ModemConfigChoice)channelSettings.modem_config;
radioIf.modemConfig = (ModemConfigChoice)channelSettings.modem_config;
// Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
int channel_num = hash(channelSettings.name) % NUM_CHANNELS;

View File

@@ -1,10 +1,10 @@
#pragma once
#include "CustomRF95.h"
#include "MemoryPool.h"
#include "MeshTypes.h"
#include "Observer.h"
#include "PointerQueue.h"
#include "RadioInterface.h"
#include "configuration.h"
#include "mesh.pb.h"

View File

@@ -1,221 +0,0 @@
#include "CustomRF95.h"
#include "NodeDB.h" // FIXME, this class should not need to touch nodedb
#include "assert.h"
#include "configuration.h"
#include <pb_decode.h>
#include <pb_encode.h>
#ifdef RF95_IRQ_GPIO
CustomRF95::CustomRF95() : RH_RF95(NSS_GPIO, RF95_IRQ_GPIO) {}
bool CustomRF95::canSleep()
{
// We allow initializing mode, because sometimes while testing we don't ever call init() to turn on the hardware
bool isRx = isReceiving();
bool res = (_mode == RHModeInitialising || _mode == RHModeIdle || _mode == RHModeRx) && !isRx && txQueue.isEmpty();
if (!res) // only print debug messages if we are vetoing sleep
DEBUG_MSG("radio wait to sleep, mode=%d, isRx=%d, txEmpty=%d, txGood=%d\n", _mode, isRx, txQueue.isEmpty(), _txGood);
return res;
}
bool CustomRF95::sleep()
{
// we no longer care about interrupts from this device
prepareDeepSleep();
// FIXME - leave the device state in rx mode instead
return RH_RF95::sleep();
}
bool CustomRF95::init()
{
bool ok = RH_RF95::init();
// this->setPromiscuous(true); // Make the old RH stack work like the new one, make make CPU check dest addr
if (ok)
reconfigure(); // Finish our device setup
return ok;
}
/// Send a packet (possibly by enquing in a private fifo). This routine will
/// later free() the packet to pool. This routine is not allowed to stall because it is called from
/// bluetooth comms code. If the txmit queue is empty it might return an error
ErrorCode CustomRF95::send(MeshPacket *p)
{
// We wait _if_ we are partially though receiving a packet (rather than just merely waiting for one).
// To do otherwise would be doubly bad because not only would we drop the packet that was on the way in,
// we almost certainly guarantee no one outside will like the packet we are sending.
if (_mode == RHModeIdle || (_mode == RHModeRx && !isReceiving())) {
// if the radio is idle, we can send right away
DEBUG_MSG("immediate send on mesh fr=0x%x,to=0x%x,id=%d\n (txGood=%d,rxGood=%d,rxBad=%d)\n", p->from, p->to, p->id,
txGood(), rxGood(), rxBad());
if (!waitCAD())
return false; // Check channel activity
startSend(p);
return ERRNO_OK;
} else {
DEBUG_MSG("enqueuing packet for send from=0x%x, to=0x%x\n", p->from, p->to);
ErrorCode res = txQueue.enqueue(p, 0) ? ERRNO_OK : ERRNO_UNKNOWN;
if (res != ERRNO_OK) // we weren't able to queue it, so we must drop it to prevent leaks
packetPool.release(p);
return res;
}
}
// After doing standard behavior, check to see if a new packet arrived or one was sent and start a new send or receive as
// necessary
void CustomRF95::handleInterrupt()
{
setThisAddress(
nodeDB
.getNodeNum()); // temp hack to make sure we are looking for the right address. This class is going away soon anyways
RH_RF95::handleInterrupt();
if (_mode == RHModeIdle) // We are now done sending or receiving
{
if (sendingPacket) // Were we sending?
{
// We are done sending that packet, release it
packetPool.release(sendingPacket);
sendingPacket = NULL;
// DEBUG_MSG("Done with send\n");
}
// If we just finished receiving a packet, forward it into a queue
if (_rxBufValid) {
// We received a packet
// Skip the 4 headers that are at the beginning of the rxBuf
size_t payloadLen = _bufLen - RH_RF95_HEADER_LEN;
uint8_t *payload = _buf + RH_RF95_HEADER_LEN;
// FIXME - throws exception if called in ISR context: frequencyError() - probably the floating point math
int32_t snr = lastSNR();
// DEBUG_MSG("Received packet from mesh src=0x%x,dest=0x%x,id=%d,len=%d rxGood=%d,rxBad=%d,freqErr=%d,snr=%d\n",
// srcaddr, destaddr, id, rxlen, rf95.rxGood(), rf95.rxBad(), freqerr, snr);
MeshPacket *mp = packetPool.allocZeroed();
SubPacket *p = &mp->payload;
mp->from = _rxHeaderFrom;
mp->to = _rxHeaderTo;
mp->id = _rxHeaderId;
mp->rx_snr = snr;
//_rxHeaderId = _buf[2];
//_rxHeaderFlags = _buf[3];
if (!pb_decode_from_bytes(payload, payloadLen, SubPacket_fields, p)) {
packetPool.release(mp);
} else {
// parsing was successful, queue for our recipient
mp->has_payload = true;
deliverToReceiver(mp);
}
clearRxBuf(); // This message accepted and cleared
}
handleIdleISR();
}
}
/** The ISR doesn't have any good work to do, give a new assignment.
*
* Return true if a higher pri task has woken
*/
void CustomRF95::handleIdleISR()
{
// First send any outgoing packets we have ready
MeshPacket *txp = txQueue.dequeuePtr(0);
if (txp)
startSend(txp);
else {
// Nothing to send, let's switch back to receive mode
RH_RF95::setModeRx();
}
}
/// This routine might be called either from user space or ISR
void CustomRF95::startSend(MeshPacket *txp)
{
size_t numbytes = beginSending(txp);
setHeaderTo(txp->to);
setHeaderId(txp->id);
// if the sender nodenum is zero, that means uninitialized
setHeaderFrom(txp->from); // We must do this before each send, because we might have just changed our nodenum
assert(numbytes <= 251); // Make sure we don't overflow the tiny max packet size
// uint32_t start = millis(); // FIXME, store this in the class
// This legacy implementation doesn't use our inserted packet header
int res = RH_RF95::send(radiobuf + sizeof(PacketHeader), numbytes - sizeof(PacketHeader));
assert(res);
}
#define TX_WATCHDOG_TIMEOUT 30 * 1000
#include "error.h"
void CustomRF95::loop()
{
RH_RF95::loop();
// It should never take us more than 30 secs to send a packet, if it does, we have a bug, FIXME, move most of this
// into CustomRF95
uint32_t now = millis();
if (lastTxStart != 0 && (now - lastTxStart) > TX_WATCHDOG_TIMEOUT && RH_RF95::mode() == RHGenericDriver::RHModeTx) {
DEBUG_MSG("ERROR! Bug! Tx packet took too long to send, forcing radio into rx mode\n");
RH_RF95::setModeRx();
if (sendingPacket) { // There was probably a packet we were trying to send, free it
packetPool.release(sendingPacket);
sendingPacket = NULL;
}
recordCriticalError(ErrTxWatchdog);
lastTxStart = 0; // Stop checking for now, because we just warned the developer
}
}
bool CustomRF95::reconfigure()
{
setModeIdle(); // Need to be idle before doing init
// Set up default configuration
// No Sync Words in LORA mode.
setModemConfig(modemConfig); // Radio default
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
// rf95.setPreambleLength(8); // Default is 8
if (!setFrequency(freq)) {
DEBUG_MSG("setFrequency failed\n");
assert(0); // fixme panic
}
// Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on
// The default transmitter power is 13dBm, using PA_BOOST.
// If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
// you can set transmitter powers from 5 to 23 dBm:
// FIXME - can we do this? It seems to be in the Heltec board.
setTxPower(power, false);
// Done with init tell radio to start receiving
setModeRx();
return true;
}
#endif

View File

@@ -1,54 +0,0 @@
#pragma once
#include "RadioInterface.h"
#include "mesh.pb.h"
#include <RH_RF95.h>
#define MAX_TX_QUEUE 16 // max number of packets which can be waiting for transmission
/**
* A version of the RF95 driver which is smart enough to manage packets via queues (no polling or blocking in user threads!)
*/
class CustomRF95 : public RH_RF95, public RadioInterface
{
friend class MeshRadio; // for debugging we let that class touch pool
public:
/** pool is the pool we will alloc our rx packets from
* rxDest is where we will send any rx packets, it becomes receivers responsibility to return packet to the pool
*/
CustomRF95();
/**
* Return true if we think the board can go to sleep (i.e. our tx queue is empty, we are not sending or receiving)
*
* This method must be used before putting the CPU into deep or light sleep.
*/
bool canSleep();
/// Prepare hardware for sleep. Call this _only_ for deep sleep, not needed for light sleep.
virtual bool sleep();
/// Send a packet (possibly by enquing in a private fifo). This routine will
/// later free() the packet to pool. This routine is not allowed to stall because it is called from
/// bluetooth comms code. If the txmit queue is empty it might return an error
ErrorCode send(MeshPacket *p);
bool init();
bool reconfigure();
void loop(); // Idle processing
protected:
// After doing standard behavior, check to see if a new packet arrived or one was sent and start a new send or receive as
// necessary
virtual void handleInterrupt();
private:
/// Send a new packet - this low level call can be called from either ISR or userspace
void startSend(MeshPacket *txp);
/// Return true if a higher pri task has woken
void handleIdleISR();
};

View File

@@ -1,207 +0,0 @@
// RHGenericDriver.cpp
//
// Copyright (C) 2014 Mike McCauley
// $Id: RHGenericDriver.cpp,v 1.23 2018/02/11 23:57:18 mikem Exp $
#include <RHGenericDriver.h>
RHGenericDriver::RHGenericDriver()
: _mode(RHModeInitialising), _thisAddress(RH_BROADCAST_ADDRESS), _txHeaderTo(RH_BROADCAST_ADDRESS),
_txHeaderFrom(RH_BROADCAST_ADDRESS), _txHeaderId(0), _txHeaderFlags(0), _rxBad(0), _rxGood(0), _txGood(0), _cad_timeout(0)
{
}
bool RHGenericDriver::init()
{
return true;
}
// Blocks until a valid message is received
void RHGenericDriver::waitAvailable()
{
while (!available())
YIELD;
}
// Blocks until a valid message is received or timeout expires
// Return true if there is a message available
// Works correctly even on millis() rollover
bool RHGenericDriver::waitAvailableTimeout(uint16_t timeout)
{
unsigned long starttime = millis();
while ((millis() - starttime) < timeout) {
if (available()) {
return true;
}
YIELD;
}
return false;
}
bool RHGenericDriver::waitPacketSent()
{
while (_mode == RHModeTx)
YIELD; // Wait for any previous transmit to finish
return true;
}
bool RHGenericDriver::waitPacketSent(uint16_t timeout)
{
unsigned long starttime = millis();
while ((millis() - starttime) < timeout) {
if (_mode != RHModeTx) // Any previous transmit finished?
return true;
YIELD;
}
return false;
}
// Wait until no channel activity detected or timeout
bool RHGenericDriver::waitCAD()
{
if (!_cad_timeout)
return true;
// Wait for any channel activity to finish or timeout
// Sophisticated DCF function...
// DCF : BackoffTime = random() x aSlotTime
// 100 - 1000 ms
// 10 sec timeout
unsigned long t = millis();
while (isChannelActive()) {
if (millis() - t > _cad_timeout)
return false;
#if (RH_PLATFORM == RH_PLATFORM_STM32) // stdlib on STMF103 gets confused if random is redefined
delay(_random(1, 10) * 100);
#else
delay(random(1, 10) * 100); // Should these values be configurable? Macros?
#endif
}
return true;
}
// subclasses are expected to override if CAD is available for that radio
bool RHGenericDriver::isChannelActive()
{
return false;
}
void RHGenericDriver::setPromiscuous(bool promiscuous)
{
_promiscuous = promiscuous;
}
void RHGenericDriver::setThisAddress(uint8_t address)
{
_thisAddress = address;
}
void RHGenericDriver::setHeaderTo(uint8_t to)
{
_txHeaderTo = to;
}
void RHGenericDriver::setHeaderFrom(uint8_t from)
{
_txHeaderFrom = from;
}
void RHGenericDriver::setHeaderId(uint8_t id)
{
_txHeaderId = id;
}
void RHGenericDriver::setHeaderFlags(uint8_t set, uint8_t clear)
{
_txHeaderFlags &= ~clear;
_txHeaderFlags |= set;
}
uint8_t RHGenericDriver::headerTo()
{
return _rxHeaderTo;
}
uint8_t RHGenericDriver::headerFrom()
{
return _rxHeaderFrom;
}
uint8_t RHGenericDriver::headerId()
{
return _rxHeaderId;
}
uint8_t RHGenericDriver::headerFlags()
{
return _rxHeaderFlags;
}
int16_t RHGenericDriver::lastRssi()
{
return _lastRssi;
}
RHGenericDriver::RHMode RHGenericDriver::mode()
{
return _mode;
}
void RHGenericDriver::setMode(RHMode mode)
{
_mode = mode;
}
bool RHGenericDriver::sleep()
{
return false;
}
// Diagnostic help
void RHGenericDriver::printBuffer(const char *prompt, const uint8_t *buf, uint8_t len)
{
#ifdef RH_HAVE_SERIAL
Serial.println(prompt);
uint8_t i;
for (i = 0; i < len; i++) {
if (i % 16 == 15)
Serial.println(buf[i], HEX);
else {
Serial.print(buf[i], HEX);
Serial.print(' ');
}
}
Serial.println("");
#endif
}
uint16_t RHGenericDriver::rxBad()
{
return _rxBad;
}
uint16_t RHGenericDriver::rxGood()
{
return _rxGood;
}
uint16_t RHGenericDriver::txGood()
{
return _txGood;
}
void RHGenericDriver::setCADTimeout(unsigned long cad_timeout)
{
_cad_timeout = cad_timeout;
}
#if (RH_PLATFORM == RH_PLATFORM_ATTINY)
// Tinycore does not have __cxa_pure_virtual, so without this we
// get linking complaints from the default code generated for pure virtual functions
extern "C" void __cxa_pure_virtual()
{
while (1)
;
}
#endif

View File

@@ -1,280 +0,0 @@
// RHGenericDriver.h
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2014 Mike McCauley
// $Id: RHGenericDriver.h,v 1.23 2018/09/23 23:54:01 mikem Exp $
#ifndef RHGenericDriver_h
#define RHGenericDriver_h
#include <RadioHead.h>
// Defines bits of the FLAGS header reserved for use by the RadioHead library and
// the flags available for use by applications
#define RH_FLAGS_RESERVED 0xf0
#define RH_FLAGS_APPLICATION_SPECIFIC 0x0f
#define RH_FLAGS_NONE 0
// Default timeout for waitCAD() in ms
#define RH_CAD_DEFAULT_TIMEOUT 10000
/////////////////////////////////////////////////////////////////////
/// \class RHGenericDriver RHGenericDriver.h <RHGenericDriver.h>
/// \brief Abstract base class for a RadioHead driver.
///
/// This class defines the functions that must be provided by any RadioHead driver.
/// Different types of driver will implement all the abstract functions, and will perhaps override
/// other functions in this subclass, or perhaps add new functions specifically required by that driver.
/// Do not directly instantiate this class: it is only to be subclassed by driver classes.
///
/// Subclasses are expected to implement a half-duplex, unreliable, error checked, unaddressed packet transport.
/// They are expected to carry a message payload with an appropriate maximum length for the transport hardware
/// and to also carry unaltered 4 message headers: TO, FROM, ID, FLAGS
///
/// \par Headers
///
/// Each message sent and received by a RadioHead driver includes 4 headers:
/// -TO The node address that the message is being sent to (broadcast RH_BROADCAST_ADDRESS (255) is permitted)
/// -FROM The node address of the sending node
/// -ID A message ID, distinct (over short time scales) for each message sent by a particilar node
/// -FLAGS A bitmask of flags. The most significant 4 bits are reserved for use by RadioHead. The least
/// significant 4 bits are reserved for applications.
class RHGenericDriver
{
public:
/// \brief Defines different operating modes for the transport hardware
///
/// These are the different values that can be adopted by the _mode variable and
/// returned by the mode() member function,
typedef enum {
RHModeInitialising = 0, ///< Transport is initialising. Initial default value until init() is called..
RHModeSleep, ///< Transport hardware is in low power sleep mode (if supported)
RHModeIdle, ///< Transport is idle.
RHModeTx, ///< Transport is in the process of transmitting a message.
RHModeRx, ///< Transport is in the process of receiving a message.
RHModeCad ///< Transport is in the process of detecting channel activity (if supported)
} RHMode;
/// Constructor
RHGenericDriver();
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
virtual bool init();
/// Tests whether a new message is available
/// from the Driver.
/// On most drivers, if there is an uncollected received message, and there is no message
/// currently bing transmitted, this will also put the Driver into RHModeRx mode until
/// a message is actually received by the transport, when it will be returned to RHModeIdle.
/// This can be called multiple times in a timeout loop.
/// \return true if a new, complete, error-free uncollected message is available to be retreived by recv().
virtual bool available() = 0;
/// Returns the maximum message length
/// available in this Driver.
/// \return The maximum legal message length
virtual uint8_t maxMessageLength() = 0;
/// Starts the receiver and blocks until a valid received
/// message is available.
virtual void waitAvailable();
/// Blocks until the transmitter
/// is no longer transmitting.
virtual bool waitPacketSent();
/// Blocks until the transmitter is no longer transmitting.
/// or until the timeout occuers, whichever happens first
/// \param[in] timeout Maximum time to wait in milliseconds.
/// \return true if the radio completed transmission within the timeout period. False if it timed out.
virtual bool waitPacketSent(uint16_t timeout);
/// Starts the receiver and blocks until a received message is available or a timeout
/// \param[in] timeout Maximum time to wait in milliseconds.
/// \return true if a message is available
virtual bool waitAvailableTimeout(uint16_t timeout);
// Bent G Christensen (bentor@gmail.com), 08/15/2016
/// Channel Activity Detection (CAD).
/// Blocks until channel activity is finished or CAD timeout occurs.
/// Uses the radio's CAD function (if supported) to detect channel activity.
/// Implements random delays of 100 to 1000ms while activity is detected and until timeout.
/// Caution: the random() function is not seeded. If you want non-deterministic behaviour, consider
/// using something like randomSeed(analogRead(A0)); in your sketch.
/// Permits the implementation of listen-before-talk mechanism (Collision Avoidance).
/// Calls the isChannelActive() member function for the radio (if supported)
/// to determine if the channel is active. If the radio does not support isChannelActive(),
/// always returns true immediately
/// \return true if the radio-specific CAD (as returned by isChannelActive())
/// shows the channel is clear within the timeout period (or the timeout period is 0), else returns false.
virtual bool waitCAD();
/// Sets the Channel Activity Detection timeout in milliseconds to be used by waitCAD().
/// The default is 0, which means do not wait for CAD detection.
/// CAD detection depends on support for isChannelActive() by your particular radio.
void setCADTimeout(unsigned long cad_timeout);
/// Determine if the currently selected radio channel is active.
/// This is expected to be subclassed by specific radios to implement their Channel Activity Detection
/// if supported. If the radio does not support CAD, returns true immediately. If a RadioHead radio
/// supports isChannelActive() it will be documented in the radio specific documentation.
/// This is called automatically by waitCAD().
/// \return true if the radio-specific CAD (as returned by override of isChannelActive()) shows the
/// current radio channel as active, else false. If there is no radio-specific CAD, returns false.
virtual bool isChannelActive();
/// Sets the address of this node. Defaults to 0xFF. Subclasses or the user may want to change this.
/// This will be used to test the adddress in incoming messages. In non-promiscuous mode,
/// only messages with a TO header the same as thisAddress or the broadcast addess (0xFF) will be accepted.
/// In promiscuous mode, all messages will be accepted regardless of the TO header.
/// In a conventional multinode system, all nodes will have a unique address
/// (which you could store in EEPROM).
/// You would normally set the header FROM address to be the same as thisAddress (though you dont have to,
/// allowing the possibilty of address spoofing).
/// \param[in] thisAddress The address of this node.
virtual void setThisAddress(uint8_t thisAddress);
/// Sets the TO header to be sent in all subsequent messages
/// \param[in] to The new TO header value
virtual void setHeaderTo(uint8_t to);
/// Sets the FROM header to be sent in all subsequent messages
/// \param[in] from The new FROM header value
virtual void setHeaderFrom(uint8_t from);
/// Sets the ID header to be sent in all subsequent messages
/// \param[in] id The new ID header value
virtual void setHeaderId(uint8_t id);
/// Sets and clears bits in the FLAGS header to be sent in all subsequent messages
/// First it clears he FLAGS according to the clear argument, then sets the flags according to the
/// set argument. The default for clear always clears the application specific flags.
/// \param[in] set bitmask of bits to be set. Flags are cleared with the clear mask before being set.
/// \param[in] clear bitmask of flags to clear. Defaults to RH_FLAGS_APPLICATION_SPECIFIC
/// which clears the application specific flags, resulting in new application specific flags
/// identical to the set.
virtual void setHeaderFlags(uint8_t set, uint8_t clear = RH_FLAGS_APPLICATION_SPECIFIC);
/// Tells the receiver to accept messages with any TO address, not just messages
/// addressed to thisAddress or the broadcast address
/// \param[in] promiscuous true if you wish to receive messages with any TO address
virtual void setPromiscuous(bool promiscuous);
/// Returns the TO header of the last received message
/// \return The TO header
virtual uint8_t headerTo();
/// Returns the FROM header of the last received message
/// \return The FROM header
virtual uint8_t headerFrom();
/// Returns the ID header of the last received message
/// \return The ID header
virtual uint8_t headerId();
/// Returns the FLAGS header of the last received message
/// \return The FLAGS header
virtual uint8_t headerFlags();
/// Returns the most recent RSSI (Receiver Signal Strength Indicator).
/// Usually it is the RSSI of the last received message, which is measured when the preamble is received.
/// If you called readRssi() more recently, it will return that more recent value.
/// \return The most recent RSSI measurement in dBm.
virtual int16_t lastRssi();
/// Returns the operating mode of the library.
/// \return the current mode, one of RF69_MODE_*
virtual RHMode mode();
/// Sets the operating mode of the transport.
virtual void setMode(RHMode mode);
/// Sets the transport hardware into low-power sleep mode
/// (if supported). May be overridden by specific drivers to initialte sleep mode.
/// If successful, the transport will stay in sleep mode until woken by
/// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
/// \return true if sleep mode is supported by transport hardware and the RadioHead driver, and if sleep mode
/// was successfully entered. If sleep mode is not suported, return false.
virtual bool sleep();
/// Prints a data buffer in HEX.
/// For diagnostic use
/// \param[in] prompt string to preface the print
/// \param[in] buf Location of the buffer to print
/// \param[in] len Length of the buffer in octets.
static void printBuffer(const char *prompt, const uint8_t *buf, uint8_t len);
/// Returns the count of the number of bad received packets (ie packets with bad lengths, checksum etc)
/// which were rejected and not delivered to the application.
/// Caution: not all drivers can correctly report this count. Some underlying hardware only report
/// good packets.
/// \return The number of bad packets received.
virtual uint16_t rxBad();
/// Returns the count of the number of
/// good received packets
/// \return The number of good packets received.
virtual uint16_t rxGood();
/// Returns the count of the number of
/// packets successfully transmitted (though not necessarily received by the destination)
/// \return The number of packets successfully transmitted
virtual uint16_t txGood();
protected:
/// The current transport operating mode
volatile RHMode _mode;
/// This node id
uint8_t _thisAddress;
/// Whether the transport is in promiscuous mode
bool _promiscuous;
/// TO header in the last received mesasge
volatile uint8_t _rxHeaderTo;
/// FROM header in the last received mesasge
volatile uint8_t _rxHeaderFrom;
/// ID header in the last received mesasge
volatile uint8_t _rxHeaderId;
/// FLAGS header in the last received mesasge
volatile uint8_t _rxHeaderFlags;
/// TO header to send in all messages
uint8_t _txHeaderTo;
/// FROM header to send in all messages
uint8_t _txHeaderFrom;
/// ID header to send in all messages
uint8_t _txHeaderId;
/// FLAGS header to send in all messages
uint8_t _txHeaderFlags;
/// The value of the last received RSSI value, in some transport specific units
volatile int16_t _lastRssi;
/// Count of the number of bad messages (eg bad checksum etc) received
volatile uint16_t _rxBad;
/// Count of the number of successfully transmitted messaged
volatile uint16_t _rxGood;
/// Count of the number of bad messages (correct checksum etc) received
volatile uint16_t _txGood;
/// Channel activity detected
volatile bool _cad;
/// Channel activity timeout in ms
unsigned int _cad_timeout;
private:
};
#endif

View File

@@ -1,31 +0,0 @@
// RHGenericSPI.cpp
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2011 Mike McCauley
// Contributed by Joanna Rutkowska
// $Id: RHGenericSPI.cpp,v 1.2 2014/04/12 05:26:05 mikem Exp $
#include <RHGenericSPI.h>
RHGenericSPI::RHGenericSPI(Frequency frequency, BitOrder bitOrder, DataMode dataMode)
:
_frequency(frequency),
_bitOrder(bitOrder),
_dataMode(dataMode)
{
}
void RHGenericSPI::setBitOrder(BitOrder bitOrder)
{
_bitOrder = bitOrder;
}
void RHGenericSPI::setDataMode(DataMode dataMode)
{
_dataMode = dataMode;
}
void RHGenericSPI::setFrequency(Frequency frequency)
{
_frequency = frequency;
}

View File

@@ -1,183 +0,0 @@
// RHGenericSPI.h
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2011 Mike McCauley
// Contributed by Joanna Rutkowska
// $Id: RHGenericSPI.h,v 1.9 2020/01/05 07:02:23 mikem Exp mikem $
#ifndef RHGenericSPI_h
#define RHGenericSPI_h
#include <RadioHead.h>
/////////////////////////////////////////////////////////////////////
/// \class RHGenericSPI RHGenericSPI.h <RHGenericSPI.h>
/// \brief Base class for SPI interfaces
///
/// This generic abstract class is used to encapsulate hardware or software SPI interfaces for
/// a variety of platforms.
/// The intention is so that driver classes can be configured to use hardware or software SPI
/// without changing the main code.
///
/// You must provide a subclass of this class to driver constructors that require SPI.
/// A concrete subclass that encapsualates the standard Arduino hardware SPI and a bit-banged
/// software implementation is included.
///
/// Do not directly use this class: it must be subclassed and the following abstract functions at least
/// must be implmented:
/// - begin()
/// - end()
/// - transfer()
class RHGenericSPI
{
public:
/// \brief Defines constants for different SPI modes
///
/// Defines constants for different SPI modes
/// that can be passed to the constructor or setMode()
/// We need to define these in a device and platform independent way, because the
/// SPI implementation is different on each platform.
typedef enum
{
DataMode0 = 0, ///< SPI Mode 0: CPOL = 0, CPHA = 0
DataMode1, ///< SPI Mode 1: CPOL = 0, CPHA = 1
DataMode2, ///< SPI Mode 2: CPOL = 1, CPHA = 0
DataMode3, ///< SPI Mode 3: CPOL = 1, CPHA = 1
} DataMode;
/// \brief Defines constants for different SPI bus frequencies
///
/// Defines constants for different SPI bus frequencies
/// that can be passed to setFrequency().
/// The frequency you get may not be exactly the one according to the name.
/// We need to define these in a device and platform independent way, because the
/// SPI implementation is different on each platform.
typedef enum
{
Frequency1MHz = 0, ///< SPI bus frequency close to 1MHz
Frequency2MHz, ///< SPI bus frequency close to 2MHz
Frequency4MHz, ///< SPI bus frequency close to 4MHz
Frequency8MHz, ///< SPI bus frequency close to 8MHz
Frequency16MHz ///< SPI bus frequency close to 16MHz
} Frequency;
/// \brief Defines constants for different SPI endianness
///
/// Defines constants for different SPI endianness
/// that can be passed to setBitOrder()
/// We need to define these in a device and platform independent way, because the
/// SPI implementation is different on each platform.
typedef enum
{
BitOrderMSBFirst = 0, ///< SPI MSB first
BitOrderLSBFirst, ///< SPI LSB first
} BitOrder;
/// Constructor
/// Creates an instance of an abstract SPI interface.
/// Do not use this contructor directly: you must instead use on of the concrete subclasses provided
/// such as RHHardwareSPI or RHSoftwareSPI
/// \param[in] frequency One of RHGenericSPI::Frequency to select the SPI bus frequency. The frequency
/// is mapped to the closest available bus frequency on the platform.
/// \param[in] bitOrder Select the SPI bus bit order, one of RHGenericSPI::BitOrderMSBFirst or
/// RHGenericSPI::BitOrderLSBFirst.
/// \param[in] dataMode Selects the SPI bus data mode. One of RHGenericSPI::DataMode
RHGenericSPI(Frequency frequency = Frequency1MHz, BitOrder bitOrder = BitOrderMSBFirst, DataMode dataMode = DataMode0);
/// Transfer a single octet to and from the SPI interface
/// \param[in] data The octet to send
/// \return The octet read from SPI while the data octet was sent
virtual uint8_t transfer(uint8_t data) = 0;
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
/// Transfer up to 2 bytes on the SPI interface
/// \param[in] byte0 The first byte to be sent on the SPI interface
/// \param[in] byte1 The second byte to be sent on the SPI interface
/// \return The second byte clocked in as the second byte is sent.
virtual uint8_t transfer2B(uint8_t byte0, uint8_t byte1) = 0;
/// Read a number of bytes on the SPI interface from an NRF device
/// \param[in] reg The NRF device register to read
/// \param[out] dest The buffer to hold the bytes read
/// \param[in] len The number of bytes to read
/// \return The NRF status byte
virtual uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len) = 0;
/// Wrte a number of bytes on the SPI interface to an NRF device
/// \param[in] reg The NRF device register to read
/// \param[out] src The buffer to hold the bytes write
/// \param[in] len The number of bytes to write
/// \return The NRF status byte
virtual uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len) = 0;
#endif
/// SPI Configuration methods
/// Enable SPI interrupts (if supported)
/// This can be used in an SPI slave to indicate when an SPI message has been received
virtual void attachInterrupt() {};
/// Disable SPI interrupts (if supported)
/// This can be used to diable the SPI interrupt in slaves where that is supported.
virtual void detachInterrupt() {};
/// Initialise the SPI library.
/// Call this after configuring and before using the SPI library
virtual void begin() = 0;
/// Disables the SPI bus (leaving pin modes unchanged).
/// Call this after you have finished using the SPI interface
virtual void end() = 0;
/// Sets the bit order the SPI interface will use
/// Sets the order of the bits shifted out of and into the SPI bus, either
/// LSBFIRST (least-significant bit first) or MSBFIRST (most-significant bit first).
/// \param[in] bitOrder Bit order to be used: one of RHGenericSPI::BitOrder
virtual void setBitOrder(BitOrder bitOrder);
/// Sets the SPI data mode: that is, clock polarity and phase.
/// See the Wikipedia article on SPI for details.
/// \param[in] dataMode The mode to use: one of RHGenericSPI::DataMode
virtual void setDataMode(DataMode dataMode);
/// Sets the SPI clock divider relative to the system clock.
/// On AVR based boards, the dividers available are 2, 4, 8, 16, 32, 64 or 128.
/// The default setting is SPI_CLOCK_DIV4, which sets the SPI clock to one-quarter
/// the frequency of the system clock (4 Mhz for the boards at 16 MHz).
/// \param[in] frequency The data rate to use: one of RHGenericSPI::Frequency
virtual void setFrequency(Frequency frequency);
/// Signal the start of an SPI transaction that must not be interrupted by other SPI actions
/// In subclasses that support transactions this will ensure that other SPI transactions
/// are blocked until this one is completed by endTransaction().
/// Base does nothing
/// Might be overridden in subclass
virtual void beginTransaction(){}
/// Signal the end of an SPI transaction
/// Base does nothing
/// Might be overridden in subclass
virtual void endTransaction(){}
/// Specify the interrupt number of the interrupt that will use SPI transactions
/// Tells the SPI support software that SPI transactions will occur with the interrupt
/// handler assocated with interruptNumber
/// Base does nothing
/// Might be overridden in subclass
/// \param[in] interruptNumber The number of the interrupt
virtual void usingInterrupt(uint8_t interruptNumber){
(void)interruptNumber;
}
protected:
/// The configure SPI Bus frequency, one of RHGenericSPI::Frequency
Frequency _frequency; // Bus frequency, one of RHGenericSPI::Frequency
/// Bit order, one of RHGenericSPI::BitOrder
BitOrder _bitOrder;
/// SPI bus mode, one of RHGenericSPI::DataMode
DataMode _dataMode;
};
#endif

View File

@@ -1,499 +0,0 @@
// RHHardwareSPI.cpp
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2011 Mike McCauley
// Contributed by Joanna Rutkowska
// $Id: RHHardwareSPI.cpp,v 1.25 2020/01/05 07:02:23 mikem Exp mikem $
#include <RHHardwareSPI.h>
#ifdef RH_HAVE_HARDWARE_SPI
// Declare a single default instance of the hardware SPI interface class
RHHardwareSPI hardware_spi;
#if (RH_PLATFORM == RH_PLATFORM_STM32) // Maple etc
// Declare an SPI interface to use
HardwareSPI SPI(1);
#elif (RH_PLATFORM == RH_PLATFORM_STM32STD) // STM32F4 Discovery
// Declare an SPI interface to use
HardwareSPI SPI(1);
#elif (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS) // Mongoose OS platform
HardwareSPI SPI(1);
#endif
// Arduino Due has default SPI pins on central SPI headers, and not on 10, 11, 12, 13
// as per other Arduinos
// http://21stdigitalhome.blogspot.com.au/2013/02/arduino-due-hardware-spi.html
#if defined (__arm__) && !defined(CORE_TEENSY) && !defined(SPI_CLOCK_DIV16) && !defined(RH_PLATFORM_NRF52)
// Arduino Due in 1.5.5 has no definitions for SPI dividers
// SPI clock divider is based on MCK of 84MHz
#define SPI_CLOCK_DIV16 (VARIANT_MCK/84000000) // 1MHz
#define SPI_CLOCK_DIV8 (VARIANT_MCK/42000000) // 2MHz
#define SPI_CLOCK_DIV4 (VARIANT_MCK/21000000) // 4MHz
#define SPI_CLOCK_DIV2 (VARIANT_MCK/10500000) // 8MHz
#define SPI_CLOCK_DIV1 (VARIANT_MCK/5250000) // 16MHz
#endif
RHHardwareSPI::RHHardwareSPI(Frequency frequency, BitOrder bitOrder, DataMode dataMode)
:
RHGenericSPI(frequency, bitOrder, dataMode)
{
}
uint8_t RHHardwareSPI::transfer(uint8_t data)
{
return SPI.transfer(data);
}
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
uint8_t RHHardwareSPI::transfer2B(uint8_t byte0, uint8_t byte1)
{
return SPI.transfer2B(byte0, byte1);
}
uint8_t RHHardwareSPI::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
{
return SPI.spiBurstRead(reg, dest, len);
}
uint8_t RHHardwareSPI::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
{
uint8_t status = SPI.spiBurstWrite(reg, src, len);
return status;
}
#endif
void RHHardwareSPI::attachInterrupt()
{
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO || RH_PLATFORM == RH_PLATFORM_NRF52)
SPI.attachInterrupt();
#endif
}
void RHHardwareSPI::detachInterrupt()
{
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO || RH_PLATFORM == RH_PLATFORM_NRF52)
SPI.detachInterrupt();
#endif
}
void RHHardwareSPI::begin()
{
#if defined(SPI_HAS_TRANSACTION)
// Perhaps this is a uniform interface for SPI?
// Currently Teensy and ESP32 only
uint32_t frequency;
if (_frequency == Frequency16MHz)
frequency = 16000000;
else if (_frequency == Frequency8MHz)
frequency = 8000000;
else if (_frequency == Frequency4MHz)
frequency = 4000000;
else if (_frequency == Frequency2MHz)
frequency = 2000000;
else
frequency = 1000000;
#if ((RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined (__arm__) && (defined(ARDUINO_SAM_DUE) || defined(ARDUINO_ARCH_SAMD))) || defined(ARDUINO_ARCH_NRF52) || defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_STM32) || defined(NRF52)
// Arduino Due in 1.5.5 has its own BitOrder :-(
// So too does Arduino Zero
// So too does rogerclarkmelbourne/Arduino_STM32
::BitOrder bitOrder;
#elif (RH_PLATFORM == RH_PLATFORM_ATTINY_MEGA)
::BitOrder bitOrder;
#else
uint8_t bitOrder;
#endif
if (_bitOrder == BitOrderLSBFirst)
bitOrder = LSBFIRST;
else
bitOrder = MSBFIRST;
uint8_t dataMode;
if (_dataMode == DataMode0)
dataMode = SPI_MODE0;
else if (_dataMode == DataMode1)
dataMode = SPI_MODE1;
else if (_dataMode == DataMode2)
dataMode = SPI_MODE2;
else if (_dataMode == DataMode3)
dataMode = SPI_MODE3;
else
dataMode = SPI_MODE0;
// Save the settings for use in transactions
_settings = SPISettings(frequency, bitOrder, dataMode);
SPI.begin();
#else // SPI_HAS_TRANSACTION
// Sigh: there are no common symbols for some of these SPI options across all platforms
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) || (RH_PLATFORM == RH_PLATFORM_UNO32) || (RH_PLATFORM == RH_PLATFORM_CHIPKIT_CORE || RH_PLATFORM == RH_PLATFORM_NRF52)
uint8_t dataMode;
if (_dataMode == DataMode0)
dataMode = SPI_MODE0;
else if (_dataMode == DataMode1)
dataMode = SPI_MODE1;
else if (_dataMode == DataMode2)
dataMode = SPI_MODE2;
else if (_dataMode == DataMode3)
dataMode = SPI_MODE3;
else
dataMode = SPI_MODE0;
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__) && defined(CORE_TEENSY)
// Temporary work-around due to problem where avr_emulation.h does not work properly for the setDataMode() cal
SPCR &= ~SPI_MODE_MASK;
#else
#if ((RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined (__arm__) && defined(ARDUINO_ARCH_SAMD)) || defined(ARDUINO_ARCH_NRF52)
// Zero requires begin() before anything else :-)
SPI.begin();
#endif
SPI.setDataMode(dataMode);
#endif
#if ((RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined (__arm__) && (defined(ARDUINO_SAM_DUE) || defined(ARDUINO_ARCH_SAMD))) || defined(ARDUINO_ARCH_NRF52) || defined (ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_STM32)
// Arduino Due in 1.5.5 has its own BitOrder :-(
// So too does Arduino Zero
// So too does rogerclarkmelbourne/Arduino_STM32
::BitOrder bitOrder;
#else
uint8_t bitOrder;
#endif
if (_bitOrder == BitOrderLSBFirst)
bitOrder = LSBFIRST;
else
bitOrder = MSBFIRST;
SPI.setBitOrder(bitOrder);
uint8_t divider;
switch (_frequency)
{
case Frequency1MHz:
default:
#if F_CPU == 8000000
divider = SPI_CLOCK_DIV8;
#else
divider = SPI_CLOCK_DIV16;
#endif
break;
case Frequency2MHz:
#if F_CPU == 8000000
divider = SPI_CLOCK_DIV4;
#else
divider = SPI_CLOCK_DIV8;
#endif
break;
case Frequency4MHz:
#if F_CPU == 8000000
divider = SPI_CLOCK_DIV2;
#else
divider = SPI_CLOCK_DIV4;
#endif
break;
case Frequency8MHz:
divider = SPI_CLOCK_DIV2; // 4MHz on an 8MHz Arduino
break;
case Frequency16MHz:
divider = SPI_CLOCK_DIV2; // Not really 16MHz, only 8MHz. 4MHz on an 8MHz Arduino
break;
}
SPI.setClockDivider(divider);
SPI.begin();
// Teensy requires it to be set _after_ begin()
SPI.setClockDivider(divider);
#elif (RH_PLATFORM == RH_PLATFORM_STM32) // Maple etc
spi_mode dataMode;
// Hmmm, if we do this as a switch, GCC on maple gets v confused!
if (_dataMode == DataMode0)
dataMode = SPI_MODE_0;
else if (_dataMode == DataMode1)
dataMode = SPI_MODE_1;
else if (_dataMode == DataMode2)
dataMode = SPI_MODE_2;
else if (_dataMode == DataMode3)
dataMode = SPI_MODE_3;
else
dataMode = SPI_MODE_0;
uint32 bitOrder;
if (_bitOrder == BitOrderLSBFirst)
bitOrder = LSBFIRST;
else
bitOrder = MSBFIRST;
SPIFrequency frequency; // Yes, I know these are not exact equivalents.
switch (_frequency)
{
case Frequency1MHz:
default:
frequency = SPI_1_125MHZ;
break;
case Frequency2MHz:
frequency = SPI_2_25MHZ;
break;
case Frequency4MHz:
frequency = SPI_4_5MHZ;
break;
case Frequency8MHz:
frequency = SPI_9MHZ;
break;
case Frequency16MHz:
frequency = SPI_18MHZ;
break;
}
SPI.begin(frequency, bitOrder, dataMode);
#elif (RH_PLATFORM == RH_PLATFORM_STM32STD) // STM32F4 discovery
uint8_t dataMode;
if (_dataMode == DataMode0)
dataMode = SPI_MODE0;
else if (_dataMode == DataMode1)
dataMode = SPI_MODE1;
else if (_dataMode == DataMode2)
dataMode = SPI_MODE2;
else if (_dataMode == DataMode3)
dataMode = SPI_MODE3;
else
dataMode = SPI_MODE0;
uint32_t bitOrder;
if (_bitOrder == BitOrderLSBFirst)
bitOrder = LSBFIRST;
else
bitOrder = MSBFIRST;
SPIFrequency frequency; // Yes, I know these are not exact equivalents.
switch (_frequency)
{
case Frequency1MHz:
default:
frequency = SPI_1_3125MHZ;
break;
case Frequency2MHz:
frequency = SPI_2_625MHZ;
break;
case Frequency4MHz:
frequency = SPI_5_25MHZ;
break;
case Frequency8MHz:
frequency = SPI_10_5MHZ;
break;
case Frequency16MHz:
frequency = SPI_21_0MHZ;
break;
}
SPI.begin(frequency, bitOrder, dataMode);
#elif (RH_PLATFORM == RH_PLATFORM_STM32F2) // Photon
uint8_t dataMode;
if (_dataMode == DataMode0)
dataMode = SPI_MODE0;
else if (_dataMode == DataMode1)
dataMode = SPI_MODE1;
else if (_dataMode == DataMode2)
dataMode = SPI_MODE2;
else if (_dataMode == DataMode3)
dataMode = SPI_MODE3;
else
dataMode = SPI_MODE0;
SPI.setDataMode(dataMode);
if (_bitOrder == BitOrderLSBFirst)
SPI.setBitOrder(LSBFIRST);
else
SPI.setBitOrder(MSBFIRST);
switch (_frequency)
{
case Frequency1MHz:
default:
SPI.setClockSpeed(1, MHZ);
break;
case Frequency2MHz:
SPI.setClockSpeed(2, MHZ);
break;
case Frequency4MHz:
SPI.setClockSpeed(4, MHZ);
break;
case Frequency8MHz:
SPI.setClockSpeed(8, MHZ);
break;
case Frequency16MHz:
SPI.setClockSpeed(16, MHZ);
break;
}
// SPI.setClockDivider(SPI_CLOCK_DIV4); // 72MHz / 4MHz = 18MHz
// SPI.setClockSpeed(1, MHZ);
SPI.begin();
#elif (RH_PLATFORM == RH_PLATFORM_ESP8266)
// Requires SPI driver for ESP8266 from https://github.com/esp8266/Arduino/tree/master/libraries/SPI
// Which ppears to be in Arduino Board Manager ESP8266 Community version 2.1.0
// Contributed by David Skinner
// begin comes first
SPI.begin();
// datamode
switch ( _dataMode )
{
case DataMode1:
SPI.setDataMode ( SPI_MODE1 );
break;
case DataMode2:
SPI.setDataMode ( SPI_MODE2 );
break;
case DataMode3:
SPI.setDataMode ( SPI_MODE3 );
break;
case DataMode0:
default:
SPI.setDataMode ( SPI_MODE0 );
break;
}
// bitorder
SPI.setBitOrder(_bitOrder == BitOrderLSBFirst ? LSBFIRST : MSBFIRST);
// frequency (this sets the divider)
switch (_frequency)
{
case Frequency1MHz:
default:
SPI.setFrequency(1000000);
break;
case Frequency2MHz:
SPI.setFrequency(2000000);
break;
case Frequency4MHz:
SPI.setFrequency(4000000);
break;
case Frequency8MHz:
SPI.setFrequency(8000000);
break;
case Frequency16MHz:
SPI.setFrequency(16000000);
break;
}
#elif (RH_PLATFORM == RH_PLATFORM_RASPI) // Raspberry PI
uint8_t dataMode;
if (_dataMode == DataMode0)
dataMode = BCM2835_SPI_MODE0;
else if (_dataMode == DataMode1)
dataMode = BCM2835_SPI_MODE1;
else if (_dataMode == DataMode2)
dataMode = BCM2835_SPI_MODE2;
else if (_dataMode == DataMode3)
dataMode = BCM2835_SPI_MODE3;
uint8_t bitOrder;
if (_bitOrder == BitOrderLSBFirst)
bitOrder = BCM2835_SPI_BIT_ORDER_LSBFIRST;
else
bitOrder = BCM2835_SPI_BIT_ORDER_MSBFIRST;
uint32_t divider;
switch (_frequency)
{
case Frequency1MHz:
default:
divider = BCM2835_SPI_CLOCK_DIVIDER_256;
break;
case Frequency2MHz:
divider = BCM2835_SPI_CLOCK_DIVIDER_128;
break;
case Frequency4MHz:
divider = BCM2835_SPI_CLOCK_DIVIDER_64;
break;
case Frequency8MHz:
divider = BCM2835_SPI_CLOCK_DIVIDER_32;
break;
case Frequency16MHz:
divider = BCM2835_SPI_CLOCK_DIVIDER_16;
break;
}
SPI.begin(divider, bitOrder, dataMode);
#elif (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
uint8_t dataMode = SPI_MODE0;
uint32_t frequency = 4000000; //!!! ESP32/NRF902 works ok at 4MHz but not at 8MHz SPI clock.
uint32_t bitOrder = MSBFIRST;
if (_dataMode == DataMode0) {
dataMode = SPI_MODE0;
} else if (_dataMode == DataMode1) {
dataMode = SPI_MODE1;
} else if (_dataMode == DataMode2) {
dataMode = SPI_MODE2;
} else if (_dataMode == DataMode3) {
dataMode = SPI_MODE3;
}
if (_bitOrder == BitOrderLSBFirst) {
bitOrder = LSBFIRST;
}
if (_frequency == Frequency4MHz)
frequency = 4000000;
else if (_frequency == Frequency2MHz)
frequency = 2000000;
else
frequency = 1000000;
SPI.begin(frequency, bitOrder, dataMode);
#else
#warning RHHardwareSPI does not support this platform yet. Consider adding it and contributing a patch.
#endif
#endif // SPI_HAS_TRANSACTION
}
void RHHardwareSPI::end()
{
return SPI.end();
}
void RHHardwareSPI::beginTransaction()
{
#if defined(SPI_HAS_TRANSACTION)
SPI.beginTransaction(_settings);
#endif
}
void RHHardwareSPI::endTransaction()
{
#if defined(SPI_HAS_TRANSACTION)
SPI.endTransaction();
#endif
}
void RHHardwareSPI::usingInterrupt(uint8_t interrupt)
{
#if defined(SPI_HAS_TRANSACTION) && !defined(RH_MISSING_SPIUSINGINTERRUPT)
SPI.usingInterrupt(interrupt);
#endif
(void)interrupt;
}
#endif

View File

@@ -1,116 +0,0 @@
// RHHardwareSPI.h
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2011 Mike McCauley
// Contributed by Joanna Rutkowska
// $Id: RHHardwareSPI.h,v 1.12 2020/01/05 07:02:23 mikem Exp mikem $
#ifndef RHHardwareSPI_h
#define RHHardwareSPI_h
#include <RHGenericSPI.h>
/////////////////////////////////////////////////////////////////////
/// \class RHHardwareSPI RHHardwareSPI.h <RHHardwareSPI.h>
/// \brief Encapsulate a hardware SPI bus interface
///
/// This concrete subclass of GenericSPIClass encapsulates the standard Arduino hardware and other
/// hardware SPI interfaces.
///
/// SPI transactions are supported in development environments that support it with SPI_HAS_TRANSACTION.
class RHHardwareSPI : public RHGenericSPI
{
#ifdef RH_HAVE_HARDWARE_SPI
public:
/// Constructor
/// Creates an instance of a hardware SPI interface, using whatever SPI hardware is available on
/// your processor platform. On Arduino and Uno32, uses SPI. On Maple, uses HardwareSPI.
/// \param[in] frequency One of RHGenericSPI::Frequency to select the SPI bus frequency. The frequency
/// is mapped to the closest available bus frequency on the platform.
/// \param[in] bitOrder Select the SPI bus bit order, one of RHGenericSPI::BitOrderMSBFirst or
/// RHGenericSPI::BitOrderLSBFirst.
/// \param[in] dataMode Selects the SPI bus data mode. One of RHGenericSPI::DataMode
RHHardwareSPI(Frequency frequency = Frequency1MHz, BitOrder bitOrder = BitOrderMSBFirst, DataMode dataMode = DataMode0);
/// Transfer a single octet to and from the SPI interface
/// \param[in] data The octet to send
/// \return The octet read from SPI while the data octet was sent
uint8_t transfer(uint8_t data);
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
/// Transfer (write) 2 bytes on the SPI interface to an NRF device
/// \param[in] byte0 The first byte to be sent on the SPI interface
/// \param[in] byte1 The second byte to be sent on the SPI interface
/// \return The second byte clocked in as the second byte is sent.
uint8_t transfer2B(uint8_t byte0, uint8_t byte1);
/// Read a number of bytes on the SPI interface from an NRF device
/// \param[in] reg The NRF device register to read
/// \param[out] dest The buffer to hold the bytes read
/// \param[in] len The number of bytes to read
/// \return The NRF status byte
uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len);
/// Wrte a number of bytes on the SPI interface to an NRF device
/// \param[in] reg The NRF device register to read
/// \param[out] src The buffer to hold the bytes write
/// \param[in] len The number of bytes to write
/// \return The NRF status byte
uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len);
#endif
// SPI Configuration methods
/// Enable SPI interrupts
/// This can be used in an SPI slave to indicate when an SPI message has been received
/// It will cause the SPI_STC_vect interrupt vectr to be executed
void attachInterrupt();
/// Disable SPI interrupts
/// This can be used to diable the SPI interrupt in slaves where that is supported.
void detachInterrupt();
/// Initialise the SPI library
/// Call this after configuring the SPI interface and before using it to transfer data.
/// Initializes the SPI bus by setting SCK, MOSI, and SS to outputs, pulling SCK and MOSI low, and SS high.
void begin();
/// Disables the SPI bus (leaving pin modes unchanged).
/// Call this after you have finished using the SPI interface.
void end();
#else
// not supported on ATTiny etc
uint8_t transfer(uint8_t /*data*/) {return 0;}
void begin(){}
void end(){}
#endif
/// Signal the start of an SPI transaction that must not be interrupted by other SPI actions
/// In subclasses that support transactions this will ensure that other SPI transactions
/// are blocked until this one is completed by endTransaction().
/// Uses the underlying SPI transaction support if available as specified by SPI_HAS_TRANSACTION.
virtual void beginTransaction();
/// Signal the end of an SPI transaction
/// Uses the underlying SPI transaction support if available as specified by SPI_HAS_TRANSACTION.
virtual void endTransaction();
/// Specify the interrupt number of the interrupt that will use SPI transactions
/// Tells the SPI support software that SPI transactions will occur with the interrupt
/// handler assocated with interruptNumber
/// Uses the underlying SPI transaction support if available as specified by SPI_HAS_TRANSACTION.
/// \param[in] interruptNumber The number of the interrupt
virtual void usingInterrupt(uint8_t interruptNumber);
protected:
#if defined(SPI_HAS_TRANSACTION)
// Storage for SPI settings used in SPI transactions
SPISettings _settings;
#endif
};
// Built in default instance
extern RHHardwareSPI hardware_spi;
#endif

View File

@@ -1,137 +0,0 @@
// RHNRFSPIDriver.cpp
//
// Copyright (C) 2014 Mike McCauley
// $Id: RHNRFSPIDriver.cpp,v 1.5 2020/01/05 07:02:23 mikem Exp mikem $
#include <RHNRFSPIDriver.h>
RHNRFSPIDriver::RHNRFSPIDriver(uint8_t slaveSelectPin, RHGenericSPI& spi)
:
_spi(spi),
_slaveSelectPin(slaveSelectPin)
{
}
bool RHNRFSPIDriver::init()
{
// start the SPI library with the default speeds etc:
// On Arduino Due this defaults to SPI1 on the central group of 6 SPI pins
_spi.begin();
// Initialise the slave select pin
// On Maple, this must be _after_ spi.begin
pinMode(_slaveSelectPin, OUTPUT);
digitalWrite(_slaveSelectPin, HIGH);
delay(100);
return true;
}
// Low level commands for interfacing with the device
uint8_t RHNRFSPIDriver::spiCommand(uint8_t command)
{
uint8_t status;
ATOMIC_BLOCK_START;
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
status = _spi.transfer(command);
#else
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
status = _spi.transfer(command);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
#endif
ATOMIC_BLOCK_END;
return status;
}
uint8_t RHNRFSPIDriver::spiRead(uint8_t reg)
{
uint8_t val;
ATOMIC_BLOCK_START;
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
val = _spi.transfer2B(reg, 0); // Send the address, discard the status, The written value is ignored, reg value is read
#else
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
_spi.transfer(reg); // Send the address, discard the status
val = _spi.transfer(0); // The written value is ignored, reg value is read
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
#endif
ATOMIC_BLOCK_END;
return val;
}
uint8_t RHNRFSPIDriver::spiWrite(uint8_t reg, uint8_t val)
{
uint8_t status = 0;
ATOMIC_BLOCK_START;
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
status = _spi.transfer2B(reg, val);
#else
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
status = _spi.transfer(reg); // Send the address
_spi.transfer(val); // New value follows
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__) && defined(CORE_TEENSY)
// Sigh: some devices, such as MRF89XA dont work properly on Teensy 3.1:
// At 1MHz, the clock returns low _after_ slave select goes high, which prevents SPI
// write working. This delay gixes time for the clock to return low.
delayMicroseconds(5);
#endif
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
#endif
ATOMIC_BLOCK_END;
return status;
}
uint8_t RHNRFSPIDriver::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
{
uint8_t status = 0;
ATOMIC_BLOCK_START;
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
status = _spi.spiBurstRead(reg, dest, len);
#else
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
status = _spi.transfer(reg); // Send the start address
while (len--)
*dest++ = _spi.transfer(0);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
#endif
ATOMIC_BLOCK_END;
return status;
}
uint8_t RHNRFSPIDriver::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
{
uint8_t status = 0;
ATOMIC_BLOCK_START;
#if (RH_PLATFORM == RH_PLATFORM_MONGOOSE_OS)
status = _spi.spiBurstWrite(reg, src, len);
#else
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
status = _spi.transfer(reg); // Send the start address
while (len--)
_spi.transfer(*src++);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
#endif
ATOMIC_BLOCK_END;
return status;
}
void RHNRFSPIDriver::setSlaveSelectPin(uint8_t slaveSelectPin)
{
_slaveSelectPin = slaveSelectPin;
}
void RHNRFSPIDriver::spiUsingInterrupt(uint8_t interruptNumber)
{
_spi.usingInterrupt(interruptNumber);
}

View File

@@ -1,101 +0,0 @@
// RHNRFSPIDriver.h
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2014 Mike McCauley
// $Id: RHNRFSPIDriver.h,v 1.5 2017/11/06 00:04:08 mikem Exp $
#ifndef RHNRFSPIDriver_h
#define RHNRFSPIDriver_h
#include <RHGenericDriver.h>
#include <RHHardwareSPI.h>
class RHGenericSPI;
/////////////////////////////////////////////////////////////////////
/// \class RHNRFSPIDriver RHNRFSPIDriver.h <RHNRFSPIDriver.h>
/// \brief Base class for RadioHead drivers that use the SPI bus
/// to communicate with its NRF family transport hardware.
///
/// This class can be subclassed by Drivers that require to use the SPI bus.
/// It can be configured to use either the RHHardwareSPI class (if there is one available on the platform)
/// of the bitbanged RHSoftwareSPI class. The dfault behaviour is to use a pre-instantiated built-in RHHardwareSPI
/// interface.
///
/// SPI bus access is protected by ATOMIC_BLOCK_START and ATOMIC_BLOCK_END, which will ensure interrupts
/// are disabled during access.
///
/// The read and write routines use SPI conventions as used by Nordic NRF radios and otehr devices,
/// but these can be overriden
/// in subclasses if necessary.
///
/// Application developers are not expected to instantiate this class directly:
/// it is for the use of Driver developers.
class RHNRFSPIDriver : public RHGenericDriver
{
public:
/// Constructor
/// \param[in] slaveSelectPin The controller pin to use to select the desired SPI device. This pin will be driven LOW
/// during SPI communications with the SPI device that uis iused by this Driver.
/// \param[in] spi Reference to the SPI interface to use. The default is to use a default built-in Hardware interface.
RHNRFSPIDriver(uint8_t slaveSelectPin = SS, RHGenericSPI& spi = hardware_spi);
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
bool init();
/// Sends a single command to the device
/// \param[in] command The command code to send to the device.
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
/// it may or may not be meaningfule depending on the the type of device being accessed.
uint8_t spiCommand(uint8_t command);
/// Reads a single register from the SPI device
/// \param[in] reg Register number
/// \return The value of the register
uint8_t spiRead(uint8_t reg);
/// Writes a single byte to the SPI device
/// \param[in] reg Register number
/// \param[in] val The value to write
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
/// it may or may not be meaningfule depending on the the type of device being accessed.
uint8_t spiWrite(uint8_t reg, uint8_t val);
/// Reads a number of consecutive registers from the SPI device using burst read mode
/// \param[in] reg Register number of the first register
/// \param[in] dest Array to write the register values to. Must be at least len bytes
/// \param[in] len Number of bytes to read
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
/// it may or may not be meaningfule depending on the the type of device being accessed.
uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len);
/// Write a number of consecutive registers using burst write mode
/// \param[in] reg Register number of the first register
/// \param[in] src Array of new register values to write. Must be at least len bytes
/// \param[in] len Number of bytes to write
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
/// it may or may not be meaningfule depending on the the type of device being accessed.
uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len);
/// Set or change the pin to be used for SPI slave select.
/// This can be called at any time to change the
/// pin that will be used for slave select in subsquent SPI operations.
/// \param[in] slaveSelectPin The pin to use
void setSlaveSelectPin(uint8_t slaveSelectPin);
/// Set the SPI interrupt number
/// If SPI transactions can occur within an interrupt, tell the low level SPI
/// interface which interrupt is used
/// \param[in] interruptNumber the interrupt number
void spiUsingInterrupt(uint8_t interruptNumber);
protected:
/// Reference to the RHGenericSPI instance to use to trasnfer data with teh SPI device
RHGenericSPI& _spi;
/// The pin number of the Slave Select pin that is used to select the desired device.
uint8_t _slaveSelectPin;
};
#endif

View File

@@ -1,95 +0,0 @@
// RHSPIDriver.cpp
//
// Copyright (C) 2014 Mike McCauley
// $Id: RHSPIDriver.cpp,v 1.11 2017/11/06 00:04:08 mikem Exp $
#include <RHSPIDriver.h>
RHSPIDriver::RHSPIDriver(uint8_t slaveSelectPin, RHGenericSPI& spi)
:
_spi(spi),
_slaveSelectPin(slaveSelectPin)
{
}
bool RHSPIDriver::init()
{
// start the SPI library with the default speeds etc:
// On Arduino Due this defaults to SPI1 on the central group of 6 SPI pins
_spi.begin();
// Initialise the slave select pin
// On Maple, this must be _after_ spi.begin
pinMode(_slaveSelectPin, OUTPUT);
digitalWrite(_slaveSelectPin, HIGH);
delay(100);
return true;
}
uint8_t RHSPIDriver::spiRead(uint8_t reg)
{
uint8_t val;
ATOMIC_BLOCK_START;
digitalWrite(_slaveSelectPin, LOW);
_spi.transfer(reg & ~RH_SPI_WRITE_MASK); // Send the address with the write mask off
val = _spi.transfer(0); // The written value is ignored, reg value is read
digitalWrite(_slaveSelectPin, HIGH);
ATOMIC_BLOCK_END;
return val;
}
uint8_t RHSPIDriver::spiWrite(uint8_t reg, uint8_t val)
{
uint8_t status = 0;
ATOMIC_BLOCK_START;
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
status = _spi.transfer(reg | RH_SPI_WRITE_MASK); // Send the address with the write mask on
_spi.transfer(val); // New value follows
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
ATOMIC_BLOCK_END;
return status;
}
uint8_t RHSPIDriver::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
{
uint8_t status = 0;
ATOMIC_BLOCK_START;
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
status = _spi.transfer(reg & ~RH_SPI_WRITE_MASK); // Send the start address with the write mask off
while (len--)
*dest++ = _spi.transfer(0);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
ATOMIC_BLOCK_END;
return status;
}
uint8_t RHSPIDriver::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
{
uint8_t status = 0;
ATOMIC_BLOCK_START;
_spi.beginTransaction();
digitalWrite(_slaveSelectPin, LOW);
status = _spi.transfer(reg | RH_SPI_WRITE_MASK); // Send the start address with the write mask on
while (len--)
_spi.transfer(*src++);
digitalWrite(_slaveSelectPin, HIGH);
_spi.endTransaction();
ATOMIC_BLOCK_END;
return status;
}
void RHSPIDriver::setSlaveSelectPin(uint8_t slaveSelectPin)
{
_slaveSelectPin = slaveSelectPin;
}
void RHSPIDriver::spiUsingInterrupt(uint8_t interruptNumber)
{
_spi.usingInterrupt(interruptNumber);
}

View File

@@ -1,100 +0,0 @@
// RHSPIDriver.h
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2014 Mike McCauley
// $Id: RHSPIDriver.h,v 1.14 2019/09/06 04:40:40 mikem Exp $
#ifndef RHSPIDriver_h
#define RHSPIDriver_h
#include <RHGenericDriver.h>
#include <RHHardwareSPI.h>
// This is the bit in the SPI address that marks it as a write
#define RH_SPI_WRITE_MASK 0x80
class RHGenericSPI;
/////////////////////////////////////////////////////////////////////
/// \class RHSPIDriver RHSPIDriver.h <RHSPIDriver.h>
/// \brief Base class for RadioHead drivers that use the SPI bus
/// to communicate with its transport hardware.
///
/// This class can be subclassed by Drivers that require to use the SPI bus.
/// It can be configured to use either the RHHardwareSPI class (if there is one available on the platform)
/// of the bitbanged RHSoftwareSPI class. The default behaviour is to use a pre-instantiated built-in RHHardwareSPI
/// interface.
///
/// SPI bus access is protected by ATOMIC_BLOCK_START and ATOMIC_BLOCK_END, which will ensure interrupts
/// are disabled during access.
///
/// The read and write routines implement commonly used SPI conventions: specifically that the MSB
/// of the first byte transmitted indicates that it is a write and the remaining bits indicate the rehgister to access)
/// This can be overriden
/// in subclasses if necessaryor an alternative class, RHNRFSPIDriver can be used to access devices like
/// Nordic NRF series radios, which have different requirements.
///
/// Application developers are not expected to instantiate this class directly:
/// it is for the use of Driver developers.
class RHSPIDriver : public RHGenericDriver
{
public:
/// Constructor
/// \param[in] slaveSelectPin The controler pin to use to select the desired SPI device. This pin will be driven LOW
/// during SPI communications with the SPI device that uis iused by this Driver.
/// \param[in] spi Reference to the SPI interface to use. The default is to use a default built-in Hardware interface.
RHSPIDriver(uint8_t slaveSelectPin = SS, RHGenericSPI& spi = hardware_spi);
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
bool init();
/// Reads a single register from the SPI device
/// \param[in] reg Register number
/// \return The value of the register
uint8_t spiRead(uint8_t reg);
/// Writes a single byte to the SPI device
/// \param[in] reg Register number
/// \param[in] val The value to write
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
/// it may or may not be meaningfule depending on the the type of device being accessed.
uint8_t spiWrite(uint8_t reg, uint8_t val);
/// Reads a number of consecutive registers from the SPI device using burst read mode
/// \param[in] reg Register number of the first register
/// \param[in] dest Array to write the register values to. Must be at least len bytes
/// \param[in] len Number of bytes to read
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
/// it may or may not be meaningfule depending on the the type of device being accessed.
uint8_t spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len);
/// Write a number of consecutive registers using burst write mode
/// \param[in] reg Register number of the first register
/// \param[in] src Array of new register values to write. Must be at least len bytes
/// \param[in] len Number of bytes to write
/// \return Some devices return a status byte during the first data transfer. This byte is returned.
/// it may or may not be meaningfule depending on the the type of device being accessed.
uint8_t spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len);
/// Set or change the pin to be used for SPI slave select.
/// This can be called at any time to change the
/// pin that will be used for slave select in subsquent SPI operations.
/// \param[in] slaveSelectPin The pin to use
void setSlaveSelectPin(uint8_t slaveSelectPin);
/// Set the SPI interrupt number
/// If SPI transactions can occur within an interrupt, tell the low level SPI
/// interface which interrupt is used
/// \param[in] interruptNumber the interrupt number
void spiUsingInterrupt(uint8_t interruptNumber);
protected:
/// Reference to the RHGenericSPI instance to use to transfer data with the SPI device
RHGenericSPI& _spi;
/// The pin number of the Slave Select pin that is used to select the desired device.
uint8_t _slaveSelectPin;
};
#endif

View File

@@ -1,166 +0,0 @@
// SoftwareSPI.cpp
// Author: Chris Lapa (chris@lapa.com.au)
// Copyright (C) 2014 Chris Lapa
// Contributed by Chris Lapa
#include <RHSoftwareSPI.h>
RHSoftwareSPI::RHSoftwareSPI(Frequency frequency, BitOrder bitOrder, DataMode dataMode)
:
RHGenericSPI(frequency, bitOrder, dataMode)
{
setPins(12, 11, 13);
}
// Caution: on Arduino Uno and many other CPUs, digitalWrite is quite slow, taking about 4us
// digitalWrite is also slow, taking about 3.5us
// resulting in very slow SPI bus speeds using this technique, up to about 120us per octet of transfer
uint8_t RHSoftwareSPI::transfer(uint8_t data)
{
uint8_t readData;
uint8_t writeData;
uint8_t builtReturn;
uint8_t mask;
if (_bitOrder == BitOrderMSBFirst)
{
mask = 0x80;
}
else
{
mask = 0x01;
}
builtReturn = 0;
readData = 0;
for (uint8_t count=0; count<8; count++)
{
if (data & mask)
{
writeData = HIGH;
}
else
{
writeData = LOW;
}
if (_clockPhase == 1)
{
// CPHA=1, miso/mosi changing state now
digitalWrite(_mosi, writeData);
digitalWrite(_sck, ~_clockPolarity);
delayPeriod();
// CPHA=1, miso/mosi stable now
readData = digitalRead(_miso);
digitalWrite(_sck, _clockPolarity);
delayPeriod();
}
else
{
// CPHA=0, miso/mosi changing state now
digitalWrite(_mosi, writeData);
digitalWrite(_sck, _clockPolarity);
delayPeriod();
// CPHA=0, miso/mosi stable now
readData = digitalRead(_miso);
digitalWrite(_sck, ~_clockPolarity);
delayPeriod();
}
if (_bitOrder == BitOrderMSBFirst)
{
mask >>= 1;
builtReturn |= (readData << (7 - count));
}
else
{
mask <<= 1;
builtReturn |= (readData << count);
}
}
digitalWrite(_sck, _clockPolarity);
return builtReturn;
}
/// Initialise the SPI library
void RHSoftwareSPI::begin()
{
if (_dataMode == DataMode0 ||
_dataMode == DataMode1)
{
_clockPolarity = LOW;
}
else
{
_clockPolarity = HIGH;
}
if (_dataMode == DataMode0 ||
_dataMode == DataMode2)
{
_clockPhase = 0;
}
else
{
_clockPhase = 1;
}
digitalWrite(_sck, _clockPolarity);
// Caution: these counts assume that digitalWrite is very fast, which is usually not true
switch (_frequency)
{
case Frequency1MHz:
_delayCounts = 8;
break;
case Frequency2MHz:
_delayCounts = 4;
break;
case Frequency4MHz:
_delayCounts = 2;
break;
case Frequency8MHz:
_delayCounts = 1;
break;
case Frequency16MHz:
_delayCounts = 0;
break;
}
}
/// Disables the SPI bus usually, in this case
/// there is no hardware controller to disable.
void RHSoftwareSPI::end() { }
/// Sets the pins used by this SoftwareSPIClass instance.
/// \param[in] miso master in slave out pin used
/// \param[in] mosi master out slave in pin used
/// \param[in] sck clock pin used
void RHSoftwareSPI::setPins(uint8_t miso, uint8_t mosi, uint8_t sck)
{
_miso = miso;
_mosi = mosi;
_sck = sck;
pinMode(_miso, INPUT);
pinMode(_mosi, OUTPUT);
pinMode(_sck, OUTPUT);
digitalWrite(_sck, _clockPolarity);
}
void RHSoftwareSPI::delayPeriod()
{
for (uint8_t count = 0; count < _delayCounts; count++)
{
__asm__ __volatile__ ("nop");
}
}

View File

@@ -1,90 +0,0 @@
// SoftwareSPI.h
// Author: Chris Lapa (chris@lapa.com.au)
// Copyright (C) 2014 Chris Lapa
// Contributed by Chris Lapa
#ifndef RHSoftwareSPI_h
#define RHSoftwareSPI_h
#include <RHGenericSPI.h>
/////////////////////////////////////////////////////////////////////
/// \class RHSoftwareSPI RHSoftwareSPI.h <RHSoftwareSPI.h>
/// \brief Encapsulate a software SPI interface
///
/// This concrete subclass of RHGenericSPI enapsulates a bit-banged software SPI interface.
/// Caution: this software SPI interface will be much slower than hardware SPI on most
/// platforms.
///
/// SPI transactions are not supported, and associated functions do nothing.
///
/// \par Usage
///
/// Usage varies slightly depending on what driver you are using.
///
/// For RF22, for example:
/// \code
/// #include <RHSoftwareSPI.h>
/// RHSoftwareSPI spi;
/// RH_RF22 driver(SS, 2, spi);
/// RHReliableDatagram(driver, CLIENT_ADDRESS);
/// void setup()
/// {
/// spi.setPins(6, 5, 7); // Or whatever SPI pins you need
/// ....
/// }
/// \endcode
class RHSoftwareSPI : public RHGenericSPI
{
public:
/// Constructor
/// Creates an instance of a bit-banged software SPI interface.
/// Sets the SPI pins to the defaults of
/// MISO = 12, MOSI = 11, SCK = 13. If you need other assigments, call setPins() before
/// calling manager.init() or driver.init().
/// \param[in] frequency One of RHGenericSPI::Frequency to select the SPI bus frequency. The frequency
/// is mapped to the closest available bus frequency on the platform. CAUTION: the achieved
/// frequency will almost certainly be very much slower on most platforms. eg on Arduino Uno, the
/// the clock rate is likely to be at best around 46kHz.
/// \param[in] bitOrder Select the SPI bus bit order, one of RHGenericSPI::BitOrderMSBFirst or
/// RHGenericSPI::BitOrderLSBFirst.
/// \param[in] dataMode Selects the SPI bus data mode. One of RHGenericSPI::DataMode
RHSoftwareSPI(Frequency frequency = Frequency1MHz, BitOrder bitOrder = BitOrderMSBFirst, DataMode dataMode = DataMode0);
/// Transfer a single octet to and from the SPI interface
/// \param[in] data The octet to send
/// \return The octet read from SPI while the data octet was sent.
uint8_t transfer(uint8_t data);
/// Initialise the software SPI library
/// Call this after configuring the SPI interface and before using it to transfer data.
/// Initializes the SPI bus by setting SCK, MOSI, and SS to outputs, pulling SCK and MOSI low, and SS high.
void begin();
/// Disables the SPI bus usually, in this case
/// there is no hardware controller to disable.
void end();
/// Sets the pins used by this SoftwareSPIClass instance.
/// The defaults are: MISO = 12, MOSI = 11, SCK = 13.
/// \param[in] miso master in slave out pin used
/// \param[in] mosi master out slave in pin used
/// \param[in] sck clock pin used
void setPins(uint8_t miso = 12, uint8_t mosi = 11, uint8_t sck = 13);
private:
/// Delay routine for bus timing.
void delayPeriod();
private:
uint8_t _miso;
uint8_t _mosi;
uint8_t _sck;
uint8_t _delayCounts;
uint8_t _clockPolarity;
uint8_t _clockPhase;
};
#endif

View File

@@ -1,651 +0,0 @@
// RH_RF95.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF95.cpp,v 1.22 2020/01/05 07:02:23 mikem Exp mikem $
#include <RH_RF95.h>
// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_RF95, allowing you to have
// 2 or more LORAs per Arduino
RH_RF95 *RH_RF95::_deviceForInterrupt[RH_RF95_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_RF95::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// These are indexed by the values of ModemConfigChoice
// Stored in flash (program) memory to save SRAM
PROGMEM static const RH_RF95::ModemConfig MODEM_CONFIG_TABLE[] = {
// 1d, 1e, 26
{0x72, 0x74, 0x04}, // Bw125Cr45Sf128 (the chip default), AGC enabled
{0x92, 0x74, 0x04}, // Bw500Cr45Sf128, AGC enabled
{0x48, 0x94, 0x04}, // Bw31_25Cr48Sf512, AGC enabled
{0x78, 0xc4, 0x0c}, // Bw125Cr48Sf4096, AGC enabled
};
RH_RF95::RH_RF95(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI &spi)
: RHSPIDriver(slaveSelectPin, spi), _rxBufValid(0)
{
_interruptPin = interruptPin;
_myInterruptIndex = 0xff; // Not allocated yet
}
bool RH_RF95::init()
{
if (!RHSPIDriver::init())
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
// Tell the low level SPI interface we will use SPI within this interrupt
// spiUsingInterrupt(interruptNumber);
// No way to check the device type :-(
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
bool isWakeFromDeepSleep =
false; // true if we think we are waking from deep sleep AND the rf95 seems to have a valid configuration
if (!isWakeFromDeepSleep) {
// Set sleep mode, so we can also set LORA mode:
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE);
delay(10); // Wait for sleep mode to take over from say, CAD
// Check we are in sleep mode, with LORA set
if (spiRead(RH_RF95_REG_01_OP_MODE) != (RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE)) {
// Serial.println(spiRead(RH_RF95_REG_01_OP_MODE), HEX);
return false; // No device present?
}
// Set up FIFO
// We configure so that we can use the entire 256 byte FIFO for either receive
// or transmit, but not both at the same time
spiWrite(RH_RF95_REG_0E_FIFO_TX_BASE_ADDR, 0);
spiWrite(RH_RF95_REG_0F_FIFO_RX_BASE_ADDR, 0);
// Packet format is preamble + explicit-header + payload + crc
// Explicit Header Mode
// payload is TO + FROM + ID + FLAGS + message data
// RX mode is implmented with RXCONTINUOUS
// max message data length is 255 - 4 = 251 octets
setModeIdle();
// Set up default configuration
// No Sync Words in LORA mode.
setModemConfig(Bw125Cr45Sf128); // Radio default
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
setPreambleLength(8); // Default is 8
// An innocuous ISM frequency, same as RF22's
setFrequency(434.0);
// Lowish power
setTxPower(13);
Serial.printf("IRQ flag mask 0x%x\n", spiRead(RH_RF95_REG_11_IRQ_FLAGS_MASK));
} else {
// FIXME
// restore mode base off reading RS95 registers
// Only let CPU enter deep sleep if RF95 is sitting waiting on a receive or is in idle or sleep.
}
// geeksville: we do this last, because if there is an interrupt pending from during the deep sleep, this attach will cause it
// to be taken.
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff) {
// First run, no interrupt allocated yet
if (_interruptCount <= RH_RF95_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
return enableInterrupt();
}
// If on a platform without level trigger definitions, just use RISING and suck it up.
#ifndef ONHIGH
#define ONHIGH RISING
#endif
bool RH_RF95::enableInterrupt()
{
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, ONHIGH);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, ONHIGH);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, ONHIGH);
else
return false; // Too many devices, not enough interrupt vectors
return true;
}
void RH_INTERRUPT_ATTR RH_RF95::disableInterrupt()
{
int interruptNumber = digitalPinToInterrupt(_interruptPin);
detachInterrupt(interruptNumber);
}
void RH_RF95::prepareDeepSleep()
{
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
detachInterrupt(interruptNumber);
}
bool RH_RF95::isReceiving()
{
// 0x0b == Look for header info valid, signal synchronized or signal detected
uint8_t reg = spiRead(RH_RF95_REG_18_MODEM_STAT) & 0x1f;
// Serial.printf("reg %x\n", reg);
return _mode == RHModeRx && (reg & (RH_RF95_MODEM_STATUS_SIGNAL_DETECTED | RH_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED |
RH_RF95_MODEM_STATUS_HEADER_INFO_VALID)) != 0;
}
void RH_INTERRUPT_ATTR RH_RF95::handleInterruptLevel0()
{
disableInterrupt(); // Disable our interrupt until our helper thread can run (because the IRQ will remain asserted until we
// talk to it via SPI)
pendingInterrupt = true;
}
// C++ level interrupt handler for this instance
// LORA is unusual in that it has several interrupt lines, and not a single, combined one.
// On MiniWirelessLoRa, only one of the several interrupt lines (DI0) from the RFM95 is usefuly
// connnected to the processor.
// We use this to get RxDone and TxDone interrupts
void RH_RF95::handleInterrupt()
{
// Read the interrupt register
uint8_t irq_flags = spiRead(RH_RF95_REG_12_IRQ_FLAGS);
// ack all interrupts
// note from radiohead author wrt old code (with IMO wrong fix)
// Sigh: on some processors, for some unknown reason, doing this only once does not actually
// clear the radio's interrupt flag. So we do it twice. Why? (kevinh - I think the root cause we want level
// triggered interrupts here - not edge. Because edge allows us to miss handling secondard interrupts that occurred
// while this ISR was running. Better to instead, configure the interrupts as level triggered and clear pending
// at the _beginning_ of the ISR. If any interrupts occur while handling the ISR, the signal will remain asserted and
// our ISR will be reinvoked to handle that case)
spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
// Note: there can be substantial latency between ISR assertion and this function being run, therefore
// multiple flags might be set. Handle them all
// Note: we are running the chip in continuous receive mode (currently, so RX_TIMEOUT shouldn't ever occur)
bool haveRxError = irq_flags & (RH_RF95_RX_TIMEOUT | RH_RF95_PAYLOAD_CRC_ERROR);
if (haveRxError) {
_rxBad++;
clearRxBuf();
} else if (irq_flags & RH_RF95_RX_DONE) {
// Read the RegHopChannel register to check if CRC presence is signalled
// in the header. If not it might be a stray (noise) packet.*
uint8_t crc_present = spiRead(RH_RF95_REG_1C_HOP_CHANNEL) & RH_RF95_RX_PAYLOAD_CRC_IS_ON;
if (!crc_present) {
_rxBad++;
clearRxBuf();
} else {
// Have received a packet
uint8_t len = spiRead(RH_RF95_REG_13_RX_NB_BYTES);
// Reset the fifo read ptr to the beginning of the packet
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, spiRead(RH_RF95_REG_10_FIFO_RX_CURRENT_ADDR));
spiBurstRead(RH_RF95_REG_00_FIFO, _buf, len);
_bufLen = len;
// Remember the last signal to noise ratio, LORA mode
// Per page 111, SX1276/77/78/79 datasheet
_lastSNR = (int8_t)spiRead(RH_RF95_REG_19_PKT_SNR_VALUE) / 4;
// Remember the RSSI of this packet, LORA mode
// this is according to the doc, but is it really correct?
// weakest receiveable signals are reported RSSI at about -66
_lastRssi = spiRead(RH_RF95_REG_1A_PKT_RSSI_VALUE);
// Adjust the RSSI, datasheet page 87
if (_lastSNR < 0)
_lastRssi = _lastRssi + _lastSNR;
else
_lastRssi = (int)_lastRssi * 16 / 15;
if (_usingHFport)
_lastRssi -= 157;
else
_lastRssi -= 164;
// We have received a message.
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
}
if (irq_flags & RH_RF95_TX_DONE) {
_txGood++;
setModeIdle();
}
if (_mode == RHModeCad && (irq_flags & RH_RF95_CAD_DONE)) {
_cad = irq_flags & RH_RF95_CAD_DETECTED;
setModeIdle();
}
enableInterrupt(); // Let ISR run again
}
void RH_RF95::loop()
{
while (pendingInterrupt) {
pendingInterrupt = false; // If the flag was set, it is _guaranteed_ the ISR won't be running, because it masked itself
handleInterrupt();
}
}
// These are low level functions that call the interrupt handler for the correct
// instance of RH_RF95.
// 3 interrupts allows us to have 3 different devices
void RH_INTERRUPT_ATTR RH_RF95::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterruptLevel0();
}
void RH_INTERRUPT_ATTR RH_RF95::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterruptLevel0();
}
void RH_INTERRUPT_ATTR RH_RF95::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterruptLevel0();
}
// Check whether the latest received message is complete and uncorrupted
void RH_RF95::validateRxBuf()
{
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous || _rxHeaderTo == _thisAddress || _rxHeaderTo == RH_BROADCAST_ADDRESS) {
_rxGood++;
_rxBufValid = true;
}
}
bool RH_RF95::available()
{
if (_mode == RHModeTx)
return false;
setModeRx();
return _rxBufValid; // Will be set by the interrupt handler when a good message is received
}
void RH_RF95::clearRxBuf()
{
ATOMIC_BLOCK_START;
_rxBufValid = false;
_bufLen = 0;
ATOMIC_BLOCK_END;
}
/// Note: This routine might be called from inside the RF95 ISR
bool RH_RF95::send(const uint8_t *data, uint8_t len)
{
if (len > RH_RF95_MAX_MESSAGE_LEN)
return false;
setModeIdle();
// Position at the beginning of the FIFO
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderTo);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderId);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(RH_RF95_REG_00_FIFO, data, len);
spiWrite(RH_RF95_REG_22_PAYLOAD_LENGTH, len + RH_RF95_HEADER_LEN);
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
}
bool RH_RF95::printRegisters()
{
#ifdef RH_HAVE_SERIAL
uint8_t registers[] = {0x01, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10,
0x11, 0x12, 0x13, 0x014, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c,
0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27};
uint8_t i;
for (i = 0; i < sizeof(registers); i++) {
Serial.print(registers[i], HEX);
Serial.print(": ");
Serial.println(spiRead(registers[i]), HEX);
}
#endif
return true;
}
uint8_t RH_RF95::maxMessageLength()
{
return RH_RF95_MAX_MESSAGE_LEN;
}
bool RH_RF95::setFrequency(float centre)
{
// Frf = FRF / FSTEP
uint32_t frf = (centre * 1000000.0) / RH_RF95_FSTEP;
spiWrite(RH_RF95_REG_06_FRF_MSB, (frf >> 16) & 0xff);
spiWrite(RH_RF95_REG_07_FRF_MID, (frf >> 8) & 0xff);
spiWrite(RH_RF95_REG_08_FRF_LSB, frf & 0xff);
_usingHFport = (centre >= 779.0);
return true;
}
void RH_RF95::setModeIdle()
{
if (_mode != RHModeIdle) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_STDBY);
_mode = RHModeIdle;
}
}
bool RH_RF95::sleep()
{
if (_mode != RHModeSleep) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP);
_mode = RHModeSleep;
}
return true;
}
void RH_RF95::setModeRx()
{
if (_mode != RHModeRx) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_RXCONTINUOUS);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x00); // Interrupt on RxDone
_mode = RHModeRx;
}
}
void RH_RF95::setModeTx()
{
if (_mode != RHModeTx) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_TX);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x40); // Interrupt on TxDone
_mode = RHModeTx;
}
}
void RH_RF95::setTxPower(int8_t power, bool useRFO)
{
// Sigh, different behaviours depending on whther the module use PA_BOOST or the RFO pin
// for the transmitter output
if (useRFO) {
if (power > 14)
power = 14;
if (power < -1)
power = -1;
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_MAX_POWER | (power + 1));
} else {
if (power > 23)
power = 23;
if (power < 5)
power = 5;
// For RH_RF95_PA_DAC_ENABLE, manual says '+20dBm on PA_BOOST when OutputPower=0xf'
// RH_RF95_PA_DAC_ENABLE actually adds about 3dBm to all power levels. We will us it
// for 21, 22 and 23dBm
if (power > 20) {
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_ENABLE);
power -= 3;
} else {
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_DISABLE);
}
// RFM95/96/97/98 does not have RFO pins connected to anything. Only PA_BOOST
// pin is connected, so must use PA_BOOST
// Pout = 2 + OutputPower.
// The documentation is pretty confusing on this topic: PaSelect says the max power is 20dBm,
// but OutputPower claims it would be 17dBm.
// My measurements show 20dBm is correct
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_PA_SELECT | (power - 5));
}
}
// Sets registers from a canned modem configuration structure
void RH_RF95::setModemRegisters(const ModemConfig *config)
{
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, config->reg_1d);
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, config->reg_1e);
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, config->reg_26);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
bool RH_RF95::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF95::ModemConfig));
setModemRegisters(&cfg);
return true;
}
void RH_RF95::setPreambleLength(uint16_t bytes)
{
spiWrite(RH_RF95_REG_20_PREAMBLE_MSB, bytes >> 8);
spiWrite(RH_RF95_REG_21_PREAMBLE_LSB, bytes & 0xff);
}
bool RH_RF95::isChannelActive()
{
// Set mode RHModeCad
if (_mode != RHModeCad) {
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_CAD);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x80); // Interrupt on CadDone
_mode = RHModeCad;
}
while (_mode == RHModeCad)
YIELD;
return _cad;
}
void RH_RF95::enableTCXO()
{
while ((spiRead(RH_RF95_REG_4B_TCXO) & RH_RF95_TCXO_TCXO_INPUT_ON) != RH_RF95_TCXO_TCXO_INPUT_ON) {
sleep();
spiWrite(RH_RF95_REG_4B_TCXO, (spiRead(RH_RF95_REG_4B_TCXO) | RH_RF95_TCXO_TCXO_INPUT_ON));
}
}
// From section 4.1.5 of SX1276/77/78/79
// Ferror = FreqError * 2**24 * BW / Fxtal / 500
int RH_RF95::frequencyError()
{
int32_t freqerror = 0;
// Convert 2.5 bytes (5 nibbles, 20 bits) to 32 bit signed int
// Caution: some C compilers make errors with eg:
// freqerror = spiRead(RH_RF95_REG_28_FEI_MSB) << 16
// so we go more carefully.
freqerror = spiRead(RH_RF95_REG_28_FEI_MSB);
freqerror <<= 8;
freqerror |= spiRead(RH_RF95_REG_29_FEI_MID);
freqerror <<= 8;
freqerror |= spiRead(RH_RF95_REG_2A_FEI_LSB);
// Sign extension into top 3 nibbles
if (freqerror & 0x80000)
freqerror |= 0xfff00000;
int error = 0; // In hertz
float bw_tab[] = {7.8, 10.4, 15.6, 20.8, 31.25, 41.7, 62.5, 125, 250, 500};
uint8_t bwindex = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4;
if (bwindex < (sizeof(bw_tab) / sizeof(float)))
error = (float)freqerror * bw_tab[bwindex] * ((float)(1L << 24) / (float)RH_RF95_FXOSC / 500.0);
// else not defined
return error;
}
int RH_RF95::lastSNR()
{
return _lastSNR;
}
///////////////////////////////////////////////////
//
// additions below by Brian Norman 9th Nov 2018
// brian.n.norman@gmail.com
//
// Routines intended to make changing BW, SF and CR
// a bit more intuitive
//
///////////////////////////////////////////////////
void RH_RF95::setSpreadingFactor(uint8_t sf)
{
if (sf <= 6)
sf = RH_RF95_SPREADING_FACTOR_64CPS;
else if (sf == 7)
sf = RH_RF95_SPREADING_FACTOR_128CPS;
else if (sf == 8)
sf = RH_RF95_SPREADING_FACTOR_256CPS;
else if (sf == 9)
sf = RH_RF95_SPREADING_FACTOR_512CPS;
else if (sf == 10)
sf = RH_RF95_SPREADING_FACTOR_1024CPS;
else if (sf == 11)
sf = RH_RF95_SPREADING_FACTOR_2048CPS;
else if (sf >= 12)
sf = RH_RF95_SPREADING_FACTOR_4096CPS;
// set the new spreading factor
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, (spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_SPREADING_FACTOR) | sf);
// check if Low data Rate bit should be set or cleared
setLowDatarate();
}
void RH_RF95::setSignalBandwidth(long sbw)
{
uint8_t bw; // register bit pattern
if (sbw <= 7800)
bw = RH_RF95_BW_7_8KHZ;
else if (sbw <= 10400)
bw = RH_RF95_BW_10_4KHZ;
else if (sbw <= 15600)
bw = RH_RF95_BW_15_6KHZ;
else if (sbw <= 20800)
bw = RH_RF95_BW_20_8KHZ;
else if (sbw <= 31250)
bw = RH_RF95_BW_31_25KHZ;
else if (sbw <= 41700)
bw = RH_RF95_BW_41_7KHZ;
else if (sbw <= 62500)
bw = RH_RF95_BW_62_5KHZ;
else if (sbw <= 125000)
bw = RH_RF95_BW_125KHZ;
else if (sbw <= 250000)
bw = RH_RF95_BW_250KHZ;
else
bw = RH_RF95_BW_500KHZ;
// top 4 bits of reg 1D control bandwidth
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_BW) | bw);
// check if low data rate bit should be set or cleared
setLowDatarate();
}
void RH_RF95::setCodingRate4(uint8_t denominator)
{
int cr = RH_RF95_CODING_RATE_4_5;
// if (denominator <= 5)
// cr = RH_RF95_CODING_RATE_4_5;
if (denominator == 6)
cr = RH_RF95_CODING_RATE_4_6;
else if (denominator == 7)
cr = RH_RF95_CODING_RATE_4_7;
else if (denominator >= 8)
cr = RH_RF95_CODING_RATE_4_8;
// CR is bits 3..1 of RH_RF95_REG_1D_MODEM_CONFIG1
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_CODING_RATE) | cr);
}
void RH_RF95::setLowDatarate()
{
// called after changing bandwidth and/or spreading factor
// Semtech modem design guide AN1200.13 says
// "To avoid issues surrounding drift of the crystal reference oscillator due to either temperature change
// or motion,the low data rate optimization bit is used. Specifically for 125 kHz bandwidth and SF = 11 and 12,
// this adds a small overhead to increase robustness to reference frequency variations over the timescale of the LoRa
// packet."
// read current value for BW and SF
uint8_t BW = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4; // bw is in bits 7..4
uint8_t SF = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) >> 4; // sf is in bits 7..4
// calculate symbol time (see Semtech AN1200.22 section 4)
float bw_tab[] = {7800, 10400, 15600, 20800, 31250, 41700, 62500, 125000, 250000, 500000};
float bandwidth = bw_tab[BW];
float symbolTime = 1000.0 * pow(2, SF) / bandwidth; // ms
// the symbolTime for SF 11 BW 125 is 16.384ms.
// and, according to this :-
// https://www.thethingsnetwork.org/forum/t/a-point-to-note-lora-low-data-rate-optimisation-flag/12007
// the LDR bit should be set if the Symbol Time is > 16ms
// So the threshold used here is 16.0ms
// the LDR is bit 3 of RH_RF95_REG_26_MODEM_CONFIG3
uint8_t current = spiRead(RH_RF95_REG_26_MODEM_CONFIG3) & ~RH_RF95_LOW_DATA_RATE_OPTIMIZE; // mask off the LDR bit
if (symbolTime > 16.0)
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current | RH_RF95_LOW_DATA_RATE_OPTIMIZE);
else
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current);
}
void RH_RF95::setPayloadCRC(bool on)
{
// Payload CRC is bit 2 of register 1E
uint8_t current = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_PAYLOAD_CRC_ON; // mask off the CRC
if (on)
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current | RH_RF95_PAYLOAD_CRC_ON);
else
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current);
}

View File

@@ -1,890 +0,0 @@
// RH_RF95.h
//
// Definitions for HopeRF LoRa radios per:
// http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
// http://www.hoperf.cn/upload/rfchip/RF96_97_98.pdf
//
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2014 Mike McCauley
// $Id: RH_RF95.h,v 1.23 2019/11/02 02:34:22 mikem Exp $
//
#ifndef RH_RF95_h
#define RH_RF95_h
#include <RHSPIDriver.h>
// This is the maximum number of interrupts the driver can support
// Most Arduinos can handle 2, Megas can handle more
#define RH_RF95_NUM_INTERRUPTS 3
// Max number of octets the LORA Rx/Tx FIFO can hold
#define RH_RF95_FIFO_SIZE 255
// This is the maximum number of bytes that can be carried by the LORA.
// We use some for headers, keeping fewer for RadioHead messages
#define RH_RF95_MAX_PAYLOAD_LEN RH_RF95_FIFO_SIZE
// The length of the headers we add.
// The headers are inside the LORA's payload
#define RH_RF95_HEADER_LEN 4
// This is the maximum message length that can be supported by this driver.
// Can be pre-defined to a smaller size (to save SRAM) prior to including this header
// Here we allow for 1 byte message length, 4 bytes headers, user data and 2 bytes of FCS
#ifndef RH_RF95_MAX_MESSAGE_LEN
#define RH_RF95_MAX_MESSAGE_LEN (RH_RF95_MAX_PAYLOAD_LEN - RH_RF95_HEADER_LEN)
#endif
// The crystal oscillator frequency of the module
#define RH_RF95_FXOSC 32000000.0
// The Frequency Synthesizer step = RH_RF95_FXOSC / 2^^19
#define RH_RF95_FSTEP (RH_RF95_FXOSC / 524288)
// Register names (LoRa Mode, from table 85)
#define RH_RF95_REG_00_FIFO 0x00
#define RH_RF95_REG_01_OP_MODE 0x01
#define RH_RF95_REG_02_RESERVED 0x02
#define RH_RF95_REG_03_RESERVED 0x03
#define RH_RF95_REG_04_RESERVED 0x04
#define RH_RF95_REG_05_RESERVED 0x05
#define RH_RF95_REG_06_FRF_MSB 0x06
#define RH_RF95_REG_07_FRF_MID 0x07
#define RH_RF95_REG_08_FRF_LSB 0x08
#define RH_RF95_REG_09_PA_CONFIG 0x09
#define RH_RF95_REG_0A_PA_RAMP 0x0a
#define RH_RF95_REG_0B_OCP 0x0b
#define RH_RF95_REG_0C_LNA 0x0c
#define RH_RF95_REG_0D_FIFO_ADDR_PTR 0x0d
#define RH_RF95_REG_0E_FIFO_TX_BASE_ADDR 0x0e
#define RH_RF95_REG_0F_FIFO_RX_BASE_ADDR 0x0f
#define RH_RF95_REG_10_FIFO_RX_CURRENT_ADDR 0x10
#define RH_RF95_REG_11_IRQ_FLAGS_MASK 0x11
#define RH_RF95_REG_12_IRQ_FLAGS 0x12
#define RH_RF95_REG_13_RX_NB_BYTES 0x13
#define RH_RF95_REG_14_RX_HEADER_CNT_VALUE_MSB 0x14
#define RH_RF95_REG_15_RX_HEADER_CNT_VALUE_LSB 0x15
#define RH_RF95_REG_16_RX_PACKET_CNT_VALUE_MSB 0x16
#define RH_RF95_REG_17_RX_PACKET_CNT_VALUE_LSB 0x17
#define RH_RF95_REG_18_MODEM_STAT 0x18
#define RH_RF95_REG_19_PKT_SNR_VALUE 0x19
#define RH_RF95_REG_1A_PKT_RSSI_VALUE 0x1a
#define RH_RF95_REG_1B_RSSI_VALUE 0x1b
#define RH_RF95_REG_1C_HOP_CHANNEL 0x1c
#define RH_RF95_REG_1D_MODEM_CONFIG1 0x1d
#define RH_RF95_REG_1E_MODEM_CONFIG2 0x1e
#define RH_RF95_REG_1F_SYMB_TIMEOUT_LSB 0x1f
#define RH_RF95_REG_20_PREAMBLE_MSB 0x20
#define RH_RF95_REG_21_PREAMBLE_LSB 0x21
#define RH_RF95_REG_22_PAYLOAD_LENGTH 0x22
#define RH_RF95_REG_23_MAX_PAYLOAD_LENGTH 0x23
#define RH_RF95_REG_24_HOP_PERIOD 0x24
#define RH_RF95_REG_25_FIFO_RX_BYTE_ADDR 0x25
#define RH_RF95_REG_26_MODEM_CONFIG3 0x26
#define RH_RF95_REG_27_PPM_CORRECTION 0x27
#define RH_RF95_REG_28_FEI_MSB 0x28
#define RH_RF95_REG_29_FEI_MID 0x29
#define RH_RF95_REG_2A_FEI_LSB 0x2a
#define RH_RF95_REG_2C_RSSI_WIDEBAND 0x2c
#define RH_RF95_REG_31_DETECT_OPTIMIZE 0x31
#define RH_RF95_REG_33_INVERT_IQ 0x33
#define RH_RF95_REG_37_DETECTION_THRESHOLD 0x37
#define RH_RF95_REG_39_SYNC_WORD 0x39
#define RH_RF95_REG_40_DIO_MAPPING1 0x40
#define RH_RF95_REG_41_DIO_MAPPING2 0x41
#define RH_RF95_REG_42_VERSION 0x42
#define RH_RF95_REG_4B_TCXO 0x4b
#define RH_RF95_REG_4D_PA_DAC 0x4d
#define RH_RF95_REG_5B_FORMER_TEMP 0x5b
#define RH_RF95_REG_61_AGC_REF 0x61
#define RH_RF95_REG_62_AGC_THRESH1 0x62
#define RH_RF95_REG_63_AGC_THRESH2 0x63
#define RH_RF95_REG_64_AGC_THRESH3 0x64
// RH_RF95_REG_01_OP_MODE 0x01
#define RH_RF95_LONG_RANGE_MODE 0x80
#define RH_RF95_ACCESS_SHARED_REG 0x40
#define RH_RF95_LOW_FREQUENCY_MODE 0x08
#define RH_RF95_MODE 0x07
#define RH_RF95_MODE_SLEEP 0x00
#define RH_RF95_MODE_STDBY 0x01
#define RH_RF95_MODE_FSTX 0x02
#define RH_RF95_MODE_TX 0x03
#define RH_RF95_MODE_FSRX 0x04
#define RH_RF95_MODE_RXCONTINUOUS 0x05
#define RH_RF95_MODE_RXSINGLE 0x06
#define RH_RF95_MODE_CAD 0x07
// RH_RF95_REG_09_PA_CONFIG 0x09
#define RH_RF95_PA_SELECT 0x80
#define RH_RF95_MAX_POWER 0x70
#define RH_RF95_OUTPUT_POWER 0x0f
// RH_RF95_REG_0A_PA_RAMP 0x0a
#define RH_RF95_LOW_PN_TX_PLL_OFF 0x10
#define RH_RF95_PA_RAMP 0x0f
#define RH_RF95_PA_RAMP_3_4MS 0x00
#define RH_RF95_PA_RAMP_2MS 0x01
#define RH_RF95_PA_RAMP_1MS 0x02
#define RH_RF95_PA_RAMP_500US 0x03
#define RH_RF95_PA_RAMP_250US 0x04
#define RH_RF95_PA_RAMP_125US 0x05
#define RH_RF95_PA_RAMP_100US 0x06
#define RH_RF95_PA_RAMP_62US 0x07
#define RH_RF95_PA_RAMP_50US 0x08
#define RH_RF95_PA_RAMP_40US 0x09
#define RH_RF95_PA_RAMP_31US 0x0a
#define RH_RF95_PA_RAMP_25US 0x0b
#define RH_RF95_PA_RAMP_20US 0x0c
#define RH_RF95_PA_RAMP_15US 0x0d
#define RH_RF95_PA_RAMP_12US 0x0e
#define RH_RF95_PA_RAMP_10US 0x0f
// RH_RF95_REG_0B_OCP 0x0b
#define RH_RF95_OCP_ON 0x20
#define RH_RF95_OCP_TRIM 0x1f
// RH_RF95_REG_0C_LNA 0x0c
#define RH_RF95_LNA_GAIN 0xe0
#define RH_RF95_LNA_GAIN_G1 0x20
#define RH_RF95_LNA_GAIN_G2 0x40
#define RH_RF95_LNA_GAIN_G3 0x60
#define RH_RF95_LNA_GAIN_G4 0x80
#define RH_RF95_LNA_GAIN_G5 0xa0
#define RH_RF95_LNA_GAIN_G6 0xc0
#define RH_RF95_LNA_BOOST_LF 0x18
#define RH_RF95_LNA_BOOST_LF_DEFAULT 0x00
#define RH_RF95_LNA_BOOST_HF 0x03
#define RH_RF95_LNA_BOOST_HF_DEFAULT 0x00
#define RH_RF95_LNA_BOOST_HF_150PC 0x03
// RH_RF95_REG_11_IRQ_FLAGS_MASK 0x11
#define RH_RF95_RX_TIMEOUT_MASK 0x80
#define RH_RF95_RX_DONE_MASK 0x40
#define RH_RF95_PAYLOAD_CRC_ERROR_MASK 0x20
#define RH_RF95_VALID_HEADER_MASK 0x10
#define RH_RF95_TX_DONE_MASK 0x08
#define RH_RF95_CAD_DONE_MASK 0x04
#define RH_RF95_FHSS_CHANGE_CHANNEL_MASK 0x02
#define RH_RF95_CAD_DETECTED_MASK 0x01
// RH_RF95_REG_12_IRQ_FLAGS 0x12
#define RH_RF95_RX_TIMEOUT 0x80
#define RH_RF95_RX_DONE 0x40
#define RH_RF95_PAYLOAD_CRC_ERROR 0x20
#define RH_RF95_VALID_HEADER 0x10
#define RH_RF95_TX_DONE 0x08
#define RH_RF95_CAD_DONE 0x04
#define RH_RF95_FHSS_CHANGE_CHANNEL 0x02
#define RH_RF95_CAD_DETECTED 0x01
// RH_RF95_REG_18_MODEM_STAT 0x18
#define RH_RF95_RX_CODING_RATE 0xe0
#define RH_RF95_MODEM_STATUS_CLEAR 0x10
#define RH_RF95_MODEM_STATUS_HEADER_INFO_VALID 0x08
#define RH_RF95_MODEM_STATUS_RX_ONGOING 0x04
#define RH_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED 0x02
#define RH_RF95_MODEM_STATUS_SIGNAL_DETECTED 0x01
// RH_RF95_REG_1C_HOP_CHANNEL 0x1c
#define RH_RF95_PLL_TIMEOUT 0x80
#define RH_RF95_RX_PAYLOAD_CRC_IS_ON 0x40
#define RH_RF95_FHSS_PRESENT_CHANNEL 0x3f
// RH_RF95_REG_1D_MODEM_CONFIG1 0x1d
#define RH_RF95_BW 0xf0
#define RH_RF95_BW_7_8KHZ 0x00
#define RH_RF95_BW_10_4KHZ 0x10
#define RH_RF95_BW_15_6KHZ 0x20
#define RH_RF95_BW_20_8KHZ 0x30
#define RH_RF95_BW_31_25KHZ 0x40
#define RH_RF95_BW_41_7KHZ 0x50
#define RH_RF95_BW_62_5KHZ 0x60
#define RH_RF95_BW_125KHZ 0x70
#define RH_RF95_BW_250KHZ 0x80
#define RH_RF95_BW_500KHZ 0x90
#define RH_RF95_CODING_RATE 0x0e
#define RH_RF95_CODING_RATE_4_5 0x02
#define RH_RF95_CODING_RATE_4_6 0x04
#define RH_RF95_CODING_RATE_4_7 0x06
#define RH_RF95_CODING_RATE_4_8 0x08
#define RH_RF95_IMPLICIT_HEADER_MODE_ON 0x01
// RH_RF95_REG_1E_MODEM_CONFIG2 0x1e
#define RH_RF95_SPREADING_FACTOR 0xf0
#define RH_RF95_SPREADING_FACTOR_64CPS 0x60
#define RH_RF95_SPREADING_FACTOR_128CPS 0x70
#define RH_RF95_SPREADING_FACTOR_256CPS 0x80
#define RH_RF95_SPREADING_FACTOR_512CPS 0x90
#define RH_RF95_SPREADING_FACTOR_1024CPS 0xa0
#define RH_RF95_SPREADING_FACTOR_2048CPS 0xb0
#define RH_RF95_SPREADING_FACTOR_4096CPS 0xc0
#define RH_RF95_TX_CONTINUOUS_MODE 0x08
#define RH_RF95_PAYLOAD_CRC_ON 0x04
#define RH_RF95_SYM_TIMEOUT_MSB 0x03
// RH_RF95_REG_26_MODEM_CONFIG3
#define RH_RF95_MOBILE_NODE 0x08 // HopeRF term
#define RH_RF95_LOW_DATA_RATE_OPTIMIZE 0x08 // Semtechs term
#define RH_RF95_AGC_AUTO_ON 0x04
// RH_RF95_REG_4B_TCXO 0x4b
#define RH_RF95_TCXO_TCXO_INPUT_ON 0x10
// RH_RF95_REG_4D_PA_DAC 0x4d
#define RH_RF95_PA_DAC_DISABLE 0x04
#define RH_RF95_PA_DAC_ENABLE 0x07
/////////////////////////////////////////////////////////////////////
/// \class RH_RF95 RH_RF95.h <RH_RF95.h>
/// \brief Driver to send and receive unaddressed, unreliable datagrams via a LoRa
/// capable radio transceiver.
///
/// For Semtech SX1276/77/78/79 and HopeRF RF95/96/97/98 and other similar LoRa capable radios.
/// Based on http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
/// and http://www.hoperf.cn/upload/rfchip/RF96_97_98.pdf
/// and http://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf
/// and http://www.semtech.com/images/datasheet/sx1276.pdf
/// and http://www.semtech.com/images/datasheet/sx1276_77_78_79.pdf
/// FSK/GFSK/OOK modes are not (yet) supported.
///
/// Works with
/// - the excellent MiniWirelessLoRa from Anarduino http://www.anarduino.com/miniwireless
/// - The excellent Modtronix inAir4 http://modtronix.com/inair4.html
/// and inAir9 modules http://modtronix.com/inair9.html.
/// - the excellent Rocket Scream Mini Ultra Pro with the RFM95W
/// http://www.rocketscream.com/blog/product/mini-ultra-pro-with-radio/
/// - Lora1276 module from NiceRF http://www.nicerf.com/product_view.aspx?id=99
/// - Adafruit Feather M0 with RFM95
/// - The very fine Talk2 Whisper Node LoRa boards https://wisen.com.au/store/products/whisper-node-lora
/// an Arduino compatible board, which include an on-board RFM95/96 LoRa Radio (Semtech SX1276), external antenna,
/// run on 2xAAA batteries and support low power operations. RF95 examples work without modification.
/// Use Arduino Board Manager to install the Talk2 code support. Upload the code with an FTDI adapter set to 5V.
/// - heltec / TTGO ESP32 LoRa OLED
/// https://www.aliexpress.com/item/Internet-Development-Board-SX1278-ESP32-WIFI-chip-0-96-inch-OLED-Bluetooth-WIFI-Lora-Kit-32/32824535649.html
///
/// \par Overview
///
/// This class provides basic functions for sending and receiving unaddressed,
/// unreliable datagrams of arbitrary length to 251 octets per packet.
///
/// Manager classes may use this class to implement reliable, addressed datagrams and streams,
/// mesh routers, repeaters, translators etc.
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
/// modulation scheme.
///
/// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
/// RFM95/96/97/98(W), Semtech SX1276/77/78/79 and compatible radio modules in LoRa mode.
///
/// The Hope-RF (http://www.hoperf.com) RFM95/96/97/98(W) and Semtech SX1276/77/78/79 is a low-cost ISM transceiver
/// chip. It supports FSK, GFSK, OOK over a wide range of frequencies and
/// programmable data rates, and it also supports the proprietary LoRA (Long Range) mode, which
/// is the only mode supported in this RadioHead driver.
///
/// This Driver provides functions for sending and receiving messages of up
/// to 251 octets on any frequency supported by the radio, in a range of
/// predefined Bandwidths, Spreading Factors and Coding Rates. Frequency can be set with
/// 61Hz precision to any frequency from 240.0MHz to 960.0MHz. Caution: most modules only support a more limited
/// range of frequencies due to antenna tuning.
///
/// Up to 2 modules can be connected to an Arduino (3 on a Mega),
/// permitting the construction of translators and frequency changers, etc.
///
/// Support for other features such as transmitter power control etc is
/// also provided.
///
/// Tested on MinWirelessLoRa with arduino-1.0.5
/// on OpenSuSE 13.1.
/// Also tested with Teensy3.1, Modtronix inAir4 and Arduino 1.6.5 on OpenSuSE 13.1
///
/// \par Packet Format
///
/// All messages sent and received by this RH_RF95 Driver conform to this packet format:
///
/// - LoRa mode:
/// - 8 symbol PREAMBLE
/// - Explicit header with header CRC (handled internally by the radio)
/// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
/// - 0 to 251 octets DATA
/// - CRC (handled internally by the radio)
///
/// \par Connecting RFM95/96/97/98 and Semtech SX1276/77/78/79 to Arduino
///
/// We tested with Anarduino MiniWirelessLoRA, which is an Arduino Duemilanove compatible with a RFM96W
/// module on-board. Therefore it needs no connections other than the USB
/// programming connection and an antenna to make it work.
///
/// If you have a bare RFM95/96/97/98 that you want to connect to an Arduino, you
/// might use these connections (untested): CAUTION: you must use a 3.3V type
/// Arduino, otherwise you will also need voltage level shifters between the
/// Arduino and the RFM95. CAUTION, you must also ensure you connect an
/// antenna.
///
/// \code
/// Arduino RFM95/96/97/98
/// GND----------GND (ground in)
/// 3V3----------3.3V (3.3V in)
/// interrupt 0 pin D2-----------DIO0 (interrupt request out)
/// SS pin D10----------NSS (CS chip select in)
/// SCK pin D13----------SCK (SPI clock in)
/// MOSI pin D11----------MOSI (SPI Data in)
/// MISO pin D12----------MISO (SPI Data out)
/// \endcode
/// With these connections, you can then use the default constructor RH_RF95().
/// You can override the default settings for the SS pin and the interrupt in
/// the RH_RF95 constructor if you wish to connect the slave select SS to other
/// than the normal one for your Arduino (D10 for Diecimila, Uno etc and D53
/// for Mega) or the interrupt request to other than pin D2 (Caution,
/// different processors have different constraints as to the pins available
/// for interrupts).
///
/// You can connect a Modtronix inAir4 or inAir9 directly to a 3.3V part such as a Teensy 3.1 like
/// this (tested).
/// \code
/// Teensy inAir4 inAir9
/// GND----------0V (ground in)
/// 3V3----------3.3V (3.3V in)
/// interrupt 0 pin D2-----------D0 (interrupt request out)
/// SS pin D10----------CS (CS chip select in)
/// SCK pin D13----------CK (SPI clock in)
/// MOSI pin D11----------SI (SPI Data in)
/// MISO pin D12----------SO (SPI Data out)
/// \endcode
/// With these connections, you can then use the default constructor RH_RF95().
/// you must also set the transmitter power with useRFO:
/// driver.setTxPower(13, true);
///
/// Note that if you are using Modtronix inAir4 or inAir9,or any other module which uses the
/// transmitter RFO pins and not the PA_BOOST pins
/// that you must configure the power transmitter power for -1 to 14 dBm and with useRFO true.
/// Failure to do that will result in extremely low transmit powers.
///
/// If you have an Arduino M0 Pro from arduino.org,
/// you should note that you cannot use Pin 2 for the interrupt line
/// (Pin 2 is for the NMI only). The same comments apply to Pin 4 on Arduino Zero from arduino.cc.
/// Instead you can use any other pin (we use Pin 3) and initialise RH_RF69 like this:
/// \code
/// // Slave Select is pin 10, interrupt is Pin 3
/// RH_RF95 driver(10, 3);
/// \endcode
///
/// If you have a Rocket Scream Mini Ultra Pro with the RFM95W:
/// - Ensure you have Arduino SAMD board support 1.6.5 or later in Arduino IDE 1.6.8 or later.
/// - The radio SS is hardwired to pin D5 and the DIO0 interrupt to pin D2,
/// so you need to initialise the radio like this:
/// \code
/// RH_RF95 driver(5, 2);
/// \endcode
/// - The name of the serial port on that board is 'SerialUSB', not 'Serial', so this may be helpful at the top of our
/// sample sketches:
/// \code
/// #define Serial SerialUSB
/// \endcode
/// - You also need this in setup before radio initialisation
/// \code
/// // Ensure serial flash is not interfering with radio communication on SPI bus
/// pinMode(4, OUTPUT);
/// digitalWrite(4, HIGH);
/// \endcode
/// - and if you have a 915MHz part, you need this after driver/manager intitalisation:
/// \code
/// rf95.setFrequency(915.0);
/// \endcode
/// which adds up to modifying sample sketches something like:
/// \code
/// #include <SPI.h>
/// #include <RH_RF95.h>
/// RH_RF95 rf95(5, 2); // Rocket Scream Mini Ultra Pro with the RFM95W
/// #define Serial SerialUSB
///
/// void setup()
/// {
/// // Ensure serial flash is not interfering with radio communication on SPI bus
/// pinMode(4, OUTPUT);
/// digitalWrite(4, HIGH);
///
/// Serial.begin(9600);
/// while (!Serial) ; // Wait for serial port to be available
/// if (!rf95.init())
/// Serial.println("init failed");
/// rf95.setFrequency(915.0);
/// }
/// ...
/// \endcode
///
/// For Adafruit Feather M0 with RFM95, construct the driver like this:
/// \code
/// RH_RF95 rf95(8, 3);
/// \endcode
///
/// If you have a talk2 Whisper Node LoRa board with on-board RF95 radio,
/// the example rf95_* sketches work without modification. Initialise the radio like
/// with the default constructor:
/// \code
/// RH_RF95 driver;
/// \endcode
///
/// It is possible to have 2 or more radios connected to one Arduino, provided
/// each radio has its own SS and interrupt line (SCK, SDI and SDO are common
/// to all radios)
///
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave
/// select pin to be other than the usual SS pin (D53 on Mega 2560), you may
/// need to set the usual SS pin to be an output to force the Arduino into SPI
/// master mode.
///
/// Caution: Power supply requirements of the RFM module may be relevant in some circumstances:
/// RFM95/96/97/98 modules are capable of pulling 120mA+ at full power, where Arduino's 3.3V line can
/// give 50mA. You may need to make provision for alternate power supply for
/// the RFM module, especially if you wish to use full transmit power, and/or you have
/// other shields demanding power. Inadequate power for the RFM is likely to cause symptoms such as:
/// - reset's/bootups terminate with "init failed" messages
/// - random termination of communication after 5-30 packets sent/received
/// - "fake ok" state, where initialization passes fluently, but communication doesn't happen
/// - shields hang Arduino boards, especially during the flashing
///
/// \par Interrupts
///
/// The RH_RF95 driver uses interrupts to react to events in the RFM module,
/// such as the reception of a new packet, or the completion of transmission
/// of a packet. The RH_RF95 driver interrupt service routine reads status from
/// and writes data to the the RFM module via the SPI interface. It is very
/// important therefore, that if you are using the RH_RF95 driver with another
/// SPI based deviced, that you disable interrupts while you transfer data to
/// and from that other device. Use cli() to disable interrupts and sei() to
/// reenable them.
///
/// \par Memory
///
/// The RH_RF95 driver requires non-trivial amounts of memory. The sample
/// programs all compile to about 8kbytes each, which will fit in the
/// flash proram memory of most Arduinos. However, the RAM requirements are
/// more critical. Therefore, you should be vary sparing with RAM use in
/// programs that use the RH_RF95 driver.
///
/// It is often hard to accurately identify when you are hitting RAM limits on Arduino.
/// The symptoms can include:
/// - Mysterious crashes and restarts
/// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
/// - Hanging
/// - Output from Serial.print() not appearing
///
/// \par Range
///
/// We have made some simple range tests under the following conditions:
/// - rf95_client base station connected to a VHF discone antenna at 8m height above ground
/// - rf95_server mobile connected to 17.3cm 1/4 wavelength antenna at 1m height, no ground plane.
/// - Both configured for 13dBm, 434MHz, Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
/// - Minimum reported RSSI seen for successful comms was about -91
/// - Range over flat ground through heavy trees and vegetation approx 2km.
/// - At 20dBm (100mW) otherwise identical conditions approx 3km.
/// - At 20dBm, along salt water flat sandy beach, 3.2km.
///
/// It should be noted that at this data rate, a 12 octet message takes 2 seconds to transmit.
///
/// At 20dBm (100mW) with Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on.
/// (Default medium range) in the conditions described above.
/// - Range over flat ground through heavy trees and vegetation approx 2km.
///
/// Caution: the performance of this radio, especially with narrow bandwidths is strongly dependent on the
/// accuracy and stability of the chip clock. HopeRF and Semtech do not appear to
/// recommend bandwidths of less than 62.5 kHz
/// unless you have the optional Temperature Compensated Crystal Oscillator (TCXO) installed and
/// enabled on your radio module. See the refernece manual for more data.
/// Also https://lowpowerlab.com/forum/rf-range-antennas-rfm69-library/lora-library-experiences-range/15/
/// and http://www.semtech.com/images/datasheet/an120014-xo-guidance-lora-modulation.pdf
///
/// \par Transmitter Power
///
/// You can control the transmitter power on the RF transceiver
/// with the RH_RF95::setTxPower() function. The argument can be any of
/// +5 to +23 (for modules that use PA_BOOST)
/// -1 to +14 (for modules that use RFO transmitter pin)
/// The default is 13. Eg:
/// \code
/// driver.setTxPower(10); // use PA_BOOST transmitter pin
/// driver.setTxPower(10, true); // use PA_RFO pin transmitter pin
/// \endcode
///
/// We have made some actual power measurements against
/// programmed power for Anarduino MiniWirelessLoRa (which has RFM96W-433Mhz installed)
/// - MiniWirelessLoRa RFM96W-433Mhz, USB power
/// - 30cm RG316 soldered direct to RFM96W module ANT and GND
/// - SMA connector
/// - 12db attenuator
/// - SMA connector
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power Measured Power
/// dBm dBm
/// 5 5
/// 7 7
/// 9 8
/// 11 11
/// 13 13
/// 15 15
/// 17 16
/// 19 18
/// 20 20
/// 21 21
/// 22 22
/// 23 23
/// \endcode
///
/// We have also measured the actual power output from a Modtronix inAir4 http://modtronix.com/inair4.html
/// connected to a Teensy 3.1:
/// Teensy 3.1 this is a 3.3V part, connected directly to:
/// Modtronix inAir4 with SMA antenna connector, connected as above:
/// 10cm SMA-SMA cable
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power Measured Power
/// dBm dBm
/// -1 0
/// 1 2
/// 3 4
/// 5 7
/// 7 10
/// 9 13
/// 11 14.2
/// 13 15
/// 14 16
/// \endcode
/// (Caution: we dont claim laboratory accuracy for these power measurements)
/// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
class RH_RF95 : public RHSPIDriver
{
public:
/// \brief Defines register values for a set of modem configuration registers
///
/// Defines register values for a set of modem configuration registers
/// that can be passed to setModemRegisters() if none of the choices in
/// ModemConfigChoice suit your need setModemRegisters() writes the
/// register values from this structure to the appropriate registers
/// to set the desired spreading factor, coding rate and bandwidth
typedef struct {
uint8_t reg_1d; ///< Value for register RH_RF95_REG_1D_MODEM_CONFIG1
uint8_t reg_1e; ///< Value for register RH_RF95_REG_1E_MODEM_CONFIG2
uint8_t reg_26; ///< Value for register RH_RF95_REG_26_MODEM_CONFIG3
} ModemConfig;
/// Choices for setModemConfig() for a selected subset of common
/// data rates. If you need another configuration,
/// determine the necessary settings and call setModemRegisters() with your
/// desired settings. It might be helpful to use the LoRa calculator mentioned in
/// http://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf
/// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
/// definitions and not their integer equivalents: its possible that new values will be
/// introduced in later versions (though we will try to avoid it).
/// Caution: if you are using slow packet rates and long packets with RHReliableDatagram or subclasses
/// you may need to change the RHReliableDatagram timeout for reliable operations.
/// Caution: for some slow rates nad with ReliableDatagrams youi may need to increase the reply timeout
/// with manager.setTimeout() to
/// deal with the long transmission times.
typedef enum {
Bw125Cr45Sf128 = 0, ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
Bw500Cr45Sf128, ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
Bw31_25Cr48Sf512, ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
Bw125Cr48Sf4096, ///< Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
} ModemConfigChoice;
/// Constructor. You can have multiple instances, but each instance must have its own
/// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
/// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
/// distinct interrupt lines, one for each instance.
/// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RH_RF22 before
/// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
/// \param[in] interruptPin The interrupt Pin number that is connected to the RFM DIO0 interrupt line.
/// Defaults to pin 2, as required by Anarduino MinWirelessLoRa module.
/// Caution: You must specify an interrupt capable pin.
/// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
/// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
/// On Arduino Zero from arduino.cc, any digital pin other than 4.
/// On Arduino M0 Pro from arduino.org, any digital pin other than 2.
/// On other Arduinos pins 2 or 3.
/// See http://arduino.cc/en/Reference/attachInterrupt for more details.
/// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
/// On other boards, any digital pin may be used.
/// \param[in] spi Pointer to the SPI interface object to use.
/// Defaults to the standard Arduino hardware SPI interface
RH_RF95(uint8_t slaveSelectPin = SS, uint8_t interruptPin = 2, RHGenericSPI &spi = hardware_spi);
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
virtual bool init();
/// The main CPU is about to enter deep sleep, prepare the RF95 so it will be able to wake properly after we reboot
/// i.e. confirm we are in idle or rx mode, set a rtcram flag with state we need to restore after boot. Later in boot
/// we'll need to be careful not to wipe registers and be ready to handle any pending interrupts that occurred while
/// the main CPU was powered down.
void prepareDeepSleep();
/// Prints the value of all chip registers
/// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
/// For debugging purposes only.
/// \return true on success
bool printRegisters();
/// Sets all the registered required to configure the data modem in the RF95/96/97/98, including the bandwidth,
/// spreading factor etc. You can use this to configure the modem with custom configurations if none of the
/// canned configurations in ModemConfigChoice suit you.
/// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
void setModemRegisters(const ModemConfig *config);
/// Select one of the predefined modem configurations. If you need a modem configuration not provided
/// here, use setModemRegisters() with your own ModemConfig.
/// Caution: the slowest protocols may require a radio module with TCXO temperature controlled oscillator
/// for reliable operation.
/// \param[in] index The configuration choice.
/// \return true if index is a valid choice.
bool setModemConfig(ModemConfigChoice index);
/// Tests whether a new message is available
/// from the Driver.
/// On most drivers, this will also put the Driver into RHModeRx mode until
/// a message is actually received by the transport, when it wil be returned to RHModeIdle.
/// This can be called multiple times in a timeout loop
/// \return true if a new, complete, error-free uncollected message is available to be retreived by recv()
virtual bool available();
/// Sets the length of the preamble
/// in bytes.
/// Caution: this should be set to the same
/// value on all nodes in your network. Default is 8.
/// Sets the message preamble length in RH_RF95_REG_??_PREAMBLE_?SB
/// \param[in] bytes Preamble length in bytes.
void setPreambleLength(uint16_t bytes);
/// Returns the maximum message length
/// available in this Driver.
/// \return The maximum legal message length
virtual uint8_t maxMessageLength();
/// Sets the transmitter and receiver
/// centre frequency.
/// \param[in] centre Frequency in MHz. 137.0 to 1020.0. Caution: RFM95/96/97/98 comes in several
/// different frequency ranges, and setting a frequency outside that range of your radio will probably not work
/// \return true if the selected frquency centre is within range
bool setFrequency(float centre);
/// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
/// disables them.
void setModeIdle();
/// If current mode is Tx or Idle, changes it to Rx.
/// Starts the receiver in the RF95/96/97/98.
void setModeRx();
/// If current mode is Rx or Idle, changes it to Rx. F
/// Starts the transmitter in the RF95/96/97/98.
void setModeTx();
/// Sets the transmitter power output level, and configures the transmitter pin.
/// Be a good neighbour and set the lowest power level you need.
/// Some SX1276/77/78/79 and compatible modules (such as RFM95/96/97/98)
/// use the PA_BOOST transmitter pin for high power output (and optionally the PA_DAC)
/// while some (such as the Modtronix inAir4 and inAir9)
/// use the RFO transmitter pin for lower power but higher efficiency.
/// You must set the appropriate power level and useRFO argument for your module.
/// Check with your module manufacturer which transmtter pin is used on your module
/// to ensure you are setting useRFO correctly.
/// Failure to do so will result in very low
/// transmitter power output.
/// Caution: legal power limits may apply in certain countries.
/// After init(), the power will be set to 13dBm, with useRFO false (ie PA_BOOST enabled).
/// \param[in] power Transmitter power level in dBm. For RFM95/96/97/98 LORA with useRFO false,
/// valid values are from +5 to +23.
/// For Modtronix inAir4 and inAir9 with useRFO true (ie RFO pins in use),
/// valid values are from -1 to 14.
/// \param[in] useRFO If true, enables the use of the RFO transmitter pins instead of
/// the PA_BOOST pin (false). Choose the correct setting for your module.
void setTxPower(int8_t power, bool useRFO = false);
/// Sets the radio into low-power sleep mode.
/// If successful, the transport will stay in sleep mode until woken by
/// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
/// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
/// \return true if sleep mode was successfully entered.
virtual bool sleep();
// Bent G Christensen (bentor@gmail.com), 08/15/2016
/// Use the radio's Channel Activity Detect (CAD) function to detect channel activity.
/// Sets the RF95 radio into CAD mode and waits until CAD detection is complete.
/// To be used in a listen-before-talk mechanism (Collision Avoidance)
/// with a reasonable time backoff algorithm.
/// This is called automatically by waitCAD().
/// \return true if channel is in use.
virtual bool isChannelActive();
/// Enable TCXO mode
/// Call this immediately after init(), to force your radio to use an external
/// frequency source, such as a Temperature Compensated Crystal Oscillator (TCXO), if available.
/// See the comments in the main documentation about the sensitivity of this radio to
/// clock frequency especially when using narrow bandwidths.
/// Leaves the module in sleep mode.
/// Caution, this function has not been tested by us.
/// Caution, the TCXO model radios are not low power when in sleep (consuming
/// about ~600 uA, reported by Phang Moh Lim.<br>
void enableTCXO();
/// Returns the last measured frequency error.
/// The LoRa receiver estimates the frequency offset between the receiver centre frequency
/// and that of the received LoRa signal. This function returns the estimates offset (in Hz)
/// of the last received message. Caution: this measurement is not absolute, but is measured
/// relative to the local receiver's oscillator.
/// Apparent errors may be due to the transmitter, the receiver or both.
/// \return The estimated centre frequency offset in Hz of the last received message.
/// If the modem bandwidth selector in
/// register RH_RF95_REG_1D_MODEM_CONFIG1 is invalid, returns 0.
int frequencyError();
/// Returns the Signal-to-noise ratio (SNR) of the last received message, as measured
/// by the receiver.
/// \return SNR of the last received message in dB
int lastSNR();
/// brian.n.norman@gmail.com 9th Nov 2018
/// Sets the radio spreading factor.
/// valid values are 6 through 12.
/// Out of range values below 6 are clamped to 6
/// Out of range values above 12 are clamped to 12
/// See Semtech DS SX1276/77/78/79 page 27 regarding SF6 configuration.
///
/// \param[in] uint8_t sf (spreading factor 6..12)
/// \return nothing
void setSpreadingFactor(uint8_t sf);
/// brian.n.norman@gmail.com 9th Nov 2018
/// Sets the radio signal bandwidth
/// sbw ranges and resultant settings are as follows:-
/// sbw range actual bw (kHz)
/// 0-7800 7.8
/// 7801-10400 10.4
/// 10401-15600 15.6
/// 15601-20800 20.8
/// 20801-31250 31.25
/// 31251-41700 41.7
/// 41701-62500 62.5
/// 62501-12500 125.0
/// 12501-250000 250.0
/// >250000 500.0
/// NOTE caution Earlier - Semtech do not recommend BW below 62.5 although, in testing
/// I managed 31.25 with two devices in close proximity.
/// \param[in] sbw long, signal bandwidth e.g. 125000
void setSignalBandwidth(long sbw);
/// brian.n.norman@gmail.com 9th Nov 2018
/// Sets the coding rate to 4/5, 4/6, 4/7 or 4/8.
/// Valid denominator values are 5, 6, 7 or 8. A value of 5 sets the coding rate to 4/5 etc.
/// Values below 5 are clamped at 5
/// values above 8 are clamped at 8
/// \param[in] denominator uint8_t range 5..8
void setCodingRate4(uint8_t denominator);
/// brian.n.norman@gmail.com 9th Nov 2018
/// sets the low data rate flag if symbol time exceeds 16ms
/// ref: https://www.thethingsnetwork.org/forum/t/a-point-to-note-lora-low-data-rate-optimisation-flag/12007
/// called by setBandwidth() and setSpreadingfactor() since these affect the symbol time.
void setLowDatarate();
/// brian.n.norman@gmail.com 9th Nov 2018
/// allows the payload CRC bit to be turned on/off. Normally this should be left on
/// so that packets with a bad CRC are rejected
/// \patam[in] on bool, true turns the payload CRC on, false turns it off
void setPayloadCRC(bool on);
/// Return true if we are currently receiving a packet
bool isReceiving();
void loop(); // Perform idle processing
protected:
/// This is a low level function to handle the interrupts for one instance of RH_RF95.
/// Called automatically by isr*()
/// Should not need to be called by user code.
virtual void handleInterrupt();
/// This is the only code called in ISR context, it just queues up our helper thread to run handleInterrupt();
void RH_INTERRUPT_ATTR handleInterruptLevel0();
/// Examine the revceive buffer to determine whether the message is for this node
void validateRxBuf();
/// Clear our local receive buffer
void clearRxBuf();
/// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
/// Then optionally waits for Channel Activity Detection (CAD)
/// to show the channnel is clear (if the radio supports CAD) by calling waitCAD().
/// Then loads a message into the transmitter and starts the transmitter. Note that a message length
/// of 0 is permitted.
/// \param[in] data Array of data to be sent
/// \param[in] len Number of bytes of data to send
/// specify the maximum time in ms to wait. If 0 (the default) do not wait for CAD before transmitting.
/// \return true if the message length was valid and it was correctly queued for transmit. Return false
/// if CAD was requested and the CAD timeout timed out before clear channel was detected.
virtual bool send(const uint8_t *data, uint8_t len);
private:
/// Low level interrupt service routine for device connected to interrupt 0
static void isr0();
/// Low level interrupt service routine for device connected to interrupt 1
static void isr1();
/// Low level interrupt service routine for device connected to interrupt 1
static void isr2();
/// Array of instances connected to interrupts 0 and 1
static RH_RF95 *_deviceForInterrupt[];
/// Index of next interrupt number to use in _deviceForInterrupt
static uint8_t _interruptCount;
bool enableInterrupt(); // enable our IRQ
void disableInterrupt(); // disable our IRQ
volatile bool pendingInterrupt = false;
/// The configured interrupt pin connected to this instance
uint8_t _interruptPin;
/// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
/// else 0xff
uint8_t _myInterruptIndex;
// True if we are using the HF port (779.0 MHz and above)
bool _usingHFport;
// Last measured SNR, dB
int8_t _lastSNR;
protected:
/// Number of octets in the buffer
volatile uint8_t _bufLen;
/// The receiver/transmitter buffer
uint8_t _buf[RH_RF95_MAX_PAYLOAD_LEN];
/// True when there is a valid message in the buffer
volatile bool _rxBufValid;
};
/// @example rf95_client.pde
/// @example rf95_server.pde
/// @example rf95_encrypted_client.pde
/// @example rf95_encrypted_server.pde
/// @example rf95_reliable_datagram_client.pde
/// @example rf95_reliable_datagram_server.pde
#endif

View File

@@ -1,71 +0,0 @@
/*
* This is port of Dean Camera's ATOMIC_BLOCK macros for AVR to ARM Cortex M3
* v1.0
* Mark Pendrith, Nov 27, 2012.
*
* From Mark:
* >When I ported the macros I emailed Dean to ask what attribution would be
* >appropriate, and here is his response:
* >
* >>Mark,
* >>I think it's great that you've ported the macros; consider them
* >>public domain, to do with whatever you wish. I hope you find them >useful .
* >>
* >>Cheers!
* >>- Dean
*/
#ifdef __arm__
#ifndef _CORTEX_M3_ATOMIC_H_
#define _CORTEX_M3_ATOMIC_H_
static __inline__ uint32_t __get_primask(void) \
{ uint32_t primask = 0; \
__asm__ volatile ("MRS %[result], PRIMASK\n\t":[result]"=r"(primask)::); \
return primask; } // returns 0 if interrupts enabled, 1 if disabled
static __inline__ void __set_primask(uint32_t setval) \
{ __asm__ volatile ("MSR PRIMASK, %[value]\n\t""dmb\n\t""dsb\n\t""isb\n\t"::[value]"r"(setval):);
__asm__ volatile ("" ::: "memory");}
static __inline__ uint32_t __iSeiRetVal(void) \
{ __asm__ volatile ("CPSIE i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
__asm__ volatile ("" ::: "memory"); return 1; }
static __inline__ uint32_t __iCliRetVal(void) \
{ __asm__ volatile ("CPSID i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
__asm__ volatile ("" ::: "memory"); return 1; }
static __inline__ void __iSeiParam(const uint32_t *__s) \
{ __asm__ volatile ("CPSIE i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
__asm__ volatile ("" ::: "memory"); (void)__s; }
static __inline__ void __iCliParam(const uint32_t *__s) \
{ __asm__ volatile ("CPSID i\n\t""dmb\n\t""dsb\n\t""isb\n\t"); \
__asm__ volatile ("" ::: "memory"); (void)__s; }
static __inline__ void __iRestore(const uint32_t *__s) \
{ __set_primask(*__s); __asm__ volatile ("dmb\n\t""dsb\n\t""isb\n\t"); \
__asm__ volatile ("" ::: "memory"); }
#define ATOMIC_BLOCK(type) \
for ( type, __ToDo = __iCliRetVal(); __ToDo ; __ToDo = 0 )
#define ATOMIC_RESTORESTATE \
uint32_t primask_save __attribute__((__cleanup__(__iRestore))) = __get_primask()
#define ATOMIC_FORCEON \
uint32_t primask_save __attribute__((__cleanup__(__iSeiParam))) = 0
#define NONATOMIC_BLOCK(type) \
for ( type, __ToDo = __iSeiRetVal(); __ToDo ; __ToDo = 0 )
#define NONATOMIC_RESTORESTATE \
uint32_t primask_save __attribute__((__cleanup__(__iRestore))) = __get_primask()
#define NONATOMIC_FORCEOFF \
uint32_t primask_save __attribute__((__cleanup__(__iCliParam))) = 0
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,5 @@
#include "CustomRF95.h"
#include "RadioInterface.h"
#include "NodeDB.h"
#include "assert.h"
#include "configuration.h"
@@ -46,7 +47,8 @@ size_t RadioInterface::beginSending(MeshPacket *p)
// if the sender nodenum is zero, that means uninitialized
assert(h->from);
size_t numbytes = pb_encode_to_bytes(radiobuf + sizeof(PacketHeader), sizeof(radiobuf), SubPacket_fields, &p->payload) + sizeof(PacketHeader);
size_t numbytes = pb_encode_to_bytes(radiobuf + sizeof(PacketHeader), sizeof(radiobuf), SubPacket_fields, &p->payload) +
sizeof(PacketHeader);
assert(numbytes <= MAX_RHPACKETLEN);

View File

@@ -4,7 +4,6 @@
#include "MeshTypes.h"
#include "PointerQueue.h"
#include "mesh.pb.h"
#include <RH_RF95.h>
#define MAX_TX_QUEUE 16 // max number of packets which can be waiting for transmission
@@ -18,7 +17,12 @@ typedef struct {
uint8_t to, from, id, flags;
} PacketHeader;
typedef enum {
Bw125Cr45Sf128 = 0, ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
Bw500Cr45Sf128, ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
Bw31_25Cr48Sf512, ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
Bw125Cr48Sf4096, ///< Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
} ModemConfigChoice;
/**
* Basic operations all radio chipsets must implement.
@@ -48,7 +52,7 @@ class RadioInterface
public:
float freq = 915.0; // FIXME, init all these params from user setings
int8_t power = 17;
RH_RF95::ModemConfigChoice modemConfig;
ModemConfigChoice modemConfig;
/** pool is the pool we will alloc our rx packets from
* rxDest is where we will send any rx packets, it becomes receivers responsibility to return packet to the pool
@@ -81,7 +85,6 @@ class RadioInterface
// methods from radiohead
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
@@ -94,7 +97,8 @@ class RadioInterface
protected:
/***
* given a packet set sendingPacket and decode the protobufs into radiobuf. Returns # of bytes to send (including the PacketHeader & payload).
* given a packet set sendingPacket and decode the protobufs into radiobuf. Returns # of bytes to send (including the
* PacketHeader & payload).
*
* Used as the first step of
*/
@@ -112,16 +116,4 @@ class SimRadio : public RadioInterface
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
virtual bool init() { return true; }
/// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
/// disables them.
void setModeIdle() {}
/// If current mode is Tx or Idle, changes it to Rx.
/// Starts the receiver in the RF95/96/97/98.
void setModeRx() {}
/// Returns the operating mode of the library.
/// \return the current mode, one of RF69_MODE_*
virtual RHGenericDriver::RHMode mode() { return RHGenericDriver::RHModeIdle; }
};

View File

@@ -39,22 +39,22 @@ RadioLibInterface *RadioLibInterface::instance;
void RadioLibInterface::applyModemConfig()
{
switch (modemConfig) {
case RH_RF95::Bw125Cr45Sf128: ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
case Bw125Cr45Sf128: ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
bw = 125;
cr = 5;
sf = 7;
break;
case RH_RF95::Bw500Cr45Sf128: ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
case Bw500Cr45Sf128: ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
bw = 500;
cr = 5;
sf = 7;
break;
case RH_RF95::Bw31_25Cr48Sf512: ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
case Bw31_25Cr48Sf512: ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
bw = 31.25;
cr = 8;
sf = 9;
break;
case RH_RF95::Bw125Cr48Sf4096:
case Bw125Cr48Sf4096:
bw = 125;
cr = 8;
sf = 12;

View File

@@ -6,7 +6,6 @@
#include "PointerQueue.h"
#include "RadioInterface.h"
#include "mesh.pb.h"
#include <RH_RF95.h>
/**
* A mesh aware router that supports multiple interfaces.