add a .clang-format file (#9154)

This commit is contained in:
Jorropo
2026-01-03 21:19:24 +01:00
committed by GitHub
parent abab6ce815
commit 0d11331d18
771 changed files with 77752 additions and 83184 deletions

View File

@@ -37,145 +37,119 @@
BBQ10Keyboard::BBQ10Keyboard() : m_wire(nullptr), m_addr(0), readCallback(nullptr), writeCallback(nullptr) {}
void BBQ10Keyboard::begin(uint8_t addr, TwoWire *wire)
{
m_addr = addr;
m_wire = wire;
void BBQ10Keyboard::begin(uint8_t addr, TwoWire *wire) {
m_addr = addr;
m_wire = wire;
m_wire->begin();
m_wire->begin();
reset();
reset();
}
void BBQ10Keyboard::begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr)
{
m_addr = addr;
m_wire = nullptr;
writeCallback = w;
readCallback = r;
reset();
void BBQ10Keyboard::begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr) {
m_addr = addr;
m_wire = nullptr;
writeCallback = w;
readCallback = r;
reset();
}
void BBQ10Keyboard::reset()
{
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(_REG_RST);
m_wire->endTransmission();
}
if (writeCallback) {
uint8_t data = 0;
writeCallback(m_addr, _REG_RST, &data, 0);
}
delay(100);
writeRegister(_REG_CFG, readRegister8(_REG_CFG) | CFG_REPORT_MODS);
delay(100);
void BBQ10Keyboard::reset() {
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(_REG_RST);
m_wire->endTransmission();
}
if (writeCallback) {
uint8_t data = 0;
writeCallback(m_addr, _REG_RST, &data, 0);
}
delay(100);
writeRegister(_REG_CFG, readRegister8(_REG_CFG) | CFG_REPORT_MODS);
delay(100);
}
void BBQ10Keyboard::attachInterrupt(uint8_t pin, void (*func)(void)) const
{
pinMode(pin, INPUT_PULLUP);
::attachInterrupt(digitalPinToInterrupt(pin), func, RISING);
void BBQ10Keyboard::attachInterrupt(uint8_t pin, void (*func)(void)) const {
pinMode(pin, INPUT_PULLUP);
::attachInterrupt(digitalPinToInterrupt(pin), func, RISING);
}
void BBQ10Keyboard::detachInterrupt(uint8_t pin) const
{
::detachInterrupt(pin);
}
void BBQ10Keyboard::detachInterrupt(uint8_t pin) const { ::detachInterrupt(pin); }
void BBQ10Keyboard::clearInterruptStatus()
{
writeRegister(_REG_INT, 0x00);
}
void BBQ10Keyboard::clearInterruptStatus() { writeRegister(_REG_INT, 0x00); }
uint8_t BBQ10Keyboard::status() const
{
return readRegister8(_REG_KEY);
}
uint8_t BBQ10Keyboard::status() const { return readRegister8(_REG_KEY); }
uint8_t BBQ10Keyboard::keyCount() const
{
return status() & KEY_COUNT_MASK;
}
uint8_t BBQ10Keyboard::keyCount() const { return status() & KEY_COUNT_MASK; }
BBQ10Keyboard::KeyEvent BBQ10Keyboard::keyEvent() const
{
KeyEvent event = {.key = '\0', .state = StateIdle};
if (keyCount() == 0)
return event;
const uint16_t buf = readRegister16(_REG_FIF);
event.key = buf >> 8;
event.state = KeyState(buf & 0xFF);
BBQ10Keyboard::KeyEvent BBQ10Keyboard::keyEvent() const {
KeyEvent event = {.key = '\0', .state = StateIdle};
if (keyCount() == 0)
return event;
const uint16_t buf = readRegister16(_REG_FIF);
event.key = buf >> 8;
event.state = KeyState(buf & 0xFF);
return event;
}
float BBQ10Keyboard::backlight() const
{
return readRegister8(_REG_BKL) / 255.0f;
float BBQ10Keyboard::backlight() const { return readRegister8(_REG_BKL) / 255.0f; }
void BBQ10Keyboard::setBacklight(float value) { writeRegister(_REG_BKL, value * 255); }
uint8_t BBQ10Keyboard::readRegister8(uint8_t reg) const {
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
m_wire->requestFrom(m_addr, (uint8_t)1);
if (m_wire->available() < 1)
return 0;
return m_wire->read();
}
if (readCallback) {
uint8_t data;
readCallback(m_addr, reg, &data, 1);
return data;
}
return 0;
}
void BBQ10Keyboard::setBacklight(float value)
{
writeRegister(_REG_BKL, value * 255);
uint16_t BBQ10Keyboard::readRegister16(uint8_t reg) const {
uint8_t data[2] = {0};
// uint8_t low = 0, high = 0;
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
m_wire->requestFrom(m_addr, (uint8_t)2);
if (m_wire->available() < 2)
return 0;
data[0] = m_wire->read();
data[1] = m_wire->read();
}
if (readCallback) {
readCallback(m_addr, reg, data, 2);
}
return (data[1] << 8) | data[0];
}
uint8_t BBQ10Keyboard::readRegister8(uint8_t reg) const
{
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
void BBQ10Keyboard::writeRegister(uint8_t reg, uint8_t value) {
uint8_t data[2];
data[0] = reg | _WRITE_MASK;
data[1] = value;
m_wire->requestFrom(m_addr, (uint8_t)1);
if (m_wire->available() < 1)
return 0;
return m_wire->read();
}
if (readCallback) {
uint8_t data;
readCallback(m_addr, reg, &data, 1);
return data;
}
return 0;
}
uint16_t BBQ10Keyboard::readRegister16(uint8_t reg) const
{
uint8_t data[2] = {0};
// uint8_t low = 0, high = 0;
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
m_wire->requestFrom(m_addr, (uint8_t)2);
if (m_wire->available() < 2)
return 0;
data[0] = m_wire->read();
data[1] = m_wire->read();
}
if (readCallback) {
readCallback(m_addr, reg, data, 2);
}
return (data[1] << 8) | data[0];
}
void BBQ10Keyboard::writeRegister(uint8_t reg, uint8_t value)
{
uint8_t data[2];
data[0] = reg | _WRITE_MASK;
data[1] = value;
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(data, sizeof(uint8_t) * 2);
m_wire->endTransmission();
}
if (writeCallback) {
writeCallback(m_addr, data[0], &(data[1]), 1);
}
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(data, sizeof(uint8_t) * 2);
m_wire->endTransmission();
}
if (writeCallback) {
writeCallback(m_addr, data[0], &(data[1]), 1);
}
}

View File

@@ -8,44 +8,43 @@
#define KEY_MOD_SHR (0x1C)
#define KEY_MOD_SYM (0x1D)
class BBQ10Keyboard
{
public:
typedef uint8_t (*i2c_com_fptr_t)(uint8_t dev_addr, uint8_t reg_addr, uint8_t *data, uint8_t len);
class BBQ10Keyboard {
public:
typedef uint8_t (*i2c_com_fptr_t)(uint8_t dev_addr, uint8_t reg_addr, uint8_t *data, uint8_t len);
enum KeyState { StateIdle = 0, StatePress, StateLongPress, StateRelease };
enum KeyState { StateIdle = 0, StatePress, StateLongPress, StateRelease };
struct KeyEvent {
char key;
KeyState state;
};
struct KeyEvent {
char key;
KeyState state;
};
BBQ10Keyboard();
BBQ10Keyboard();
void begin(uint8_t addr = BBQ10_KB_ADDR, TwoWire *wire = &Wire);
void begin(uint8_t addr = BBQ10_KB_ADDR, TwoWire *wire = &Wire);
void begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr = BBQ10_KB_ADDR);
void begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr = BBQ10_KB_ADDR);
void reset(void);
void reset(void);
void attachInterrupt(uint8_t pin, void (*func)(void)) const;
void detachInterrupt(uint8_t pin) const;
void clearInterruptStatus(void);
void attachInterrupt(uint8_t pin, void (*func)(void)) const;
void detachInterrupt(uint8_t pin) const;
void clearInterruptStatus(void);
uint8_t status(void) const;
uint8_t keyCount(void) const;
KeyEvent keyEvent(void) const;
uint8_t status(void) const;
uint8_t keyCount(void) const;
KeyEvent keyEvent(void) const;
float backlight() const;
void setBacklight(float value);
float backlight() const;
void setBacklight(float value);
uint8_t readRegister8(uint8_t reg) const;
uint16_t readRegister16(uint8_t reg) const;
void writeRegister(uint8_t reg, uint8_t value);
uint8_t readRegister8(uint8_t reg) const;
uint16_t readRegister16(uint8_t reg) const;
void writeRegister(uint8_t reg, uint8_t value);
private:
TwoWire *m_wire;
uint8_t m_addr;
i2c_com_fptr_t readCallback;
i2c_com_fptr_t writeCallback;
private:
TwoWire *m_wire;
uint8_t m_addr;
i2c_com_fptr_t readCallback;
i2c_com_fptr_t writeCallback;
};

View File

@@ -22,307 +22,291 @@ using namespace concurrency;
#if HAS_BUTTON
#endif
ButtonThread::ButtonThread(const char *name) : OSThread(name)
{
_originName = name;
}
ButtonThread::ButtonThread(const char *name) : OSThread(name) { _originName = name; }
bool ButtonThread::initButton(const ButtonConfig &config)
{
if (inputBroker)
inputBroker->registerSource(this);
_longPressTime = config.longPressTime;
_longLongPressTime = config.longLongPressTime;
_pinNum = config.pinNumber;
_activeLow = config.activeLow;
_touchQuirk = config.touchQuirk;
_intRoutine = config.intRoutine;
_longLongPress = config.longLongPress;
bool ButtonThread::initButton(const ButtonConfig &config) {
if (inputBroker)
inputBroker->registerSource(this);
_longPressTime = config.longPressTime;
_longLongPressTime = config.longLongPressTime;
_pinNum = config.pinNumber;
_activeLow = config.activeLow;
_touchQuirk = config.touchQuirk;
_intRoutine = config.intRoutine;
_longLongPress = config.longLongPress;
userButton = OneButton(config.pinNumber, config.activeLow, config.activePullup);
userButton = OneButton(config.pinNumber, config.activeLow, config.activePullup);
if (config.pullupSense != 0) {
pinMode(config.pinNumber, config.pullupSense);
}
if (config.pullupSense != 0) {
pinMode(config.pinNumber, config.pullupSense);
}
_singlePress = config.singlePress;
userButton.attachClick(
_singlePress = config.singlePress;
userButton.attachClick(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
thread->btnEvent = BUTTON_EVENT_PRESSED;
},
this);
_longPress = config.longPress;
userButton.attachLongPressStart(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
// if (millis() > 30000) // hold off 30s after boot
thread->btnEvent = BUTTON_EVENT_LONG_PRESSED;
},
this);
userButton.attachLongPressStop(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
// if (millis() > 30000) // hold off 30s after boot
thread->btnEvent = BUTTON_EVENT_LONG_RELEASED;
},
this);
if (config.doublePress != INPUT_BROKER_NONE) {
_doublePress = config.doublePress;
userButton.attachDoubleClick(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
thread->btnEvent = BUTTON_EVENT_PRESSED;
ButtonThread *thread = (ButtonThread *)callerThread;
thread->btnEvent = BUTTON_EVENT_DOUBLE_PRESSED;
},
this);
}
_longPress = config.longPress;
userButton.attachLongPressStart(
if (config.triplePress != INPUT_BROKER_NONE) {
_triplePress = config.triplePress;
userButton.attachMultiClick(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
// if (millis() > 30000) // hold off 30s after boot
thread->btnEvent = BUTTON_EVENT_LONG_PRESSED;
ButtonThread *thread = (ButtonThread *)callerThread;
thread->storeClickCount();
thread->btnEvent = BUTTON_EVENT_MULTI_PRESSED;
},
this);
userButton.attachLongPressStop(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
// if (millis() > 30000) // hold off 30s after boot
thread->btnEvent = BUTTON_EVENT_LONG_RELEASED;
},
this);
if (config.doublePress != INPUT_BROKER_NONE) {
_doublePress = config.doublePress;
userButton.attachDoubleClick(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
thread->btnEvent = BUTTON_EVENT_DOUBLE_PRESSED;
},
this);
}
if (config.triplePress != INPUT_BROKER_NONE) {
_triplePress = config.triplePress;
userButton.attachMultiClick(
[](void *callerThread) -> void {
ButtonThread *thread = (ButtonThread *)callerThread;
thread->storeClickCount();
thread->btnEvent = BUTTON_EVENT_MULTI_PRESSED;
},
this);
}
if (config.shortLong != INPUT_BROKER_NONE) {
_shortLong = config.shortLong;
}
}
if (config.shortLong != INPUT_BROKER_NONE) {
_shortLong = config.shortLong;
}
#ifdef USE_EINK
userButton.setDebounceMs(0);
userButton.setDebounceMs(0);
#else
userButton.setDebounceMs(1);
userButton.setDebounceMs(1);
#endif
userButton.setPressMs(_longPressTime);
userButton.setPressMs(_longPressTime);
if (screen) {
userButton.setClickMs(20);
} else {
userButton.setClickMs(BUTTON_CLICK_MS);
}
attachButtonInterrupts();
if (screen) {
userButton.setClickMs(20);
} else {
userButton.setClickMs(BUTTON_CLICK_MS);
}
attachButtonInterrupts();
#ifdef ARCH_ESP32
// Register callbacks for before and after lightsleep
// Used to detach and reattach interrupts
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
// Register callbacks for before and after lightsleep
// Used to detach and reattach interrupts
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
#endif
return true;
return true;
}
int32_t ButtonThread::runOnce()
{
// If the button is pressed we suppress CPU sleep until release
canSleep = true; // Assume we should not keep the board awake
int32_t ButtonThread::runOnce() {
// If the button is pressed we suppress CPU sleep until release
canSleep = true; // Assume we should not keep the board awake
// Check for combination timeout
if (waitingForLongPress && (millis() - shortPressTime) > BUTTON_COMBO_TIMEOUT_MS) {
waitingForLongPress = false;
// Check for combination timeout
if (waitingForLongPress && (millis() - shortPressTime) > BUTTON_COMBO_TIMEOUT_MS) {
waitingForLongPress = false;
}
userButton.tick();
canSleep &= userButton.isIdle();
// Check if we should play lead-up sound during long press
// Play lead-up when button has been held for BUTTON_LEADUP_MS but before long press triggers
bool buttonCurrentlyPressed = isButtonPressed(_pinNum);
// Detect start of button press
if (buttonCurrentlyPressed && !buttonWasPressed) {
buttonPressStartTime = millis();
leadUpPlayed = false;
leadUpSequenceActive = false;
resetLeadUpSequence();
}
// Progressive lead-up sound system
if (buttonCurrentlyPressed && (millis() - buttonPressStartTime) >= BUTTON_LEADUP_MS) {
// Start the progressive sequence if not already active
if (!leadUpSequenceActive) {
leadUpSequenceActive = true;
lastLeadUpNoteTime = millis();
playNextLeadUpNote(); // Play the first note immediately
}
// Continue playing notes at intervals
else if ((millis() - lastLeadUpNoteTime) >= 400) { // 400ms interval between notes
if (playNextLeadUpNote()) {
lastLeadUpNoteTime = millis();
} else {
leadUpPlayed = true;
}
}
}
// Reset when button is released
if (!buttonCurrentlyPressed && buttonWasPressed) {
leadUpSequenceActive = false;
resetLeadUpSequence();
}
buttonWasPressed = buttonCurrentlyPressed;
// new behavior
if (btnEvent != BUTTON_EVENT_NONE) {
InputEvent evt;
evt.source = _originName;
evt.kbchar = 0;
evt.touchX = 0;
evt.touchY = 0;
switch (btnEvent) {
case BUTTON_EVENT_PRESSED: {
// Forward single press to InputBroker (but NOT as DOWN/SELECT, just forward a "button press" event)
evt.inputEvent = _singlePress;
// evt.kbchar = _singlePress; // todo: fix this. Some events are kb characters rather than event types
this->notifyObservers(&evt);
// Start tracking for potential combination
waitingForLongPress = true;
shortPressTime = millis();
break;
}
case BUTTON_EVENT_LONG_PRESSED: {
// Ignore if: TX in progress
// Uncommon T-Echo hardware bug, LoRa TX triggers touch button
if (_touchQuirk && RadioLibInterface::instance && RadioLibInterface::instance->isSending())
break;
// Check if this is part of a short-press + long-press combination
if (_shortLong != INPUT_BROKER_NONE && waitingForLongPress && (millis() - shortPressTime) <= BUTTON_COMBO_TIMEOUT_MS) {
evt.inputEvent = _shortLong;
// evt.kbchar = _shortLong;
this->notifyObservers(&evt);
// Play the combination tune
playComboTune();
break;
}
if (_longPress != INPUT_BROKER_NONE) {
// Forward long press to InputBroker (but NOT as DOWN/SELECT, just forward a "button long press" event)
evt.inputEvent = _longPress;
this->notifyObservers(&evt);
}
// Reset combination tracking
waitingForLongPress = false;
break;
}
userButton.tick();
canSleep &= userButton.isIdle();
case BUTTON_EVENT_DOUBLE_PRESSED: { // not wired in if screen detected
LOG_INFO("Double press!");
// Check if we should play lead-up sound during long press
// Play lead-up when button has been held for BUTTON_LEADUP_MS but before long press triggers
bool buttonCurrentlyPressed = isButtonPressed(_pinNum);
// Reset combination tracking
waitingForLongPress = false;
// Detect start of button press
if (buttonCurrentlyPressed && !buttonWasPressed) {
buttonPressStartTime = millis();
leadUpPlayed = false;
leadUpSequenceActive = false;
resetLeadUpSequence();
evt.inputEvent = _doublePress;
// evt.kbchar = _doublePress;
this->notifyObservers(&evt);
playComboTune();
break;
}
// Progressive lead-up sound system
if (buttonCurrentlyPressed && (millis() - buttonPressStartTime) >= BUTTON_LEADUP_MS) {
case BUTTON_EVENT_MULTI_PRESSED: { // not wired in when screen is present
LOG_INFO("Mulitipress! %hux", multipressClickCount);
// Start the progressive sequence if not already active
if (!leadUpSequenceActive) {
leadUpSequenceActive = true;
lastLeadUpNoteTime = millis();
playNextLeadUpNote(); // Play the first note immediately
}
// Continue playing notes at intervals
else if ((millis() - lastLeadUpNoteTime) >= 400) { // 400ms interval between notes
if (playNextLeadUpNote()) {
lastLeadUpNoteTime = millis();
} else {
leadUpPlayed = true;
}
}
// Reset combination tracking
waitingForLongPress = false;
switch (multipressClickCount) {
case 3:
evt.inputEvent = _triplePress;
// evt.kbchar = _triplePress;
this->notifyObservers(&evt);
playComboTune();
break;
// No valid multipress action
default:
break;
} // end switch: click count
break;
} // end multipress event
// Do actual shutdown when button released, otherwise the button release
// may wake the board immediatedly.
case BUTTON_EVENT_LONG_RELEASED: {
LOG_INFO("LONG PRESS RELEASE AFTER %u MILLIS", millis() - buttonPressStartTime);
if (millis() > 30000 && _longLongPress != INPUT_BROKER_NONE && (millis() - buttonPressStartTime) >= _longLongPressTime && leadUpPlayed) {
evt.inputEvent = _longLongPress;
this->notifyObservers(&evt);
}
// Reset combination tracking
waitingForLongPress = false;
leadUpPlayed = false;
break;
}
// Reset when button is released
if (!buttonCurrentlyPressed && buttonWasPressed) {
leadUpSequenceActive = false;
resetLeadUpSequence();
// doesn't handle BUTTON_EVENT_PRESSED_SCREEN BUTTON_EVENT_TOUCH_LONG_PRESSED BUTTON_EVENT_COMBO_SHORT_LONG
default: {
break;
}
buttonWasPressed = buttonCurrentlyPressed;
// new behavior
if (btnEvent != BUTTON_EVENT_NONE) {
InputEvent evt;
evt.source = _originName;
evt.kbchar = 0;
evt.touchX = 0;
evt.touchY = 0;
switch (btnEvent) {
case BUTTON_EVENT_PRESSED: {
// Forward single press to InputBroker (but NOT as DOWN/SELECT, just forward a "button press" event)
evt.inputEvent = _singlePress;
// evt.kbchar = _singlePress; // todo: fix this. Some events are kb characters rather than event types
this->notifyObservers(&evt);
// Start tracking for potential combination
waitingForLongPress = true;
shortPressTime = millis();
break;
}
case BUTTON_EVENT_LONG_PRESSED: {
// Ignore if: TX in progress
// Uncommon T-Echo hardware bug, LoRa TX triggers touch button
if (_touchQuirk && RadioLibInterface::instance && RadioLibInterface::instance->isSending())
break;
// Check if this is part of a short-press + long-press combination
if (_shortLong != INPUT_BROKER_NONE && waitingForLongPress &&
(millis() - shortPressTime) <= BUTTON_COMBO_TIMEOUT_MS) {
evt.inputEvent = _shortLong;
// evt.kbchar = _shortLong;
this->notifyObservers(&evt);
// Play the combination tune
playComboTune();
break;
}
if (_longPress != INPUT_BROKER_NONE) {
// Forward long press to InputBroker (but NOT as DOWN/SELECT, just forward a "button long press" event)
evt.inputEvent = _longPress;
this->notifyObservers(&evt);
}
// Reset combination tracking
waitingForLongPress = false;
break;
}
case BUTTON_EVENT_DOUBLE_PRESSED: { // not wired in if screen detected
LOG_INFO("Double press!");
// Reset combination tracking
waitingForLongPress = false;
evt.inputEvent = _doublePress;
// evt.kbchar = _doublePress;
this->notifyObservers(&evt);
playComboTune();
break;
}
case BUTTON_EVENT_MULTI_PRESSED: { // not wired in when screen is present
LOG_INFO("Mulitipress! %hux", multipressClickCount);
// Reset combination tracking
waitingForLongPress = false;
switch (multipressClickCount) {
case 3:
evt.inputEvent = _triplePress;
// evt.kbchar = _triplePress;
this->notifyObservers(&evt);
playComboTune();
break;
// No valid multipress action
default:
break;
} // end switch: click count
break;
} // end multipress event
// Do actual shutdown when button released, otherwise the button release
// may wake the board immediatedly.
case BUTTON_EVENT_LONG_RELEASED: {
LOG_INFO("LONG PRESS RELEASE AFTER %u MILLIS", millis() - buttonPressStartTime);
if (millis() > 30000 && _longLongPress != INPUT_BROKER_NONE &&
(millis() - buttonPressStartTime) >= _longLongPressTime && leadUpPlayed) {
evt.inputEvent = _longLongPress;
this->notifyObservers(&evt);
}
// Reset combination tracking
waitingForLongPress = false;
leadUpPlayed = false;
break;
}
// doesn't handle BUTTON_EVENT_PRESSED_SCREEN BUTTON_EVENT_TOUCH_LONG_PRESSED BUTTON_EVENT_COMBO_SHORT_LONG
default: {
break;
}
}
}
btnEvent = BUTTON_EVENT_NONE;
}
btnEvent = BUTTON_EVENT_NONE;
// only pull when the button is pressed, we get notified via IRQ on a new press
if (!userButton.isIdle() || waitingForLongPress) {
return 50;
}
return 100; // FIXME: Why can't we rely on interrupts and use INT32_MAX here?
// only pull when the button is pressed, we get notified via IRQ on a new press
if (!userButton.isIdle() || waitingForLongPress) {
return 50;
}
return 100; // FIXME: Why can't we rely on interrupts and use INT32_MAX here?
}
/*
* Attach (or re-attach) hardware interrupts for buttons
* Public method. Used outside class when waking from MCU sleep
*/
void ButtonThread::attachButtonInterrupts()
{
// Interrupt for user button, during normal use. Improves responsiveness.
attachInterrupt(_pinNum, _intRoutine, CHANGE);
void ButtonThread::attachButtonInterrupts() {
// Interrupt for user button, during normal use. Improves responsiveness.
attachInterrupt(_pinNum, _intRoutine, CHANGE);
}
/*
* Detach the "normal" button interrupts.
* Public method. Used before attaching a "wake-on-button" interrupt for MCU sleep
*/
void ButtonThread::detachButtonInterrupts()
{
detachInterrupt(_pinNum);
}
void ButtonThread::detachButtonInterrupts() { detachInterrupt(_pinNum); }
#ifdef ARCH_ESP32
// Detach our class' interrupts before lightsleep
// Allows sleep.cpp to configure its own interrupts, which wake the device on user-button press
int ButtonThread::beforeLightSleep(void *unused)
{
detachButtonInterrupts();
return 0; // Indicates success
int ButtonThread::beforeLightSleep(void *unused) {
detachButtonInterrupts();
return 0; // Indicates success
}
// Reconfigure our interrupts
// Our class' interrupts were disconnected during sleep, to allow the user button to wake the device from sleep
int ButtonThread::afterLightSleep(esp_sleep_wakeup_cause_t cause)
{
attachButtonInterrupts();
return 0; // Indicates success
int ButtonThread::afterLightSleep(esp_sleep_wakeup_cause_t cause) {
attachButtonInterrupts();
return 0; // Indicates success
}
#endif
// Non-static method, runs during callback. Grabs info while still valid
void ButtonThread::storeClickCount()
{
multipressClickCount = userButton.getNumberClicks();
}
void ButtonThread::storeClickCount() { multipressClickCount = userButton.getNumberClicks(); }

View File

@@ -8,23 +8,23 @@
typedef void (*voidFuncPtr)(void);
struct ButtonConfig {
uint8_t pinNumber;
bool activeLow = true;
bool activePullup = true;
uint32_t pullupSense = 0;
voidFuncPtr intRoutine = nullptr;
input_broker_event singlePress = INPUT_BROKER_NONE;
input_broker_event longPress = INPUT_BROKER_NONE;
uint16_t longPressTime = 500;
input_broker_event doublePress = INPUT_BROKER_NONE;
input_broker_event longLongPress = INPUT_BROKER_NONE;
uint16_t longLongPressTime = 3900;
input_broker_event triplePress = INPUT_BROKER_NONE;
input_broker_event shortLong = INPUT_BROKER_NONE;
bool touchQuirk = false;
uint8_t pinNumber;
bool activeLow = true;
bool activePullup = true;
uint32_t pullupSense = 0;
voidFuncPtr intRoutine = nullptr;
input_broker_event singlePress = INPUT_BROKER_NONE;
input_broker_event longPress = INPUT_BROKER_NONE;
uint16_t longPressTime = 500;
input_broker_event doublePress = INPUT_BROKER_NONE;
input_broker_event longLongPress = INPUT_BROKER_NONE;
uint16_t longLongPressTime = 3900;
input_broker_event triplePress = INPUT_BROKER_NONE;
input_broker_event shortLong = INPUT_BROKER_NONE;
bool touchQuirk = false;
// Constructor to set required parameter
explicit ButtonConfig(uint8_t pin = 0) : pinNumber(pin) {}
// Constructor to set required parameter
explicit ButtonConfig(uint8_t pin = 0) : pinNumber(pin) {}
};
#ifndef BUTTON_CLICK_MS
@@ -43,89 +43,86 @@ struct ButtonConfig {
#define BUTTON_LEADUP_MS 2200 // Play lead-up sound after 2.5 seconds of holding
#endif
class ButtonThread : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
const char *_originName;
static const uint32_t c_holdOffTime = 30000; // hold off 30s after boot
bool initButton(const ButtonConfig &config);
class ButtonThread : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
const char *_originName;
static const uint32_t c_holdOffTime = 30000; // hold off 30s after boot
bool initButton(const ButtonConfig &config);
enum ButtonEventType {
BUTTON_EVENT_NONE,
BUTTON_EVENT_PRESSED,
BUTTON_EVENT_PRESSED_SCREEN,
BUTTON_EVENT_DOUBLE_PRESSED,
BUTTON_EVENT_MULTI_PRESSED,
BUTTON_EVENT_LONG_PRESSED,
BUTTON_EVENT_LONG_RELEASED,
BUTTON_EVENT_TOUCH_LONG_PRESSED,
BUTTON_EVENT_COMBO_SHORT_LONG,
};
enum ButtonEventType {
BUTTON_EVENT_NONE,
BUTTON_EVENT_PRESSED,
BUTTON_EVENT_PRESSED_SCREEN,
BUTTON_EVENT_DOUBLE_PRESSED,
BUTTON_EVENT_MULTI_PRESSED,
BUTTON_EVENT_LONG_PRESSED,
BUTTON_EVENT_LONG_RELEASED,
BUTTON_EVENT_TOUCH_LONG_PRESSED,
BUTTON_EVENT_COMBO_SHORT_LONG,
};
explicit ButtonThread(const char *name);
int32_t runOnce() override;
OneButton userButton;
void attachButtonInterrupts();
void detachButtonInterrupts();
void storeClickCount();
bool isButtonPressed(int buttonPin)
{
if (_activeLow)
return !digitalRead(buttonPin); // Active low: pressed = LOW
else
return digitalRead(buttonPin); // Most buttons are active low by default
}
explicit ButtonThread(const char *name);
int32_t runOnce() override;
OneButton userButton;
void attachButtonInterrupts();
void detachButtonInterrupts();
void storeClickCount();
bool isButtonPressed(int buttonPin) {
if (_activeLow)
return !digitalRead(buttonPin); // Active low: pressed = LOW
else
return digitalRead(buttonPin); // Most buttons are active low by default
}
// Returns true while this thread's button is physically held down
bool isHeld() { return isButtonPressed(_pinNum); }
// Returns true while this thread's button is physically held down
bool isHeld() { return isButtonPressed(_pinNum); }
// Disconnect and reconnect interrupts for light sleep
// Disconnect and reconnect interrupts for light sleep
#ifdef ARCH_ESP32
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
#endif
private:
input_broker_event _singlePress = INPUT_BROKER_NONE;
input_broker_event _longPress = INPUT_BROKER_NONE;
input_broker_event _longLongPress = INPUT_BROKER_NONE;
private:
input_broker_event _singlePress = INPUT_BROKER_NONE;
input_broker_event _longPress = INPUT_BROKER_NONE;
input_broker_event _longLongPress = INPUT_BROKER_NONE;
input_broker_event _doublePress = INPUT_BROKER_NONE;
input_broker_event _triplePress = INPUT_BROKER_NONE;
input_broker_event _shortLong = INPUT_BROKER_NONE;
input_broker_event _doublePress = INPUT_BROKER_NONE;
input_broker_event _triplePress = INPUT_BROKER_NONE;
input_broker_event _shortLong = INPUT_BROKER_NONE;
voidFuncPtr _intRoutine = nullptr;
uint16_t _longPressTime = 500;
uint16_t _longLongPressTime = 3900;
int _pinNum = 0;
bool _activeLow = true;
bool _touchQuirk = false;
voidFuncPtr _intRoutine = nullptr;
uint16_t _longPressTime = 500;
uint16_t _longLongPressTime = 3900;
int _pinNum = 0;
bool _activeLow = true;
bool _touchQuirk = false;
uint32_t buttonPressStartTime = 0;
bool buttonWasPressed = false;
uint32_t buttonPressStartTime = 0;
bool buttonWasPressed = false;
#ifdef ARCH_ESP32
// Get notified when lightsleep begins and ends
CallbackObserver<ButtonThread, void *> lsObserver =
CallbackObserver<ButtonThread, void *>(this, &ButtonThread::beforeLightSleep);
CallbackObserver<ButtonThread, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<ButtonThread, esp_sleep_wakeup_cause_t>(this, &ButtonThread::afterLightSleep);
// Get notified when lightsleep begins and ends
CallbackObserver<ButtonThread, void *> lsObserver = CallbackObserver<ButtonThread, void *>(this, &ButtonThread::beforeLightSleep);
CallbackObserver<ButtonThread, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<ButtonThread, esp_sleep_wakeup_cause_t>(this, &ButtonThread::afterLightSleep);
#endif
volatile ButtonEventType btnEvent = BUTTON_EVENT_NONE;
volatile ButtonEventType btnEvent = BUTTON_EVENT_NONE;
// Store click count during callback, for later use
volatile int multipressClickCount = 0;
// Store click count during callback, for later use
volatile int multipressClickCount = 0;
// Combination tracking state
bool waitingForLongPress = false;
uint32_t shortPressTime = 0;
// Combination tracking state
bool waitingForLongPress = false;
uint32_t shortPressTime = 0;
// Long press lead-up tracking
bool leadUpPlayed = false;
uint32_t lastLeadUpNoteTime = 0;
bool leadUpSequenceActive = false;
// Long press lead-up tracking
bool leadUpPlayed = false;
uint32_t lastLeadUpNoteTime = 0;
bool leadUpSequenceActive = false;
static void wakeOnIrq(int irq, int mode);
static void wakeOnIrq(int irq, int mode);
};
extern ButtonThread *buttonThread;

View File

@@ -21,225 +21,210 @@ static const char inputSourceName[] = "ExpressLRS5Way"; // should match "allow i
* Example Fuzz values: {20, 20, 100, 100, 125, 300} now the fuzz for the 1600
* position is 300 instead of 20
*/
void ExpressLRSFiveWay::calcFuzzValues()
{
for (unsigned int i = 0; i < N_JOY_ADC_VALUES; i++) {
uint16_t closestDist = 0xffff;
uint16_t ival = joyAdcValues[i];
// Find the closest value to ival
for (unsigned int j = 0; j < N_JOY_ADC_VALUES; j++) {
// Don't compare value with itself
if (j == i)
continue;
uint16_t jval = joyAdcValues[j];
if (jval < ival && (ival - jval < closestDist))
closestDist = ival - jval;
if (jval > ival && (jval - ival < closestDist))
closestDist = jval - ival;
} // for j
void ExpressLRSFiveWay::calcFuzzValues() {
for (unsigned int i = 0; i < N_JOY_ADC_VALUES; i++) {
uint16_t closestDist = 0xffff;
uint16_t ival = joyAdcValues[i];
// Find the closest value to ival
for (unsigned int j = 0; j < N_JOY_ADC_VALUES; j++) {
// Don't compare value with itself
if (j == i)
continue;
uint16_t jval = joyAdcValues[j];
if (jval < ival && (ival - jval < closestDist))
closestDist = ival - jval;
if (jval > ival && (jval - ival < closestDist))
closestDist = jval - ival;
} // for j
// And the fuzz is half the distance to the closest value
fuzzValues[i] = closestDist / 2;
// DBG("joy%u=%u f=%u, ", i, ival, fuzzValues[i]);
} // for i
// And the fuzz is half the distance to the closest value
fuzzValues[i] = closestDist / 2;
// DBG("joy%u=%u f=%u, ", i, ival, fuzzValues[i]);
} // for i
}
int ExpressLRSFiveWay::readKey()
{
uint16_t value = analogRead(PIN_JOYSTICK);
int ExpressLRSFiveWay::readKey() {
uint16_t value = analogRead(PIN_JOYSTICK);
constexpr uint8_t IDX_TO_INPUT[N_JOY_ADC_VALUES - 1] = {UP, DOWN, LEFT, RIGHT, OK};
for (unsigned int i = 0; i < N_JOY_ADC_VALUES - 1; ++i) {
if (value < (joyAdcValues[i] + fuzzValues[i]) && value > (joyAdcValues[i] - fuzzValues[i]))
return IDX_TO_INPUT[i];
}
return NO_PRESS;
constexpr uint8_t IDX_TO_INPUT[N_JOY_ADC_VALUES - 1] = {UP, DOWN, LEFT, RIGHT, OK};
for (unsigned int i = 0; i < N_JOY_ADC_VALUES - 1; ++i) {
if (value < (joyAdcValues[i] + fuzzValues[i]) && value > (joyAdcValues[i] - fuzzValues[i]))
return IDX_TO_INPUT[i];
}
return NO_PRESS;
}
ExpressLRSFiveWay::ExpressLRSFiveWay() : concurrency::OSThread(inputSourceName)
{
// ExpressLRS: init values
isLongPressed = false;
keyInProcess = NO_PRESS;
keyDownStart = 0;
ExpressLRSFiveWay::ExpressLRSFiveWay() : concurrency::OSThread(inputSourceName) {
// ExpressLRS: init values
isLongPressed = false;
keyInProcess = NO_PRESS;
keyDownStart = 0;
// Express LRS: calculate the threshold for interpreting ADC values as various buttons
calcFuzzValues();
// Express LRS: calculate the threshold for interpreting ADC values as various buttons
calcFuzzValues();
// Meshtastic: register with canned messages
inputBroker->registerSource(this);
// Meshtastic: register with canned messages
inputBroker->registerSource(this);
}
// ExpressLRS: interpret reading as key events
void ExpressLRSFiveWay::update(int *keyValue, bool *keyLongPressed)
{
*keyValue = NO_PRESS;
void ExpressLRSFiveWay::update(int *keyValue, bool *keyLongPressed) {
*keyValue = NO_PRESS;
int newKey = readKey();
if (keyInProcess == NO_PRESS) {
// New key down
if (newKey != NO_PRESS) {
keyDownStart = millis();
// DBGLN("down=%u", newKey);
int newKey = readKey();
if (keyInProcess == NO_PRESS) {
// New key down
if (newKey != NO_PRESS) {
keyDownStart = millis();
// DBGLN("down=%u", newKey);
}
} else {
// if key released
if (newKey == NO_PRESS) {
// DBGLN("up=%u", keyInProcess);
if (!isLongPressed) {
if (!Throttle::isWithinTimespanMs(keyDownStart, KEY_DEBOUNCE_MS)) {
*keyValue = keyInProcess;
*keyLongPressed = false;
}
} else {
// if key released
if (newKey == NO_PRESS) {
// DBGLN("up=%u", keyInProcess);
if (!isLongPressed) {
if (!Throttle::isWithinTimespanMs(keyDownStart, KEY_DEBOUNCE_MS)) {
*keyValue = keyInProcess;
*keyLongPressed = false;
}
}
isLongPressed = false;
}
// else if the key has changed while down, reset state for next go-around
else if (newKey != keyInProcess) {
newKey = NO_PRESS;
}
// else still pressing, waiting for long if not already signaled
else if (!isLongPressed) {
if (!Throttle::isWithinTimespanMs(keyDownStart, KEY_LONG_PRESS_MS)) {
*keyValue = keyInProcess;
*keyLongPressed = true;
isLongPressed = true;
}
}
} // if keyInProcess != NO_PRESS
}
isLongPressed = false;
}
// else if the key has changed while down, reset state for next go-around
else if (newKey != keyInProcess) {
newKey = NO_PRESS;
}
// else still pressing, waiting for long if not already signaled
else if (!isLongPressed) {
if (!Throttle::isWithinTimespanMs(keyDownStart, KEY_LONG_PRESS_MS)) {
*keyValue = keyInProcess;
*keyLongPressed = true;
isLongPressed = true;
}
}
} // if keyInProcess != NO_PRESS
keyInProcess = newKey;
keyInProcess = newKey;
}
// Meshtastic: runs at regular intervals
int32_t ExpressLRSFiveWay::runOnce()
{
uint32_t now = millis();
int32_t ExpressLRSFiveWay::runOnce() {
uint32_t now = millis();
// Dismiss any alert frames after 2 seconds
// Feedback for GPS toggle / adhoc ping
if (alerting && now > alertingSinceMs + 2000) {
alerting = false;
screen->endAlert();
}
// Dismiss any alert frames after 2 seconds
// Feedback for GPS toggle / adhoc ping
if (alerting && now > alertingSinceMs + 2000) {
alerting = false;
screen->endAlert();
}
// Get key events from ExpressLRS code
int keyValue;
bool longPressed;
update(&keyValue, &longPressed);
// Get key events from ExpressLRS code
int keyValue;
bool longPressed;
update(&keyValue, &longPressed);
// Do something about this key press
determineAction((KeyType)keyValue, longPressed ? LONG : SHORT);
// Do something about this key press
determineAction((KeyType)keyValue, longPressed ? LONG : SHORT);
// If there has been recent key activity, poll the joystick slightly more frequently
if (now < keyDownStart + (20 * 1000UL)) // Within last 20 seconds
return 100;
// If there has been recent key activity, poll the joystick slightly more frequently
if (now < keyDownStart + (20 * 1000UL)) // Within last 20 seconds
return 100;
// Otherwise, poll slightly less often
// Too many missed pressed if much slower than 250ms
return 250;
// Otherwise, poll slightly less often
// Too many missed pressed if much slower than 250ms
return 250;
}
// Determine what action to take when a button press is detected
// Written verbose for easier remapping by user
void ExpressLRSFiveWay::determineAction(KeyType key, PressLength length)
{
switch (key) {
case LEFT:
if (inCannedMessageMenu()) // If in canned message menu
sendKey(INPUT_BROKER_CANCEL); // exit the menu (press imaginary cancel key)
else
sendKey(INPUT_BROKER_LEFT);
break;
void ExpressLRSFiveWay::determineAction(KeyType key, PressLength length) {
switch (key) {
case LEFT:
if (inCannedMessageMenu()) // If in canned message menu
sendKey(INPUT_BROKER_CANCEL); // exit the menu (press imaginary cancel key)
else
sendKey(INPUT_BROKER_LEFT);
break;
case RIGHT:
if (inCannedMessageMenu()) // If in canned message menu:
sendKey(INPUT_BROKER_CANCEL); // exit the menu (press imaginary cancel key)
else
sendKey(INPUT_BROKER_RIGHT);
break;
case RIGHT:
if (inCannedMessageMenu()) // If in canned message menu:
sendKey(INPUT_BROKER_CANCEL); // exit the menu (press imaginary cancel key)
else
sendKey(INPUT_BROKER_RIGHT);
break;
case UP:
if (length == LONG)
toggleGPS();
else
sendKey(INPUT_BROKER_UP);
break;
case UP:
if (length == LONG)
toggleGPS();
else
sendKey(INPUT_BROKER_UP);
break;
case DOWN:
if (length == LONG)
sendAdhocPing();
else
sendKey(INPUT_BROKER_DOWN);
break;
case DOWN:
if (length == LONG)
sendAdhocPing();
else
sendKey(INPUT_BROKER_DOWN);
break;
case OK:
if (length == LONG)
shutdown();
else
click(); // Use instead of sendKey(OK). Works better when canned message module disabled
break;
case OK:
if (length == LONG)
shutdown();
else
click(); // Use instead of sendKey(OK). Works better when canned message module disabled
break;
default:
break;
}
default:
break;
}
}
// Feed input to the canned messages module
void ExpressLRSFiveWay::sendKey(input_broker_event key)
{
InputEvent e = {};
e.source = inputSourceName;
e.inputEvent = key;
notifyObservers(&e);
void ExpressLRSFiveWay::sendKey(input_broker_event key) {
InputEvent e = {};
e.source = inputSourceName;
e.inputEvent = key;
notifyObservers(&e);
}
// Enable or Disable a connected GPS
// Contained as one method for easier remapping of buttons by user
void ExpressLRSFiveWay::toggleGPS()
{
void ExpressLRSFiveWay::toggleGPS() {
#if HAS_GPS && !MESHTASTIC_EXCLUDE_GPS
if (gps != nullptr) {
gps->toggleGpsMode();
screen->startAlert("GPS Toggled");
alerting = true;
alertingSinceMs = millis();
}
if (gps != nullptr) {
gps->toggleGpsMode();
screen->startAlert("GPS Toggled");
alerting = true;
alertingSinceMs = millis();
}
#endif
}
// Send either node-info or position, on demand
// Contained as one method for easier remapping of buttons by user
void ExpressLRSFiveWay::sendAdhocPing()
{
service->refreshLocalMeshNode();
bool sentPosition = service->trySendPosition(NODENUM_BROADCAST, true);
void ExpressLRSFiveWay::sendAdhocPing() {
service->refreshLocalMeshNode();
bool sentPosition = service->trySendPosition(NODENUM_BROADCAST, true);
// Show custom alert frame, with multi-line centering
screen->startAlert([sentPosition](OLEDDisplay *display, OLEDDisplayUiState *state, int16_t x, int16_t y) -> void {
uint16_t x_offset = display->width() / 2;
uint16_t y_offset = 26; // Same constant as the default startAlert frame
display->setTextAlignment(TEXT_ALIGN_CENTER);
display->setFont(FONT_MEDIUM);
display->drawString(x_offset + x, y_offset + y, "Sent ad-hoc");
display->drawString(x_offset + x, y_offset + FONT_HEIGHT_MEDIUM + y, sentPosition ? "position" : "nodeinfo");
});
// Show custom alert frame, with multi-line centering
screen->startAlert([sentPosition](OLEDDisplay *display, OLEDDisplayUiState *state, int16_t x, int16_t y) -> void {
uint16_t x_offset = display->width() / 2;
uint16_t y_offset = 26; // Same constant as the default startAlert frame
display->setTextAlignment(TEXT_ALIGN_CENTER);
display->setFont(FONT_MEDIUM);
display->drawString(x_offset + x, y_offset + y, "Sent ad-hoc");
display->drawString(x_offset + x, y_offset + FONT_HEIGHT_MEDIUM + y, sentPosition ? "position" : "nodeinfo");
});
alerting = true;
alertingSinceMs = millis();
alerting = true;
alertingSinceMs = millis();
}
// Shutdown the node (enter deep-sleep)
// Contained as one method for easier remapping of buttons by user
void ExpressLRSFiveWay::shutdown()
{
sendKey(INPUT_BROKER_SHUTDOWN);
}
void ExpressLRSFiveWay::shutdown() { sendKey(INPUT_BROKER_SHUTDOWN); }
void ExpressLRSFiveWay::click()
{
sendKey(INPUT_BROKER_SELECT);
}
void ExpressLRSFiveWay::click() { sendKey(INPUT_BROKER_SELECT); }
ExpressLRSFiveWay *expressLRSFiveWayInput = nullptr;

View File

@@ -28,56 +28,55 @@
#include "GPS.h" // For toggle GPS action
#endif
class ExpressLRSFiveWay : public Observable<const InputEvent *>, public concurrency::OSThread
{
private:
// Number of values in JOY_ADC_VALUES, if defined
// These must be ADC readings for {UP, DOWN, LEFT, RIGHT, ENTER, IDLE}
static constexpr size_t N_JOY_ADC_VALUES = 6;
static constexpr uint32_t KEY_DEBOUNCE_MS = 25;
static constexpr uint32_t KEY_LONG_PRESS_MS = 3000; // How many milliseconds to hold key for a long press
class ExpressLRSFiveWay : public Observable<const InputEvent *>, public concurrency::OSThread {
private:
// Number of values in JOY_ADC_VALUES, if defined
// These must be ADC readings for {UP, DOWN, LEFT, RIGHT, ENTER, IDLE}
static constexpr size_t N_JOY_ADC_VALUES = 6;
static constexpr uint32_t KEY_DEBOUNCE_MS = 25;
static constexpr uint32_t KEY_LONG_PRESS_MS = 3000; // How many milliseconds to hold key for a long press
// This merged an enum used by the ExpressLRS code, with meshtastic canned message values
// Key names are kept simple, to allow user customizaton
typedef enum {
UP = INPUT_BROKER_UP,
DOWN = INPUT_BROKER_DOWN,
LEFT = INPUT_BROKER_LEFT,
RIGHT = INPUT_BROKER_RIGHT,
OK = INPUT_BROKER_SELECT,
CANCEL = INPUT_BROKER_CANCEL,
NO_PRESS = INPUT_BROKER_NONE
} KeyType;
// This merged an enum used by the ExpressLRS code, with meshtastic canned message values
// Key names are kept simple, to allow user customizaton
typedef enum {
UP = INPUT_BROKER_UP,
DOWN = INPUT_BROKER_DOWN,
LEFT = INPUT_BROKER_LEFT,
RIGHT = INPUT_BROKER_RIGHT,
OK = INPUT_BROKER_SELECT,
CANCEL = INPUT_BROKER_CANCEL,
NO_PRESS = INPUT_BROKER_NONE
} KeyType;
typedef enum { SHORT, LONG } PressLength;
typedef enum { SHORT, LONG } PressLength;
// From ExpressLRS
int keyInProcess;
uint32_t keyDownStart;
bool isLongPressed;
const uint16_t joyAdcValues[N_JOY_ADC_VALUES] = {JOYSTICK_ADC_VALS};
uint16_t fuzzValues[N_JOY_ADC_VALUES];
void calcFuzzValues();
int readKey();
void update(int *keyValue, bool *keyLongPressed);
// From ExpressLRS
int keyInProcess;
uint32_t keyDownStart;
bool isLongPressed;
const uint16_t joyAdcValues[N_JOY_ADC_VALUES] = {JOYSTICK_ADC_VALS};
uint16_t fuzzValues[N_JOY_ADC_VALUES];
void calcFuzzValues();
int readKey();
void update(int *keyValue, bool *keyLongPressed);
// Meshtastic code
void determineAction(KeyType key, PressLength length);
void sendKey(input_broker_event key);
inline bool inCannedMessageMenu() { return cannedMessageModule->shouldDraw(); }
int32_t runOnce() override;
// Meshtastic code
void determineAction(KeyType key, PressLength length);
void sendKey(input_broker_event key);
inline bool inCannedMessageMenu() { return cannedMessageModule->shouldDraw(); }
int32_t runOnce() override;
// Simplified Meshtastic actions, for easier remapping by user
void toggleGPS();
void sendAdhocPing();
void shutdown();
void click();
// Simplified Meshtastic actions, for easier remapping by user
void toggleGPS();
void sendAdhocPing();
void shutdown();
void click();
bool alerting = false; // Is the screen showing an alert frame? Feedback for GPS toggle / adhoc ping actions
uint32_t alertingSinceMs = 0; // When did screen begin showing an alert frame? Used to auto-dismiss
bool alerting = false; // Is the screen showing an alert frame? Feedback for GPS toggle / adhoc ping actions
uint32_t alertingSinceMs = 0; // When did screen begin showing an alert frame? Used to auto-dismiss
public:
ExpressLRSFiveWay();
public:
ExpressLRSFiveWay();
};
extern ExpressLRSFiveWay *expressLRSFiveWayInput;

View File

@@ -106,112 +106,103 @@ static unsigned char HackadayCommunicatorTapMap[_TCA8418_NUM_KEYS][2] = {{},
{}};
HackadayCommunicatorKeyboard::HackadayCommunicatorKeyboard()
: TCA8418KeyboardBase(_TCA8418_ROWS, _TCA8418_COLS), modifierFlag(0), last_modifier_time(0), last_key(-1), next_key(-1),
last_tap(0L), char_idx(0), tap_interval(0)
{
reset();
: TCA8418KeyboardBase(_TCA8418_ROWS, _TCA8418_COLS), modifierFlag(0), last_modifier_time(0), last_key(-1), next_key(-1), last_tap(0L),
char_idx(0), tap_interval(0) {
reset();
}
void HackadayCommunicatorKeyboard::reset(void)
{
TCA8418KeyboardBase::reset();
enableInterrupts();
void HackadayCommunicatorKeyboard::reset(void) {
TCA8418KeyboardBase::reset();
enableInterrupts();
}
// handle multi-key presses (shift and alt)
void HackadayCommunicatorKeyboard::trigger()
{
uint8_t count = keyCount();
if (count == 0)
return;
for (uint8_t i = 0; i < count; ++i) {
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A + i);
uint8_t key = k & 0x7F;
if (k & 0x80) {
pressed(key);
} else {
released();
state = Idle;
}
}
}
void HackadayCommunicatorKeyboard::pressed(uint8_t key)
{
if (state == Init || state == Busy) {
return;
}
if (modifierFlag && (millis() - last_modifier_time > _TCA8418_MULTI_TAP_THRESHOLD)) {
modifierFlag = 0;
}
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
next_key = row * _TCA8418_COLS + col;
state = Held;
uint32_t now = millis();
tap_interval = now - last_tap;
updateModifierFlag(next_key);
if (isModifierKey(next_key)) {
last_modifier_time = now;
}
if (tap_interval < 0) {
last_tap = 0;
state = Busy;
return;
}
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0;
void HackadayCommunicatorKeyboard::trigger() {
uint8_t count = keyCount();
if (count == 0)
return;
for (uint8_t i = 0; i < count; ++i) {
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A + i);
uint8_t key = k & 0x7F;
if (k & 0x80) {
pressed(key);
} else {
char_idx += 1;
released();
state = Idle;
}
last_key = next_key;
last_tap = now;
}
}
void HackadayCommunicatorKeyboard::released()
{
if (state != Held) {
return;
}
void HackadayCommunicatorKeyboard::pressed(uint8_t key) {
if (state == Init || state == Busy) {
return;
}
if (last_key < 0 || last_key >= _TCA8418_NUM_KEYS) {
last_key = -1;
state = Idle;
return;
}
if (modifierFlag && (millis() - last_modifier_time > _TCA8418_MULTI_TAP_THRESHOLD)) {
modifierFlag = 0;
}
uint32_t now = millis();
last_tap = now;
if (HackadayCommunicatorTapMod[last_key])
queueEvent(HackadayCommunicatorTapMap[last_key][modifierFlag % HackadayCommunicatorTapMod[last_key]]);
if (isModifierKey(last_key) == false)
modifierFlag = 0;
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
next_key = row * _TCA8418_COLS + col;
state = Held;
uint32_t now = millis();
tap_interval = now - last_tap;
updateModifierFlag(next_key);
if (isModifierKey(next_key)) {
last_modifier_time = now;
}
if (tap_interval < 0) {
last_tap = 0;
state = Busy;
return;
}
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0;
} else {
char_idx += 1;
}
last_key = next_key;
last_tap = now;
}
void HackadayCommunicatorKeyboard::updateModifierFlag(uint8_t key)
{
if (key == modifierRightShiftKey) {
modifierFlag ^= modifierRightShift;
} else if (key == modifierLeftShiftKey) {
modifierFlag ^= modifierLeftShift;
}
void HackadayCommunicatorKeyboard::released() {
if (state != Held) {
return;
}
if (last_key < 0 || last_key >= _TCA8418_NUM_KEYS) {
last_key = -1;
state = Idle;
return;
}
uint32_t now = millis();
last_tap = now;
if (HackadayCommunicatorTapMod[last_key])
queueEvent(HackadayCommunicatorTapMap[last_key][modifierFlag % HackadayCommunicatorTapMod[last_key]]);
if (isModifierKey(last_key) == false)
modifierFlag = 0;
}
bool HackadayCommunicatorKeyboard::isModifierKey(uint8_t key)
{
return (key == modifierRightShiftKey || key == modifierLeftShiftKey);
void HackadayCommunicatorKeyboard::updateModifierFlag(uint8_t key) {
if (key == modifierRightShiftKey) {
modifierFlag ^= modifierRightShift;
} else if (key == modifierLeftShiftKey) {
modifierFlag ^= modifierLeftShift;
}
}
bool HackadayCommunicatorKeyboard::isModifierKey(uint8_t key) { return (key == modifierRightShiftKey || key == modifierLeftShiftKey); }
#endif

View File

@@ -1,26 +1,25 @@
#include "TCA8418KeyboardBase.h"
class HackadayCommunicatorKeyboard : public TCA8418KeyboardBase
{
public:
HackadayCommunicatorKeyboard();
void reset(void);
void trigger(void) override;
virtual ~HackadayCommunicatorKeyboard() {}
class HackadayCommunicatorKeyboard : public TCA8418KeyboardBase {
public:
HackadayCommunicatorKeyboard();
void reset(void);
void trigger(void) override;
virtual ~HackadayCommunicatorKeyboard() {}
protected:
void pressed(uint8_t key) override;
void released(void) override;
protected:
void pressed(uint8_t key) override;
void released(void) override;
void updateModifierFlag(uint8_t key);
bool isModifierKey(uint8_t key);
void updateModifierFlag(uint8_t key);
bool isModifierKey(uint8_t key);
private:
uint8_t modifierFlag; // Flag to indicate if a modifier key is pressed
uint32_t last_modifier_time; // Timestamp of the last modifier key press
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
private:
uint8_t modifierFlag; // Flag to indicate if a modifier key is pressed
uint32_t last_modifier_time; // Timestamp of the last modifier key press
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
};

View File

@@ -5,72 +5,63 @@
InputBroker *inputBroker = nullptr;
InputBroker::InputBroker()
{
InputBroker::InputBroker() {
#if defined(HAS_FREE_RTOS) && !defined(ARCH_RP2040)
inputEventQueue = xQueueCreate(5, sizeof(InputEvent));
pollSoonQueue = xQueueCreate(5, sizeof(InputPollable *));
xTaskCreate(pollSoonWorker, "input-pollSoon", 2 * 1024, this, 10, &pollSoonTask);
inputEventQueue = xQueueCreate(5, sizeof(InputEvent));
pollSoonQueue = xQueueCreate(5, sizeof(InputPollable *));
xTaskCreate(pollSoonWorker, "input-pollSoon", 2 * 1024, this, 10, &pollSoonTask);
#endif
}
void InputBroker::registerSource(Observable<const InputEvent *> *source)
{
this->inputEventObserver.observe(source);
}
void InputBroker::registerSource(Observable<const InputEvent *> *source) { this->inputEventObserver.observe(source); }
#if defined(HAS_FREE_RTOS) && !defined(ARCH_RP2040)
void InputBroker::requestPollSoon(InputPollable *pollable)
{
if (xPortInIsrContext() == pdTRUE) {
xQueueSendFromISR(pollSoonQueue, &pollable, NULL);
} else {
xQueueSend(pollSoonQueue, &pollable, 0);
}
void InputBroker::requestPollSoon(InputPollable *pollable) {
if (xPortInIsrContext() == pdTRUE) {
xQueueSendFromISR(pollSoonQueue, &pollable, NULL);
} else {
xQueueSend(pollSoonQueue, &pollable, 0);
}
}
void InputBroker::queueInputEvent(const InputEvent *event)
{
if (xPortInIsrContext() == pdTRUE) {
xQueueSendFromISR(inputEventQueue, event, NULL);
} else {
xQueueSend(inputEventQueue, event, portMAX_DELAY);
}
void InputBroker::queueInputEvent(const InputEvent *event) {
if (xPortInIsrContext() == pdTRUE) {
xQueueSendFromISR(inputEventQueue, event, NULL);
} else {
xQueueSend(inputEventQueue, event, portMAX_DELAY);
}
}
void InputBroker::processInputEventQueue()
{
InputEvent event;
while (xQueueReceive(inputEventQueue, &event, 0)) {
handleInputEvent(&event);
}
void InputBroker::processInputEventQueue() {
InputEvent event;
while (xQueueReceive(inputEventQueue, &event, 0)) {
handleInputEvent(&event);
}
}
#endif
int InputBroker::handleInputEvent(const InputEvent *event)
{
powerFSM.trigger(EVENT_INPUT); // todo: not every input should wake, like long hold release
int InputBroker::handleInputEvent(const InputEvent *event) {
powerFSM.trigger(EVENT_INPUT); // todo: not every input should wake, like long hold release
if (event && event->inputEvent != INPUT_BROKER_NONE && externalNotificationModule &&
moduleConfig.external_notification.enabled && externalNotificationModule->nagging()) {
externalNotificationModule->stopNow();
}
if (event && event->inputEvent != INPUT_BROKER_NONE && externalNotificationModule && moduleConfig.external_notification.enabled &&
externalNotificationModule->nagging()) {
externalNotificationModule->stopNow();
}
this->notifyObservers(event);
return 0;
this->notifyObservers(event);
return 0;
}
#if defined(HAS_FREE_RTOS) && !defined(ARCH_RP2040)
void InputBroker::pollSoonWorker(void *p)
{
InputBroker *instance = (InputBroker *)p;
while (true) {
InputPollable *pollable = NULL;
xQueueReceive(instance->pollSoonQueue, &pollable, portMAX_DELAY);
if (pollable) {
pollable->pollOnce();
}
void InputBroker::pollSoonWorker(void *p) {
InputBroker *instance = (InputBroker *)p;
while (true) {
InputPollable *pollable = NULL;
xQueueReceive(instance->pollSoonQueue, &pollable, portMAX_DELAY);
if (pollable) {
pollable->pollOnce();
}
vTaskDelete(NULL);
}
vTaskDelete(NULL);
}
#endif

View File

@@ -10,25 +10,25 @@
#endif
enum input_broker_event {
INPUT_BROKER_NONE = 0,
INPUT_BROKER_SELECT = 10,
INPUT_BROKER_SELECT_LONG = 11,
INPUT_BROKER_UP_LONG = 12,
INPUT_BROKER_DOWN_LONG = 13,
INPUT_BROKER_UP = 17,
INPUT_BROKER_DOWN = 18,
INPUT_BROKER_LEFT = 19,
INPUT_BROKER_RIGHT = 20,
INPUT_BROKER_CANCEL = 24,
INPUT_BROKER_BACK = 27,
INPUT_BROKER_USER_PRESS,
INPUT_BROKER_ALT_PRESS,
INPUT_BROKER_ALT_LONG,
INPUT_BROKER_SHUTDOWN = 0x9b,
INPUT_BROKER_GPS_TOGGLE = 0x9e,
INPUT_BROKER_SEND_PING = 0xaf,
INPUT_BROKER_MATRIXKEY = 0xFE,
INPUT_BROKER_ANYKEY = 0xff
INPUT_BROKER_NONE = 0,
INPUT_BROKER_SELECT = 10,
INPUT_BROKER_SELECT_LONG = 11,
INPUT_BROKER_UP_LONG = 12,
INPUT_BROKER_DOWN_LONG = 13,
INPUT_BROKER_UP = 17,
INPUT_BROKER_DOWN = 18,
INPUT_BROKER_LEFT = 19,
INPUT_BROKER_RIGHT = 20,
INPUT_BROKER_CANCEL = 24,
INPUT_BROKER_BACK = 27,
INPUT_BROKER_USER_PRESS,
INPUT_BROKER_ALT_PRESS,
INPUT_BROKER_ALT_LONG,
INPUT_BROKER_SHUTDOWN = 0x9b,
INPUT_BROKER_GPS_TOGGLE = 0x9e,
INPUT_BROKER_SEND_PING = 0xaf,
INPUT_BROKER_MATRIXKEY = 0xFE,
INPUT_BROKER_ANYKEY = 0xff
};
@@ -43,44 +43,42 @@ enum input_broker_event {
#define INPUT_BROKER_MSG_EMOTE_LIST 0x8F
typedef struct _InputEvent {
const char *source;
input_broker_event inputEvent;
unsigned char kbchar;
uint16_t touchX;
uint16_t touchY;
const char *source;
input_broker_event inputEvent;
unsigned char kbchar;
uint16_t touchX;
uint16_t touchY;
} InputEvent;
class InputPollable
{
public:
virtual ~InputPollable() = default;
virtual void pollOnce() = 0;
class InputPollable {
public:
virtual ~InputPollable() = default;
virtual void pollOnce() = 0;
};
class InputBroker : public Observable<const InputEvent *>
{
CallbackObserver<InputBroker, const InputEvent *> inputEventObserver =
CallbackObserver<InputBroker, const InputEvent *>(this, &InputBroker::handleInputEvent);
class InputBroker : public Observable<const InputEvent *> {
CallbackObserver<InputBroker, const InputEvent *> inputEventObserver =
CallbackObserver<InputBroker, const InputEvent *>(this, &InputBroker::handleInputEvent);
public:
InputBroker();
void registerSource(Observable<const InputEvent *> *source);
void injectInputEvent(const InputEvent *event) { handleInputEvent(event); }
public:
InputBroker();
void registerSource(Observable<const InputEvent *> *source);
void injectInputEvent(const InputEvent *event) { handleInputEvent(event); }
#if defined(HAS_FREE_RTOS) && !defined(ARCH_RP2040)
void requestPollSoon(InputPollable *pollable);
void queueInputEvent(const InputEvent *event);
void processInputEventQueue();
void requestPollSoon(InputPollable *pollable);
void queueInputEvent(const InputEvent *event);
void processInputEventQueue();
#endif
protected:
int handleInputEvent(const InputEvent *event);
protected:
int handleInputEvent(const InputEvent *event);
private:
private:
#if defined(HAS_FREE_RTOS) && !defined(ARCH_RP2040)
QueueHandle_t inputEventQueue;
QueueHandle_t pollSoonQueue;
TaskHandle_t pollSoonTask;
static void pollSoonWorker(void *p);
QueueHandle_t inputEventQueue;
QueueHandle_t pollSoonQueue;
TaskHandle_t pollSoonTask;
static void pollSoonWorker(void *p);
#endif
};

View File

@@ -18,172 +18,167 @@
// Inspired by https://github.com/librerpi/rpi-tools/blob/master/keyboard-proxy/main.c which is GPL-v2
LinuxInput::LinuxInput(const char *name) : concurrency::OSThread(name)
{
this->_originName = name;
LinuxInput::LinuxInput(const char *name) : concurrency::OSThread(name) { this->_originName = name; }
void LinuxInput::deInit() {
if (fd >= 0)
close(fd);
}
void LinuxInput::deInit()
{
if (fd >= 0)
close(fd);
}
int32_t LinuxInput::runOnce() {
int32_t LinuxInput::runOnce()
{
if (firstTime) {
if (portduino_config.keyboardDevice == "")
return disable();
fd = open(portduino_config.keyboardDevice.c_str(), O_RDWR);
if (fd < 0)
return disable();
ret = ioctl(fd, EVIOCGRAB, (void *)1);
if (ret != 0)
return disable();
if (firstTime) {
if (portduino_config.keyboardDevice == "")
return disable();
fd = open(portduino_config.keyboardDevice.c_str(), O_RDWR);
if (fd < 0)
return disable();
ret = ioctl(fd, EVIOCGRAB, (void *)1);
if (ret != 0)
return disable();
epollfd = epoll_create1(0);
assert(epollfd >= 0);
epollfd = epoll_create1(0);
assert(epollfd >= 0);
ev.events = EPOLLIN;
ev.data.fd = fd;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev)) {
perror("unable to epoll add");
return disable();
}
kb_found = true;
// This is the first time the OSThread library has called this function, so do port setup
firstTime = 0;
}
ev.events = EPOLLIN;
ev.data.fd = fd;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev)) {
perror("unable to epoll add");
return disable();
int nfds = epoll_wait(epollfd, events, MAX_EVENTS, 1);
if (nfds < 0) {
printf("%d ", nfds);
perror("epoll_wait failed");
return disable();
} else if (nfds == 0) {
return 50;
}
int keys = 0;
memset(report, 0, 8);
for (int i = 0; i < nfds; i++) {
struct input_event ev[64];
int rd = read(events[i].data.fd, ev, sizeof(ev));
assert(rd > ((signed int)sizeof(struct input_event)));
for (int j = 0; j < rd / ((signed int)sizeof(struct input_event)); j++) {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
e.kbchar = 0;
unsigned int type, code;
type = ev[j].type;
code = ev[j].code;
int value = ev[j].value;
// printf("Event: time %ld.%06ld, ", ev[j].time.tv_sec, ev[j].time.tv_usec);
if (type == EV_KEY) {
uint8_t mod = 0;
switch (code) {
case KEY_LEFTCTRL:
mod = 0x01;
break;
case KEY_RIGHTCTRL:
mod = 0x10;
break;
case KEY_LEFTSHIFT:
mod = 0x02;
break;
case KEY_RIGHTSHIFT:
mod = 0x20;
break;
case KEY_LEFTALT:
mod = 0x04;
break;
case KEY_RIGHTALT:
mod = 0x40;
break;
case KEY_LEFTMETA:
mod = 0x08;
break;
}
kb_found = true;
// This is the first time the OSThread library has called this function, so do port setup
firstTime = 0;
}
if (value == 1) {
switch (code) {
case KEY_LEFTCTRL:
mod = 0x01;
break;
case KEY_RIGHTCTRL:
mod = 0x10;
break;
case KEY_LEFTSHIFT:
mod = 0x02;
break;
case KEY_RIGHTSHIFT:
mod = 0x20;
break;
case KEY_LEFTALT:
mod = 0x04;
break;
case KEY_RIGHTALT:
mod = 0x40;
break;
case KEY_LEFTMETA:
mod = 0x08;
break;
case KEY_ESC: // ESC
e.inputEvent = INPUT_BROKER_CANCEL;
break;
case KEY_BACK: // Back
e.inputEvent = INPUT_BROKER_BACK;
// e.kbchar = key;
break;
int nfds = epoll_wait(epollfd, events, MAX_EVENTS, 1);
if (nfds < 0) {
printf("%d ", nfds);
perror("epoll_wait failed");
return disable();
} else if (nfds == 0) {
return 50;
}
int keys = 0;
memset(report, 0, 8);
for (int i = 0; i < nfds; i++) {
struct input_event ev[64];
int rd = read(events[i].data.fd, ev, sizeof(ev));
assert(rd > ((signed int)sizeof(struct input_event)));
for (int j = 0; j < rd / ((signed int)sizeof(struct input_event)); j++) {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
case KEY_UP: // Up
e.inputEvent = INPUT_BROKER_UP;
break;
case KEY_DOWN: // Down
e.inputEvent = INPUT_BROKER_DOWN;
break;
case KEY_LEFT: // Left
e.inputEvent = INPUT_BROKER_LEFT;
break;
e.kbchar = INPUT_BROKER_LEFT;
case KEY_RIGHT: // Right
e.inputEvent = INPUT_BROKER_RIGHT;
break;
e.kbchar = 0;
unsigned int type, code;
type = ev[j].type;
code = ev[j].code;
int value = ev[j].value;
// printf("Event: time %ld.%06ld, ", ev[j].time.tv_sec, ev[j].time.tv_usec);
if (type == EV_KEY) {
uint8_t mod = 0;
switch (code) {
case KEY_LEFTCTRL:
mod = 0x01;
break;
case KEY_RIGHTCTRL:
mod = 0x10;
break;
case KEY_LEFTSHIFT:
mod = 0x02;
break;
case KEY_RIGHTSHIFT:
mod = 0x20;
break;
case KEY_LEFTALT:
mod = 0x04;
break;
case KEY_RIGHTALT:
mod = 0x40;
break;
case KEY_LEFTMETA:
mod = 0x08;
break;
}
if (value == 1) {
switch (code) {
case KEY_LEFTCTRL:
mod = 0x01;
break;
case KEY_RIGHTCTRL:
mod = 0x10;
break;
case KEY_LEFTSHIFT:
mod = 0x02;
break;
case KEY_RIGHTSHIFT:
mod = 0x20;
break;
case KEY_LEFTALT:
mod = 0x04;
break;
case KEY_RIGHTALT:
mod = 0x40;
break;
case KEY_LEFTMETA:
mod = 0x08;
break;
case KEY_ESC: // ESC
e.inputEvent = INPUT_BROKER_CANCEL;
break;
case KEY_BACK: // Back
e.inputEvent = INPUT_BROKER_BACK;
// e.kbchar = key;
break;
case KEY_UP: // Up
e.inputEvent = INPUT_BROKER_UP;
break;
case KEY_DOWN: // Down
e.inputEvent = INPUT_BROKER_DOWN;
break;
case KEY_LEFT: // Left
e.inputEvent = INPUT_BROKER_LEFT;
break;
e.kbchar = INPUT_BROKER_LEFT;
case KEY_RIGHT: // Right
e.inputEvent = INPUT_BROKER_RIGHT;
break;
e.kbchar = 0;
case KEY_ENTER: // Enter
e.inputEvent = INPUT_BROKER_SELECT;
break;
case KEY_POWER:
system("poweroff");
break;
default: // all other keys
if (keymap[code]) {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = keymap[code];
}
break;
}
}
if (ev[j].value) {
modifiers |= mod;
} else {
modifiers &= ~mod;
}
report[0] = modifiers;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
if (e.inputEvent == INPUT_BROKER_ANYKEY && (modifiers && 0x22))
e.kbchar = uppers[e.kbchar]; // doesn't get punctuation. Meh.
this->notifyObservers(&e);
case KEY_ENTER: // Enter
e.inputEvent = INPUT_BROKER_SELECT;
break;
case KEY_POWER:
system("poweroff");
break;
default: // all other keys
if (keymap[code]) {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = keymap[code];
}
break;
}
}
if (ev[j].value) {
modifiers |= mod;
} else {
modifiers &= ~mod;
}
report[0] = modifiers;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
if (e.inputEvent == INPUT_BROKER_ANYKEY && (modifiers && 0x22))
e.kbchar = uppers[e.kbchar]; // doesn't get punctuation. Meh.
this->notifyObservers(&e);
}
}
}
return 50; // Keyscan every 50msec to avoid key bounce
return 50; // Keyscan every 50msec to avoid key bounce
}
#endif

View File

@@ -17,49 +17,47 @@
#define MAX_EVENTS 10
class LinuxInput : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit LinuxInput(const char *name);
void deInit(); // Strictly for cleanly "rebooting" the binary on native
class LinuxInput : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit LinuxInput(const char *name);
void deInit(); // Strictly for cleanly "rebooting" the binary on native
protected:
virtual int32_t runOnce() override;
protected:
virtual int32_t runOnce() override;
private:
const char *_originName;
bool firstTime = 1;
int shift = 0;
char key = 0;
char prevkey = 0;
private:
const char *_originName;
bool firstTime = 1;
int shift = 0;
char key = 0;
char prevkey = 0;
InputEvent eventqueue[50]; // The Linux API will return multiple keypresses at a time. Queue them to not miss any.
int queue_length = 0;
int queue_progress = 0;
InputEvent eventqueue[50]; // The Linux API will return multiple keypresses at a time. Queue them to not miss any.
int queue_length = 0;
int queue_progress = 0;
struct epoll_event events[MAX_EVENTS];
int fd = -1;
int ret;
uint8_t report[8];
int epollfd;
struct epoll_event ev;
uint8_t modifiers = 0;
std::map<int, char> keymap{
{KEY_A, 'a'}, {KEY_B, 'b'}, {KEY_C, 'c'}, {KEY_D, 'd'}, {KEY_E, 'e'},
{KEY_F, 'f'}, {KEY_G, 'g'}, {KEY_H, 'h'}, {KEY_I, 'i'}, {KEY_J, 'j'},
{KEY_K, 'k'}, {KEY_L, 'l'}, {KEY_M, 'm'}, {KEY_N, 'n'}, {KEY_O, 'o'},
{KEY_P, 'p'}, {KEY_Q, 'q'}, {KEY_R, 'r'}, {KEY_S, 's'}, {KEY_T, 't'},
{KEY_U, 'u'}, {KEY_V, 'v'}, {KEY_W, 'w'}, {KEY_X, 'x'}, {KEY_Y, 'y'},
{KEY_Z, 'z'}, {KEY_BACKSPACE, 0x08}, {KEY_SPACE, ' '}, {KEY_1, '1'}, {KEY_2, '2'},
{KEY_3, '3'}, {KEY_4, '4'}, {KEY_5, '5'}, {KEY_6, '6'}, {KEY_7, '7'},
{KEY_8, '8'}, {KEY_9, '9'}, {KEY_0, '0'}, {KEY_DOT, '.'}, {KEY_COMMA, ','},
{KEY_MINUS, '-'}, {KEY_EQUAL, '='}, {KEY_LEFTBRACE, '['}, {KEY_RIGHTBRACE, ']'}, {KEY_BACKSLASH, '\\'},
{KEY_SEMICOLON, ';'}, {KEY_APOSTROPHE, '\''}, {KEY_SLASH, '/'}, {KEY_TAB, 0x09}};
std::map<char, char> uppers{{'a', 'A'}, {'b', 'B'}, {'c', 'C'}, {'d', 'D'}, {'e', 'E'}, {'f', 'F'}, {'g', 'G'}, {'h', 'H'},
{'i', 'I'}, {'j', 'J'}, {'k', 'K'}, {'l', 'L'}, {'m', 'M'}, {'n', 'N'}, {'o', 'O'}, {'p', 'P'},
{'q', 'Q'}, {'r', 'R'}, {'s', 'S'}, {'t', 'T'}, {'u', 'U'}, {'v', 'V'}, {'w', 'W'}, {'x', 'X'},
{'y', 'Y'}, {'z', 'Z'}, {'1', '!'}, {'2', '@'}, {'3', '#'}, {'4', '$'}, {'5', '%'}, {'6', '^'},
{'7', '&'}, {'8', '*'}, {'9', '('}, {'0', ')'}, {'.', '>'}, {',', '<'}, {'-', '_'}, {'=', '+'},
{'[', '{'}, {']', '}'}, {'\\', '|'}, {';', ':'}, {'\'', '"'}, {'/', '?'}};
struct epoll_event events[MAX_EVENTS];
int fd = -1;
int ret;
uint8_t report[8];
int epollfd;
struct epoll_event ev;
uint8_t modifiers = 0;
std::map<int, char> keymap{{KEY_A, 'a'}, {KEY_B, 'b'}, {KEY_C, 'c'}, {KEY_D, 'd'}, {KEY_E, 'e'},
{KEY_F, 'f'}, {KEY_G, 'g'}, {KEY_H, 'h'}, {KEY_I, 'i'}, {KEY_J, 'j'},
{KEY_K, 'k'}, {KEY_L, 'l'}, {KEY_M, 'm'}, {KEY_N, 'n'}, {KEY_O, 'o'},
{KEY_P, 'p'}, {KEY_Q, 'q'}, {KEY_R, 'r'}, {KEY_S, 's'}, {KEY_T, 't'},
{KEY_U, 'u'}, {KEY_V, 'v'}, {KEY_W, 'w'}, {KEY_X, 'x'}, {KEY_Y, 'y'},
{KEY_Z, 'z'}, {KEY_BACKSPACE, 0x08}, {KEY_SPACE, ' '}, {KEY_1, '1'}, {KEY_2, '2'},
{KEY_3, '3'}, {KEY_4, '4'}, {KEY_5, '5'}, {KEY_6, '6'}, {KEY_7, '7'},
{KEY_8, '8'}, {KEY_9, '9'}, {KEY_0, '0'}, {KEY_DOT, '.'}, {KEY_COMMA, ','},
{KEY_MINUS, '-'}, {KEY_EQUAL, '='}, {KEY_LEFTBRACE, '['}, {KEY_RIGHTBRACE, ']'}, {KEY_BACKSLASH, '\\'},
{KEY_SEMICOLON, ';'}, {KEY_APOSTROPHE, '\''}, {KEY_SLASH, '/'}, {KEY_TAB, 0x09}};
std::map<char, char> uppers{{'a', 'A'}, {'b', 'B'}, {'c', 'C'}, {'d', 'D'}, {'e', 'E'}, {'f', 'F'}, {'g', 'G'}, {'h', 'H'},
{'i', 'I'}, {'j', 'J'}, {'k', 'K'}, {'l', 'L'}, {'m', 'M'}, {'n', 'N'}, {'o', 'O'}, {'p', 'P'},
{'q', 'Q'}, {'r', 'R'}, {'s', 'S'}, {'t', 'T'}, {'u', 'U'}, {'v', 'V'}, {'w', 'W'}, {'x', 'X'},
{'y', 'Y'}, {'z', 'Z'}, {'1', '!'}, {'2', '@'}, {'3', '#'}, {'4', '$'}, {'5', '%'}, {'6', '^'},
{'7', '&'}, {'8', '*'}, {'9', '('}, {'0', ')'}, {'.', '>'}, {',', '<'}, {'-', '_'}, {'=', '+'},
{'[', '{'}, {']', '}'}, {'\\', '|'}, {';', ':'}, {'\'', '"'}, {'/', '?'}};
};
#endif

View File

@@ -7,9 +7,6 @@ LinuxInputImpl *aLinuxInputImpl;
LinuxInputImpl::LinuxInputImpl() : LinuxInput("LinuxInput") {}
void LinuxInputImpl::init()
{
inputBroker->registerSource(this);
}
void LinuxInputImpl::init() { inputBroker->registerSource(this); }
#endif

View File

@@ -11,11 +11,10 @@
* handlers, thus you need to have a RotaryEncoderInterrupt implementation.
*/
class LinuxInputImpl : public LinuxInput
{
public:
LinuxInputImpl();
void init();
class LinuxInputImpl : public LinuxInput {
public:
LinuxInputImpl();
void init();
};
extern LinuxInputImpl *aLinuxInputImpl;
#endif

View File

@@ -87,347 +87,320 @@ unsigned char MPR121_LongPressMap[12] = {MPR121_ESC, ' ', MPR121_NONE,
// Rotated Layout
uint8_t MPR121_KeyMap[12] = {2, 5, 8, 11, 1, 4, 7, 10, 0, 3, 6, 9};
MPR121Keyboard::MPR121Keyboard() : m_wire(nullptr), m_addr(0), readCallback(nullptr), writeCallback(nullptr)
{
// LOG_DEBUG("MPR121 @ %02x", m_addr);
state = Init;
last_key = -1;
last_tap = 0L;
char_idx = 0;
queue = "";
MPR121Keyboard::MPR121Keyboard() : m_wire(nullptr), m_addr(0), readCallback(nullptr), writeCallback(nullptr) {
// LOG_DEBUG("MPR121 @ %02x", m_addr);
state = Init;
last_key = -1;
last_tap = 0L;
char_idx = 0;
queue = "";
}
void MPR121Keyboard::begin(uint8_t addr, TwoWire *wire)
{
m_addr = addr;
m_wire = wire;
void MPR121Keyboard::begin(uint8_t addr, TwoWire *wire) {
m_addr = addr;
m_wire = wire;
m_wire->begin();
m_wire->begin();
reset();
reset();
}
void MPR121Keyboard::begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr)
{
m_addr = addr;
m_wire = nullptr;
writeCallback = w;
readCallback = r;
reset();
void MPR121Keyboard::begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr) {
m_addr = addr;
m_wire = nullptr;
writeCallback = w;
readCallback = r;
reset();
}
void MPR121Keyboard::reset()
{
LOG_DEBUG("MPR121 Reset");
// Trigger a MPR121 Soft Reset
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(_MPR121_REG_SOFT_RESET);
m_wire->endTransmission();
void MPR121Keyboard::reset() {
LOG_DEBUG("MPR121 Reset");
// Trigger a MPR121 Soft Reset
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(_MPR121_REG_SOFT_RESET);
m_wire->endTransmission();
}
if (writeCallback) {
uint8_t data = 0;
writeCallback(m_addr, _MPR121_REG_SOFT_RESET, &data, 0);
}
delay(100);
// Reset Electrode Configuration to 0x00, Stop Mode
writeRegister(_MPR121_REG_ELECTRODE_CONFIG, 0x00);
delay(100);
LOG_DEBUG("MPR121 Configuring");
// Set touch release thresholds
for (uint8_t i = 0; i < 12; i++) {
// Set touch threshold
writeRegister(_MPR121_REG_TOUCH_THRESHOLD + (i * 2), 10);
delay(20);
// Set release threshold
writeRegister(_MPR121_REG_RELEASE_THRESHOLD + (i * 2), 5);
delay(20);
}
// Configure filtering and baseline registers
writeRegister(_MPR121_REG_MAX_HALF_DELTA_RISING, 0x05);
delay(20);
writeRegister(_MPR121_REG_MAX_HALF_DELTA_FALLING, 0x01);
delay(20);
writeRegister(_MPR121_REG_NOISE_HALF_DELTA_RISING, 0x01);
delay(20);
writeRegister(_MPR121_REG_NOISE_HALF_DELTA_FALLING, 0x05);
delay(20);
writeRegister(_MPR121_REG_NOISE_HALF_DELTA_TOUCHED, 0x00);
delay(20);
writeRegister(_MPR121_REG_NOISE_COUNT_LIMIT_RISING, 0x05);
delay(20);
writeRegister(_MPR121_REG_NOISE_COUNT_LIMIT_FALLING, 0x01);
delay(20);
writeRegister(_MPR121_REG_NOISE_COUNT_LIMIT_TOUCHED, 0x00);
delay(20);
writeRegister(_MPR121_REG_FILTER_DELAY_COUNT_RISING, 0x00);
delay(20);
writeRegister(_MPR121_REG_FILTER_DELAY_COUNT_FALLING, 0x00);
delay(20);
writeRegister(_MPR121_REG_FILTER_DELAY_COUNT_TOUCHED, 0x00);
delay(20);
writeRegister(_MPR121_REG_AUTOCONF_CTRL0, 0x04); // Auto-config enable
delay(20);
writeRegister(_MPR121_REG_AUTOCONF_CTRL1, 0x00); // Ensure no auto-config interrupt
delay(20);
writeRegister(_MPR121_REG_DEBOUNCE, 0x02);
delay(20);
writeRegister(_MPR121_REG_CONFIG1, 0x20);
delay(20);
writeRegister(_MPR121_REG_CONFIG2, 0x21);
delay(20);
// Enter run mode by Seting partial filter calibration tracking, disable proximity detection, enable 12 channels
writeRegister(_MPR121_REG_ELECTRODE_CONFIG, ECR_CALIBRATION_TRACK_FROM_FULL_FILTER | ECR_PROXIMITY_DETECTION_OFF | ECR_TOUCH_DETECTION_12CH);
delay(100);
LOG_DEBUG("MPR121 Run");
state = Idle;
}
void MPR121Keyboard::attachInterrupt(uint8_t pin, void (*func)(void)) const {
pinMode(pin, INPUT_PULLUP);
::attachInterrupt(digitalPinToInterrupt(pin), func, RISING);
}
void MPR121Keyboard::detachInterrupt(uint8_t pin) const { ::detachInterrupt(pin); }
uint8_t MPR121Keyboard::status() const { return readRegister16(_MPR121_REG_KEY); }
uint8_t MPR121Keyboard::keyCount() const {
// Read the key register
uint16_t keyRegister = readRegister16(_MPR121_REG_KEY);
return keyCount(keyRegister);
}
uint8_t MPR121Keyboard::keyCount(uint16_t value) const {
// Mask the first 12 bits
uint16_t buttonState = value & _KEY_MASK;
// Count how many bits are set to 1 (i.e., how many buttons are pressed)
uint8_t numButtonsPressed = 0;
for (uint8_t i = 0; i < 12; ++i) {
if (buttonState & (1 << i)) {
numButtonsPressed++;
}
if (writeCallback) {
uint8_t data = 0;
writeCallback(m_addr, _MPR121_REG_SOFT_RESET, &data, 0);
}
delay(100);
// Reset Electrode Configuration to 0x00, Stop Mode
writeRegister(_MPR121_REG_ELECTRODE_CONFIG, 0x00);
delay(100);
}
LOG_DEBUG("MPR121 Configuring");
// Set touch release thresholds
for (uint8_t i = 0; i < 12; i++) {
// Set touch threshold
writeRegister(_MPR121_REG_TOUCH_THRESHOLD + (i * 2), 10);
delay(20);
// Set release threshold
writeRegister(_MPR121_REG_RELEASE_THRESHOLD + (i * 2), 5);
delay(20);
}
// Configure filtering and baseline registers
writeRegister(_MPR121_REG_MAX_HALF_DELTA_RISING, 0x05);
delay(20);
writeRegister(_MPR121_REG_MAX_HALF_DELTA_FALLING, 0x01);
delay(20);
writeRegister(_MPR121_REG_NOISE_HALF_DELTA_RISING, 0x01);
delay(20);
writeRegister(_MPR121_REG_NOISE_HALF_DELTA_FALLING, 0x05);
delay(20);
writeRegister(_MPR121_REG_NOISE_HALF_DELTA_TOUCHED, 0x00);
delay(20);
writeRegister(_MPR121_REG_NOISE_COUNT_LIMIT_RISING, 0x05);
delay(20);
writeRegister(_MPR121_REG_NOISE_COUNT_LIMIT_FALLING, 0x01);
delay(20);
writeRegister(_MPR121_REG_NOISE_COUNT_LIMIT_TOUCHED, 0x00);
delay(20);
writeRegister(_MPR121_REG_FILTER_DELAY_COUNT_RISING, 0x00);
delay(20);
writeRegister(_MPR121_REG_FILTER_DELAY_COUNT_FALLING, 0x00);
delay(20);
writeRegister(_MPR121_REG_FILTER_DELAY_COUNT_TOUCHED, 0x00);
delay(20);
writeRegister(_MPR121_REG_AUTOCONF_CTRL0, 0x04); // Auto-config enable
delay(20);
writeRegister(_MPR121_REG_AUTOCONF_CTRL1, 0x00); // Ensure no auto-config interrupt
delay(20);
writeRegister(_MPR121_REG_DEBOUNCE, 0x02);
delay(20);
writeRegister(_MPR121_REG_CONFIG1, 0x20);
delay(20);
writeRegister(_MPR121_REG_CONFIG2, 0x21);
delay(20);
// Enter run mode by Seting partial filter calibration tracking, disable proximity detection, enable 12 channels
writeRegister(_MPR121_REG_ELECTRODE_CONFIG,
ECR_CALIBRATION_TRACK_FROM_FULL_FILTER | ECR_PROXIMITY_DETECTION_OFF | ECR_TOUCH_DETECTION_12CH);
delay(100);
LOG_DEBUG("MPR121 Run");
state = Idle;
return numButtonsPressed;
}
void MPR121Keyboard::attachInterrupt(uint8_t pin, void (*func)(void)) const
{
pinMode(pin, INPUT_PULLUP);
::attachInterrupt(digitalPinToInterrupt(pin), func, RISING);
bool MPR121Keyboard::hasEvent() { return queue.length() > 0; }
void MPR121Keyboard::queueEvent(char next) {
if (next == MPR121_NONE) {
return;
}
queue.concat(next);
}
void MPR121Keyboard::detachInterrupt(uint8_t pin) const
{
::detachInterrupt(pin);
char MPR121Keyboard::dequeueEvent() {
if (queue.length() < 1) {
return MPR121_NONE;
}
char next = queue.charAt(0);
queue.remove(0, 1);
return next;
}
uint8_t MPR121Keyboard::status() const
{
return readRegister16(_MPR121_REG_KEY);
}
uint8_t MPR121Keyboard::keyCount() const
{
void MPR121Keyboard::trigger() {
// Intended to fire in response to an interrupt from the MPR121 or a longpress callback
// Only functional if not in Init state
if (state != Init) {
// Read the key register
uint16_t keyRegister = readRegister16(_MPR121_REG_KEY);
return keyCount(keyRegister);
uint8_t keysPressed = keyCount(keyRegister);
if (keysPressed == 0) {
// No buttons pressed
if (state == Held)
released();
state = Idle;
return;
}
if (keysPressed == 1) {
// No buttons pressed
if (state == Held || state == HeldLong)
held(keyRegister);
if (state == Idle)
pressed(keyRegister);
return;
}
if (keysPressed > 1) {
// Multipress
state = Busy;
return;
}
} else {
reset();
}
}
uint8_t MPR121Keyboard::keyCount(uint16_t value) const
{
// Mask the first 12 bits
uint16_t buttonState = value & _KEY_MASK;
// Count how many bits are set to 1 (i.e., how many buttons are pressed)
uint8_t numButtonsPressed = 0;
for (uint8_t i = 0; i < 12; ++i) {
if (buttonState & (1 << i)) {
numButtonsPressed++;
}
void MPR121Keyboard::pressed(uint16_t keyRegister) {
if (state == Init || state == Busy) {
return;
}
if (keyCount(keyRegister) != 1) {
LOG_DEBUG("Multipress");
return;
} else {
LOG_DEBUG("Pressed");
}
uint16_t buttonState = keyRegister & _KEY_MASK;
uint8_t next_pin = 0;
for (uint8_t i = 0; i < 12; ++i) {
if (buttonState & (1 << i)) {
next_pin = i;
}
return numButtonsPressed;
}
uint8_t next_key = MPR121_KeyMap[next_pin];
LOG_DEBUG("MPR121 Pin: %i Key: %i", next_pin, next_key);
uint32_t now = millis();
int32_t tap_interval = now - last_tap;
if (tap_interval < 0) {
// long running, millis has overflowed.
last_tap = 0;
state = Busy;
return;
}
if (next_key != last_key || tap_interval > MULTI_TAP_THRESHOLD) {
char_idx = 0;
} else {
char_idx += 1;
}
last_key = next_key;
last_tap = now;
state = Held;
return;
}
bool MPR121Keyboard::hasEvent()
{
return queue.length() > 0;
}
void MPR121Keyboard::queueEvent(char next)
{
if (next == MPR121_NONE) {
return;
void MPR121Keyboard::held(uint16_t keyRegister) {
if (state == Init || state == Busy) {
return;
}
if (keyCount(keyRegister) != 1) {
return;
}
LOG_DEBUG("Held");
uint16_t buttonState = keyRegister & _KEY_MASK;
uint8_t next_key = 0;
for (uint8_t i = 0; i < 12; ++i) {
if (buttonState & (1 << i)) {
next_key = MPR121_KeyMap[i];
}
queue.concat(next);
}
char MPR121Keyboard::dequeueEvent()
{
if (queue.length() < 1) {
return MPR121_NONE;
}
char next = queue.charAt(0);
queue.remove(0, 1);
return next;
}
void MPR121Keyboard::trigger()
{
// Intended to fire in response to an interrupt from the MPR121 or a longpress callback
// Only functional if not in Init state
if (state != Init) {
// Read the key register
uint16_t keyRegister = readRegister16(_MPR121_REG_KEY);
uint8_t keysPressed = keyCount(keyRegister);
if (keysPressed == 0) {
// No buttons pressed
if (state == Held)
released();
state = Idle;
return;
}
if (keysPressed == 1) {
// No buttons pressed
if (state == Held || state == HeldLong)
held(keyRegister);
if (state == Idle)
pressed(keyRegister);
return;
}
if (keysPressed > 1) {
// Multipress
state = Busy;
return;
}
} else {
reset();
}
}
void MPR121Keyboard::pressed(uint16_t keyRegister)
{
if (state == Init || state == Busy) {
return;
}
if (keyCount(keyRegister) != 1) {
LOG_DEBUG("Multipress");
return;
} else {
LOG_DEBUG("Pressed");
}
uint16_t buttonState = keyRegister & _KEY_MASK;
uint8_t next_pin = 0;
for (uint8_t i = 0; i < 12; ++i) {
if (buttonState & (1 << i)) {
next_pin = i;
}
}
uint8_t next_key = MPR121_KeyMap[next_pin];
LOG_DEBUG("MPR121 Pin: %i Key: %i", next_pin, next_key);
uint32_t now = millis();
int32_t tap_interval = now - last_tap;
if (tap_interval < 0) {
// long running, millis has overflowed.
last_tap = 0;
state = Busy;
return;
}
if (next_key != last_key || tap_interval > MULTI_TAP_THRESHOLD) {
char_idx = 0;
} else {
char_idx += 1;
}
last_key = next_key;
}
uint32_t now = millis();
int32_t held_interval = now - last_tap;
if (held_interval < 0 || next_key != last_key) {
// long running, millis has overflowed, or a key has been switched quickly...
last_tap = 0;
state = Busy;
return;
}
if (held_interval > LONG_PRESS_THRESHOLD) {
// Set state to heldlong, send a longpress, and reset the timer...
state = HeldLong; // heldlong will allow this function to still fire, but prevent a "release"
queueEvent(MPR121_LongPressMap[last_key]);
last_tap = now;
state = Held;
LOG_DEBUG("Long Press Key: %i Map: %i", last_key, MPR121_LongPressMap[last_key]);
}
return;
}
void MPR121Keyboard::released() {
if (state != Held) {
return;
}
void MPR121Keyboard::held(uint16_t keyRegister)
{
if (state == Init || state == Busy) {
return;
}
if (keyCount(keyRegister) != 1) {
return;
}
LOG_DEBUG("Held");
uint16_t buttonState = keyRegister & _KEY_MASK;
uint8_t next_key = 0;
for (uint8_t i = 0; i < 12; ++i) {
if (buttonState & (1 << i)) {
next_key = MPR121_KeyMap[i];
}
}
uint32_t now = millis();
int32_t held_interval = now - last_tap;
if (held_interval < 0 || next_key != last_key) {
// long running, millis has overflowed, or a key has been switched quickly...
last_tap = 0;
state = Busy;
return;
}
if (held_interval > LONG_PRESS_THRESHOLD) {
// Set state to heldlong, send a longpress, and reset the timer...
state = HeldLong; // heldlong will allow this function to still fire, but prevent a "release"
queueEvent(MPR121_LongPressMap[last_key]);
last_tap = now;
LOG_DEBUG("Long Press Key: %i Map: %i", last_key, MPR121_LongPressMap[last_key]);
}
}
// would clear longpress callback... later.
if (last_key < 0 || last_key > _NUM_KEYS) { // reset to idle if last_key out of bounds
last_key = -1;
state = Idle;
return;
}
LOG_DEBUG("Released");
if (char_idx > 0 && TapMod[last_key] > 1) {
queueEvent(MPR121_BSP);
LOG_DEBUG("Multi Press, Backspace");
}
queueEvent(MPR121_TapMap[last_key][(char_idx % TapMod[last_key])]);
LOG_DEBUG("Key Press: %i Index:%i if %i Map: %i", last_key, char_idx, TapMod[last_key], MPR121_TapMap[last_key][(char_idx % TapMod[last_key])]);
}
void MPR121Keyboard::released()
{
if (state != Held) {
return;
}
// would clear longpress callback... later.
if (last_key < 0 || last_key > _NUM_KEYS) { // reset to idle if last_key out of bounds
last_key = -1;
state = Idle;
return;
}
LOG_DEBUG("Released");
if (char_idx > 0 && TapMod[last_key] > 1) {
queueEvent(MPR121_BSP);
LOG_DEBUG("Multi Press, Backspace");
}
queueEvent(MPR121_TapMap[last_key][(char_idx % TapMod[last_key])]);
LOG_DEBUG("Key Press: %i Index:%i if %i Map: %i", last_key, char_idx, TapMod[last_key],
MPR121_TapMap[last_key][(char_idx % TapMod[last_key])]);
uint8_t MPR121Keyboard::readRegister8(uint8_t reg) const {
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
m_wire->requestFrom(m_addr, (uint8_t)1);
if (m_wire->available() < 1)
return 0;
return m_wire->read();
}
if (readCallback) {
uint8_t data;
readCallback(m_addr, reg, &data, 1);
return data;
}
return 0;
}
uint8_t MPR121Keyboard::readRegister8(uint8_t reg) const
{
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
uint16_t MPR121Keyboard::readRegister16(uint8_t reg) const {
uint8_t data[2] = {0};
// uint8_t low = 0, high = 0;
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
m_wire->requestFrom(m_addr, (uint8_t)1);
if (m_wire->available() < 1)
return 0;
return m_wire->read();
}
if (readCallback) {
uint8_t data;
readCallback(m_addr, reg, &data, 1);
return data;
}
return 0;
m_wire->requestFrom(m_addr, (uint8_t)2);
if (m_wire->available() < 2)
return 0;
data[0] = m_wire->read();
data[1] = m_wire->read();
}
if (readCallback) {
readCallback(m_addr, reg, data, 2);
}
return (data[1] << 8) | data[0];
}
uint16_t MPR121Keyboard::readRegister16(uint8_t reg) const
{
uint8_t data[2] = {0};
// uint8_t low = 0, high = 0;
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
void MPR121Keyboard::writeRegister(uint8_t reg, uint8_t value) {
uint8_t data[2];
data[0] = reg;
data[1] = value;
m_wire->requestFrom(m_addr, (uint8_t)2);
if (m_wire->available() < 2)
return 0;
data[0] = m_wire->read();
data[1] = m_wire->read();
}
if (readCallback) {
readCallback(m_addr, reg, data, 2);
}
return (data[1] << 8) | data[0];
}
void MPR121Keyboard::writeRegister(uint8_t reg, uint8_t value)
{
uint8_t data[2];
data[0] = reg;
data[1] = value;
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(data, sizeof(uint8_t) * 2);
m_wire->endTransmission();
}
if (writeCallback) {
writeCallback(m_addr, data[0], &(data[1]), 1);
}
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(data, sizeof(uint8_t) * 2);
m_wire->endTransmission();
}
if (writeCallback) {
writeCallback(m_addr, data[0], &(data[1]), 1);
}
}

View File

@@ -5,52 +5,51 @@
#include <Wire.h>
#include <main.h>
class MPR121Keyboard
{
public:
typedef uint8_t (*i2c_com_fptr_t)(uint8_t dev_addr, uint8_t reg_addr, uint8_t *data, uint8_t len);
class MPR121Keyboard {
public:
typedef uint8_t (*i2c_com_fptr_t)(uint8_t dev_addr, uint8_t reg_addr, uint8_t *data, uint8_t len);
enum MPR121States { Init = 0, Idle, Held, HeldLong, Busy };
enum MPR121States { Init = 0, Idle, Held, HeldLong, Busy };
MPR121States state;
MPR121States state;
int8_t last_key;
uint32_t last_tap;
uint8_t char_idx;
int8_t last_key;
uint32_t last_tap;
uint8_t char_idx;
String queue;
String queue;
MPR121Keyboard();
MPR121Keyboard();
void begin(uint8_t addr = MPR121_KB_ADDR, TwoWire *wire = &Wire);
void begin(uint8_t addr = MPR121_KB_ADDR, TwoWire *wire = &Wire);
void begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr = MPR121_KB_ADDR);
void begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr = MPR121_KB_ADDR);
void reset(void);
void reset(void);
void attachInterrupt(uint8_t pin, void (*func)(void)) const;
void detachInterrupt(uint8_t pin) const;
void attachInterrupt(uint8_t pin, void (*func)(void)) const;
void detachInterrupt(uint8_t pin) const;
void trigger(void);
void pressed(uint16_t value);
void held(uint16_t value);
void released(void);
void trigger(void);
void pressed(uint16_t value);
void held(uint16_t value);
void released(void);
uint8_t status(void) const;
uint8_t keyCount(void) const;
uint8_t keyCount(uint16_t value) const;
uint8_t status(void) const;
uint8_t keyCount(void) const;
uint8_t keyCount(uint16_t value) const;
bool hasEvent(void);
char dequeueEvent(void);
void queueEvent(char);
bool hasEvent(void);
char dequeueEvent(void);
void queueEvent(char);
uint8_t readRegister8(uint8_t reg) const;
uint16_t readRegister16(uint8_t reg) const;
void writeRegister(uint8_t reg, uint8_t value);
uint8_t readRegister8(uint8_t reg) const;
uint16_t readRegister16(uint8_t reg) const;
void writeRegister(uint8_t reg, uint8_t value);
private:
TwoWire *m_wire;
uint8_t m_addr;
i2c_com_fptr_t readCallback;
i2c_com_fptr_t writeCallback;
private:
TwoWire *m_wire;
uint8_t m_addr;
i2c_com_fptr_t readCallback;
i2c_com_fptr_t writeCallback;
};

View File

@@ -11,131 +11,122 @@
RotaryEncoderImpl *rotaryEncoderImpl;
RotaryEncoderImpl::RotaryEncoderImpl()
{
RotaryEncoderImpl::RotaryEncoderImpl() {
rotary = nullptr;
#ifdef ARCH_ESP32
isFirstInit = true;
#endif
}
RotaryEncoderImpl::~RotaryEncoderImpl() {
LOG_DEBUG("RotaryEncoderImpl destructor");
detachRotaryEncoderInterrupts();
if (rotary != nullptr) {
delete rotary;
rotary = nullptr;
#ifdef ARCH_ESP32
isFirstInit = true;
#endif
}
}
RotaryEncoderImpl::~RotaryEncoderImpl()
{
LOG_DEBUG("RotaryEncoderImpl destructor");
detachRotaryEncoderInterrupts();
bool RotaryEncoderImpl::init() {
if (!moduleConfig.canned_message.updown1_enabled || moduleConfig.canned_message.inputbroker_pin_a == 0 ||
moduleConfig.canned_message.inputbroker_pin_b == 0) {
// Input device is disabled.
return false;
}
if (rotary != nullptr) {
delete rotary;
rotary = nullptr;
}
}
eventCw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_cw);
eventCcw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_ccw);
eventPressed = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_press);
bool RotaryEncoderImpl::init()
{
if (!moduleConfig.canned_message.updown1_enabled || moduleConfig.canned_message.inputbroker_pin_a == 0 ||
moduleConfig.canned_message.inputbroker_pin_b == 0) {
// Input device is disabled.
return false;
}
if (rotary == nullptr) {
rotary = new RotaryEncoder(moduleConfig.canned_message.inputbroker_pin_a, moduleConfig.canned_message.inputbroker_pin_b,
moduleConfig.canned_message.inputbroker_pin_press);
}
eventCw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_cw);
eventCcw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_ccw);
eventPressed = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_press);
if (rotary == nullptr) {
rotary = new RotaryEncoder(moduleConfig.canned_message.inputbroker_pin_a, moduleConfig.canned_message.inputbroker_pin_b,
moduleConfig.canned_message.inputbroker_pin_press);
}
attachRotaryEncoderInterrupts();
attachRotaryEncoderInterrupts();
#ifdef ARCH_ESP32
// Register callbacks for before and after lightsleep
// Used to detach and reattach interrupts
if (isFirstInit) {
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
isFirstInit = false;
}
// Register callbacks for before and after lightsleep
// Used to detach and reattach interrupts
if (isFirstInit) {
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
isFirstInit = false;
}
#endif
LOG_INFO("RotaryEncoder initialized pins(%d, %d, %d), events(%d, %d, %d)", moduleConfig.canned_message.inputbroker_pin_a,
moduleConfig.canned_message.inputbroker_pin_b, moduleConfig.canned_message.inputbroker_pin_press, eventCw, eventCcw,
eventPressed);
return true;
LOG_INFO("RotaryEncoder initialized pins(%d, %d, %d), events(%d, %d, %d)", moduleConfig.canned_message.inputbroker_pin_a,
moduleConfig.canned_message.inputbroker_pin_b, moduleConfig.canned_message.inputbroker_pin_press, eventCw, eventCcw, eventPressed);
return true;
}
void RotaryEncoderImpl::pollOnce()
{
InputEvent e{ORIGIN_NAME, INPUT_BROKER_NONE, 0, 0, 0};
void RotaryEncoderImpl::pollOnce() {
InputEvent e{ORIGIN_NAME, INPUT_BROKER_NONE, 0, 0, 0};
static uint32_t lastPressed = millis();
if (rotary->readButton() == RotaryEncoder::ButtonState::BUTTON_PRESSED) {
if (lastPressed + 200 < millis()) {
LOG_DEBUG("Rotary event Press");
lastPressed = millis();
e.inputEvent = this->eventPressed;
inputBroker->queueInputEvent(&e);
}
static uint32_t lastPressed = millis();
if (rotary->readButton() == RotaryEncoder::ButtonState::BUTTON_PRESSED) {
if (lastPressed + 200 < millis()) {
LOG_DEBUG("Rotary event Press");
lastPressed = millis();
e.inputEvent = this->eventPressed;
inputBroker->queueInputEvent(&e);
}
}
switch (rotary->process()) {
case RotaryEncoder::DIRECTION_CW:
LOG_DEBUG("Rotary event CW");
e.inputEvent = this->eventCw;
inputBroker->queueInputEvent(&e);
break;
case RotaryEncoder::DIRECTION_CCW:
LOG_DEBUG("Rotary event CCW");
e.inputEvent = this->eventCcw;
inputBroker->queueInputEvent(&e);
break;
default:
break;
}
switch (rotary->process()) {
case RotaryEncoder::DIRECTION_CW:
LOG_DEBUG("Rotary event CW");
e.inputEvent = this->eventCw;
inputBroker->queueInputEvent(&e);
break;
case RotaryEncoder::DIRECTION_CCW:
LOG_DEBUG("Rotary event CCW");
e.inputEvent = this->eventCcw;
inputBroker->queueInputEvent(&e);
break;
default:
break;
}
}
void RotaryEncoderImpl::detachRotaryEncoderInterrupts()
{
LOG_DEBUG("RotaryEncoderImpl detach button interrupts");
if (interruptInstance == this) {
detachInterrupt(moduleConfig.canned_message.inputbroker_pin_a);
detachInterrupt(moduleConfig.canned_message.inputbroker_pin_b);
detachInterrupt(moduleConfig.canned_message.inputbroker_pin_press);
interruptInstance = nullptr;
} else {
LOG_WARN("RotaryEncoderImpl: interrupts already detached");
}
void RotaryEncoderImpl::detachRotaryEncoderInterrupts() {
LOG_DEBUG("RotaryEncoderImpl detach button interrupts");
if (interruptInstance == this) {
detachInterrupt(moduleConfig.canned_message.inputbroker_pin_a);
detachInterrupt(moduleConfig.canned_message.inputbroker_pin_b);
detachInterrupt(moduleConfig.canned_message.inputbroker_pin_press);
interruptInstance = nullptr;
} else {
LOG_WARN("RotaryEncoderImpl: interrupts already detached");
}
}
void RotaryEncoderImpl::attachRotaryEncoderInterrupts()
{
LOG_DEBUG("RotaryEncoderImpl attach button interrupts");
if (rotary != nullptr && interruptInstance == nullptr) {
rotary->resetButton();
void RotaryEncoderImpl::attachRotaryEncoderInterrupts() {
LOG_DEBUG("RotaryEncoderImpl attach button interrupts");
if (rotary != nullptr && interruptInstance == nullptr) {
rotary->resetButton();
interruptInstance = this;
auto interruptHandler = []() { inputBroker->requestPollSoon(interruptInstance); };
attachInterrupt(moduleConfig.canned_message.inputbroker_pin_a, interruptHandler, CHANGE);
attachInterrupt(moduleConfig.canned_message.inputbroker_pin_b, interruptHandler, CHANGE);
attachInterrupt(moduleConfig.canned_message.inputbroker_pin_press, interruptHandler, CHANGE);
} else {
LOG_WARN("RotaryEncoderImpl: interrupts already attached");
}
interruptInstance = this;
auto interruptHandler = []() { inputBroker->requestPollSoon(interruptInstance); };
attachInterrupt(moduleConfig.canned_message.inputbroker_pin_a, interruptHandler, CHANGE);
attachInterrupt(moduleConfig.canned_message.inputbroker_pin_b, interruptHandler, CHANGE);
attachInterrupt(moduleConfig.canned_message.inputbroker_pin_press, interruptHandler, CHANGE);
} else {
LOG_WARN("RotaryEncoderImpl: interrupts already attached");
}
}
#ifdef ARCH_ESP32
int RotaryEncoderImpl::beforeLightSleep(void *unused)
{
detachRotaryEncoderInterrupts();
return 0; // Indicates success;
int RotaryEncoderImpl::beforeLightSleep(void *unused) {
detachRotaryEncoderInterrupts();
return 0; // Indicates success;
}
int RotaryEncoderImpl::afterLightSleep(esp_sleep_wakeup_cause_t cause)
{
attachRotaryEncoderInterrupts();
return 0; // Indicates success;
int RotaryEncoderImpl::afterLightSleep(esp_sleep_wakeup_cause_t cause) {
attachRotaryEncoderInterrupts();
return 0; // Indicates success;
}
#endif

View File

@@ -8,41 +8,39 @@
class RotaryEncoder;
class RotaryEncoderImpl final : public InputPollable
{
public:
RotaryEncoderImpl();
~RotaryEncoderImpl() override;
bool init();
virtual void pollOnce() override;
// Disconnect and reconnect interrupts for light sleep
class RotaryEncoderImpl final : public InputPollable {
public:
RotaryEncoderImpl();
~RotaryEncoderImpl() override;
bool init();
virtual void pollOnce() override;
// Disconnect and reconnect interrupts for light sleep
#ifdef ARCH_ESP32
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
#endif
protected:
static RotaryEncoderImpl *interruptInstance;
protected:
static RotaryEncoderImpl *interruptInstance;
input_broker_event eventCw = INPUT_BROKER_NONE;
input_broker_event eventCcw = INPUT_BROKER_NONE;
input_broker_event eventPressed = INPUT_BROKER_NONE;
input_broker_event eventCw = INPUT_BROKER_NONE;
input_broker_event eventCcw = INPUT_BROKER_NONE;
input_broker_event eventPressed = INPUT_BROKER_NONE;
RotaryEncoder *rotary;
RotaryEncoder *rotary;
private:
private:
#ifdef ARCH_ESP32
bool isFirstInit;
bool isFirstInit;
#endif
void detachRotaryEncoderInterrupts();
void attachRotaryEncoderInterrupts();
void detachRotaryEncoderInterrupts();
void attachRotaryEncoderInterrupts();
#ifdef ARCH_ESP32
// Get notified when lightsleep begins and ends
CallbackObserver<RotaryEncoderImpl, void *> lsObserver =
CallbackObserver<RotaryEncoderImpl, void *>(this, &RotaryEncoderImpl::beforeLightSleep);
CallbackObserver<RotaryEncoderImpl, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<RotaryEncoderImpl, esp_sleep_wakeup_cause_t>(this, &RotaryEncoderImpl::afterLightSleep);
// Get notified when lightsleep begins and ends
CallbackObserver<RotaryEncoderImpl, void *> lsObserver = CallbackObserver<RotaryEncoderImpl, void *>(this, &RotaryEncoderImpl::beforeLightSleep);
CallbackObserver<RotaryEncoderImpl, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<RotaryEncoderImpl, esp_sleep_wakeup_cause_t>(this, &RotaryEncoderImpl::afterLightSleep);
#endif
};

View File

@@ -1,129 +1,120 @@
#include "RotaryEncoderInterruptBase.h"
#include "configuration.h"
RotaryEncoderInterruptBase::RotaryEncoderInterruptBase(const char *name) : concurrency::OSThread(name)
{
this->_originName = name;
}
RotaryEncoderInterruptBase::RotaryEncoderInterruptBase(const char *name) : concurrency::OSThread(name) { this->_originName = name; }
void RotaryEncoderInterruptBase::init(
uint8_t pinA, uint8_t pinB, uint8_t pinPress, input_broker_event eventCw, input_broker_event eventCcw,
input_broker_event eventPressed, input_broker_event eventPressedLong,
uint8_t pinA, uint8_t pinB, uint8_t pinPress, input_broker_event eventCw, input_broker_event eventCcw, input_broker_event eventPressed,
input_broker_event eventPressedLong,
// std::function<void(void)> onIntA, std::function<void(void)> onIntB, std::function<void(void)> onIntPress) :
void (*onIntA)(), void (*onIntB)(), void (*onIntPress)())
{
this->_pinA = pinA;
this->_pinB = pinB;
this->_pinPress = pinPress;
this->_eventCw = eventCw;
this->_eventCcw = eventCcw;
this->_eventPressed = eventPressed;
this->_eventPressedLong = eventPressedLong;
void (*onIntA)(), void (*onIntB)(), void (*onIntPress)()) {
this->_pinA = pinA;
this->_pinB = pinB;
this->_pinPress = pinPress;
this->_eventCw = eventCw;
this->_eventCcw = eventCcw;
this->_eventPressed = eventPressed;
this->_eventPressedLong = eventPressedLong;
bool isRAK = false;
bool isRAK = false;
#ifdef RAK_4631
isRAK = true;
isRAK = true;
#endif
if (!isRAK || pinPress != 0) {
pinMode(pinPress, INPUT_PULLUP);
attachInterrupt(pinPress, onIntPress, CHANGE);
}
if (!isRAK || this->_pinA != 0) {
pinMode(this->_pinA, INPUT_PULLUP);
attachInterrupt(this->_pinA, onIntA, CHANGE);
}
if (!isRAK || this->_pinA != 0) {
pinMode(this->_pinB, INPUT_PULLUP);
attachInterrupt(this->_pinB, onIntB, CHANGE);
}
if (!isRAK || pinPress != 0) {
pinMode(pinPress, INPUT_PULLUP);
attachInterrupt(pinPress, onIntPress, CHANGE);
}
if (!isRAK || this->_pinA != 0) {
pinMode(this->_pinA, INPUT_PULLUP);
attachInterrupt(this->_pinA, onIntA, CHANGE);
}
if (!isRAK || this->_pinA != 0) {
pinMode(this->_pinB, INPUT_PULLUP);
attachInterrupt(this->_pinB, onIntB, CHANGE);
}
this->rotaryLevelA = digitalRead(this->_pinA);
this->rotaryLevelB = digitalRead(this->_pinB);
LOG_INFO("Rotary initialized (%d, %d, %d)", this->_pinA, this->_pinB, pinPress);
this->rotaryLevelA = digitalRead(this->_pinA);
this->rotaryLevelB = digitalRead(this->_pinB);
LOG_INFO("Rotary initialized (%d, %d, %d)", this->_pinA, this->_pinB, pinPress);
}
int32_t RotaryEncoderInterruptBase::runOnce()
{
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
unsigned long now = millis();
int32_t RotaryEncoderInterruptBase::runOnce() {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
unsigned long now = millis();
// Handle press long/short detection
if (this->action == ROTARY_ACTION_PRESSED) {
bool buttonPressed = !digitalRead(_pinPress);
if (!pressDetected && buttonPressed) {
pressDetected = true;
pressStartTime = now;
}
if (pressDetected) {
uint32_t duration = now - pressStartTime;
if (!buttonPressed) {
// released -> if short press, send short, else already sent long
if (duration < LONG_PRESS_DURATION && now - lastPressKeyTime >= pressDebounceMs) {
lastPressKeyTime = now;
LOG_DEBUG("Rotary event Press short");
e.inputEvent = this->_eventPressed;
}
pressDetected = false;
pressStartTime = 0;
lastPressLongEventTime = 0;
this->action = ROTARY_ACTION_NONE;
} else if (duration >= LONG_PRESS_DURATION && this->_eventPressedLong != INPUT_BROKER_NONE &&
lastPressLongEventTime == 0) {
// fire single-shot long press
lastPressLongEventTime = now;
LOG_DEBUG("Rotary event Press long");
e.inputEvent = this->_eventPressedLong;
}
}
} else if (this->action == ROTARY_ACTION_CW) {
LOG_DEBUG("Rotary event CW");
e.inputEvent = this->_eventCw;
} else if (this->action == ROTARY_ACTION_CCW) {
LOG_DEBUG("Rotary event CCW");
e.inputEvent = this->_eventCcw;
// Handle press long/short detection
if (this->action == ROTARY_ACTION_PRESSED) {
bool buttonPressed = !digitalRead(_pinPress);
if (!pressDetected && buttonPressed) {
pressDetected = true;
pressStartTime = now;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
if (!pressDetected) {
if (pressDetected) {
uint32_t duration = now - pressStartTime;
if (!buttonPressed) {
// released -> if short press, send short, else already sent long
if (duration < LONG_PRESS_DURATION && now - lastPressKeyTime >= pressDebounceMs) {
lastPressKeyTime = now;
LOG_DEBUG("Rotary event Press short");
e.inputEvent = this->_eventPressed;
}
pressDetected = false;
pressStartTime = 0;
lastPressLongEventTime = 0;
this->action = ROTARY_ACTION_NONE;
} else if (duration >= LONG_PRESS_DURATION && this->_eventPressedLong != INPUT_BROKER_NONE && lastPressLongEventTime == 0) {
// fire single-shot long press
lastPressLongEventTime = now;
LOG_DEBUG("Rotary event Press long");
e.inputEvent = this->_eventPressedLong;
}
}
} else if (this->action == ROTARY_ACTION_CW) {
LOG_DEBUG("Rotary event CW");
e.inputEvent = this->_eventCw;
} else if (this->action == ROTARY_ACTION_CCW) {
LOG_DEBUG("Rotary event CCW");
e.inputEvent = this->_eventCcw;
}
return INT32_MAX;
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
if (!pressDetected) {
this->action = ROTARY_ACTION_NONE;
}
return INT32_MAX;
}
void RotaryEncoderInterruptBase::intPressHandler()
{
this->action = ROTARY_ACTION_PRESSED;
setIntervalFromNow(20); // start checking for long/short
void RotaryEncoderInterruptBase::intPressHandler() {
this->action = ROTARY_ACTION_PRESSED;
setIntervalFromNow(20); // start checking for long/short
}
void RotaryEncoderInterruptBase::intAHandler()
{
// CW rotation (at least on most common rotary encoders)
int currentLevelA = digitalRead(this->_pinA);
if (this->rotaryLevelA == currentLevelA) {
return;
}
this->rotaryLevelA = currentLevelA;
this->rotaryStateCCW = intHandler(currentLevelA == HIGH, this->rotaryLevelB, ROTARY_ACTION_CCW, this->rotaryStateCCW);
void RotaryEncoderInterruptBase::intAHandler() {
// CW rotation (at least on most common rotary encoders)
int currentLevelA = digitalRead(this->_pinA);
if (this->rotaryLevelA == currentLevelA) {
return;
}
this->rotaryLevelA = currentLevelA;
this->rotaryStateCCW = intHandler(currentLevelA == HIGH, this->rotaryLevelB, ROTARY_ACTION_CCW, this->rotaryStateCCW);
}
void RotaryEncoderInterruptBase::intBHandler()
{
// CW rotation (at least on most common rotary encoders)
int currentLevelB = digitalRead(this->_pinB);
if (this->rotaryLevelB == currentLevelB) {
return;
}
this->rotaryLevelB = currentLevelB;
this->rotaryStateCW = intHandler(currentLevelB == HIGH, this->rotaryLevelA, ROTARY_ACTION_CW, this->rotaryStateCW);
void RotaryEncoderInterruptBase::intBHandler() {
// CW rotation (at least on most common rotary encoders)
int currentLevelB = digitalRead(this->_pinB);
if (this->rotaryLevelB == currentLevelB) {
return;
}
this->rotaryLevelB = currentLevelB;
this->rotaryStateCW = intHandler(currentLevelB == HIGH, this->rotaryLevelA, ROTARY_ACTION_CW, this->rotaryStateCW);
}
/**
@@ -137,21 +128,20 @@ void RotaryEncoderInterruptBase::intBHandler()
*/
RotaryEncoderInterruptBaseStateType RotaryEncoderInterruptBase::intHandler(bool actualPinRaising, int otherPinLevel,
RotaryEncoderInterruptBaseActionType action,
RotaryEncoderInterruptBaseStateType state)
{
RotaryEncoderInterruptBaseStateType newState = state;
if (actualPinRaising && (otherPinLevel == LOW)) {
if (state == ROTARY_EVENT_CLEARED) {
newState = ROTARY_EVENT_OCCURRED;
if ((this->action != ROTARY_ACTION_PRESSED) && (this->action != action)) {
this->action = action;
}
}
} else if (!actualPinRaising && (otherPinLevel == HIGH)) {
// Logic to prevent bouncing.
newState = ROTARY_EVENT_CLEARED;
RotaryEncoderInterruptBaseStateType state) {
RotaryEncoderInterruptBaseStateType newState = state;
if (actualPinRaising && (otherPinLevel == LOW)) {
if (state == ROTARY_EVENT_CLEARED) {
newState = ROTARY_EVENT_OCCURRED;
if ((this->action != ROTARY_ACTION_PRESSED) && (this->action != action)) {
this->action = action;
}
}
setIntervalFromNow(ROTARY_DELAY); // TODO: this modifies a non-volatile variable!
} else if (!actualPinRaising && (otherPinLevel == HIGH)) {
// Logic to prevent bouncing.
newState = ROTARY_EVENT_CLEARED;
}
setIntervalFromNow(ROTARY_DELAY); // TODO: this modifies a non-volatile variable!
return newState;
return newState;
}

View File

@@ -8,47 +8,46 @@ enum RotaryEncoderInterruptBaseStateType { ROTARY_EVENT_OCCURRED, ROTARY_EVENT_C
enum RotaryEncoderInterruptBaseActionType { ROTARY_ACTION_NONE, ROTARY_ACTION_PRESSED, ROTARY_ACTION_CW, ROTARY_ACTION_CCW };
class RotaryEncoderInterruptBase : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit RotaryEncoderInterruptBase(const char *name);
void init(uint8_t pinA, uint8_t pinB, uint8_t pinPress, input_broker_event eventCw, input_broker_event eventCcw,
input_broker_event eventPressed, input_broker_event eventPressedLong,
// std::function<void(void)> onIntA, std::function<void(void)> onIntB, std::function<void(void)> onIntPress);
void (*onIntA)(), void (*onIntB)(), void (*onIntPress)());
void intPressHandler();
void intAHandler();
void intBHandler();
class RotaryEncoderInterruptBase : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit RotaryEncoderInterruptBase(const char *name);
void init(uint8_t pinA, uint8_t pinB, uint8_t pinPress, input_broker_event eventCw, input_broker_event eventCcw, input_broker_event eventPressed,
input_broker_event eventPressedLong,
// std::function<void(void)> onIntA, std::function<void(void)> onIntB, std::function<void(void)>
// onIntPress);
void (*onIntA)(), void (*onIntB)(), void (*onIntPress)());
void intPressHandler();
void intAHandler();
void intBHandler();
protected:
virtual int32_t runOnce() override;
RotaryEncoderInterruptBaseStateType intHandler(bool actualPinRaising, int otherPinLevel,
RotaryEncoderInterruptBaseActionType action,
RotaryEncoderInterruptBaseStateType state);
protected:
virtual int32_t runOnce() override;
RotaryEncoderInterruptBaseStateType intHandler(bool actualPinRaising, int otherPinLevel, RotaryEncoderInterruptBaseActionType action,
RotaryEncoderInterruptBaseStateType state);
volatile RotaryEncoderInterruptBaseStateType rotaryStateCW = ROTARY_EVENT_CLEARED;
volatile RotaryEncoderInterruptBaseStateType rotaryStateCCW = ROTARY_EVENT_CLEARED;
volatile int rotaryLevelA = LOW;
volatile int rotaryLevelB = LOW;
volatile RotaryEncoderInterruptBaseActionType action = ROTARY_ACTION_NONE;
volatile RotaryEncoderInterruptBaseStateType rotaryStateCW = ROTARY_EVENT_CLEARED;
volatile RotaryEncoderInterruptBaseStateType rotaryStateCCW = ROTARY_EVENT_CLEARED;
volatile int rotaryLevelA = LOW;
volatile int rotaryLevelB = LOW;
volatile RotaryEncoderInterruptBaseActionType action = ROTARY_ACTION_NONE;
private:
// pins and events
uint8_t _pinA = 0;
uint8_t _pinB = 0;
uint8_t _pinPress = 0;
input_broker_event _eventCw = INPUT_BROKER_NONE;
input_broker_event _eventCcw = INPUT_BROKER_NONE;
input_broker_event _eventPressed = INPUT_BROKER_NONE;
input_broker_event _eventPressedLong = INPUT_BROKER_NONE;
const char *_originName;
private:
// pins and events
uint8_t _pinA = 0;
uint8_t _pinB = 0;
uint8_t _pinPress = 0;
input_broker_event _eventCw = INPUT_BROKER_NONE;
input_broker_event _eventCcw = INPUT_BROKER_NONE;
input_broker_event _eventPressed = INPUT_BROKER_NONE;
input_broker_event _eventPressedLong = INPUT_BROKER_NONE;
const char *_originName;
// Long press detection variables
uint32_t pressStartTime = 0;
bool pressDetected = false;
uint32_t lastPressLongEventTime = 0;
unsigned long lastPressKeyTime = 0;
static const uint32_t LONG_PRESS_DURATION = 300; // ms
static const uint32_t LONG_PRESS_REPEAT_INTERVAL = 0; // 0 = single-shot for rotary select
const unsigned long pressDebounceMs = 200; // ms
// Long press detection variables
uint32_t pressStartTime = 0;
bool pressDetected = false;
uint32_t lastPressLongEventTime = 0;
unsigned long lastPressKeyTime = 0;
static const uint32_t LONG_PRESS_DURATION = 300; // ms
static const uint32_t LONG_PRESS_REPEAT_INTERVAL = 0; // 0 = single-shot for rotary select
const unsigned long pressDebounceMs = 200; // ms
};

View File

@@ -6,42 +6,31 @@ RotaryEncoderInterruptImpl1 *rotaryEncoderInterruptImpl1;
RotaryEncoderInterruptImpl1::RotaryEncoderInterruptImpl1() : RotaryEncoderInterruptBase("rotEnc1") {}
bool RotaryEncoderInterruptImpl1::init()
{
if (!moduleConfig.canned_message.rotary1_enabled) {
// Input device is disabled.
disable();
return false;
}
bool RotaryEncoderInterruptImpl1::init() {
if (!moduleConfig.canned_message.rotary1_enabled) {
// Input device is disabled.
disable();
return false;
}
uint8_t pinA = moduleConfig.canned_message.inputbroker_pin_a;
uint8_t pinB = moduleConfig.canned_message.inputbroker_pin_b;
uint8_t pinPress = moduleConfig.canned_message.inputbroker_pin_press;
input_broker_event eventCw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_cw);
input_broker_event eventCcw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_ccw);
input_broker_event eventPressed = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_press);
input_broker_event eventPressedLong = INPUT_BROKER_SELECT_LONG;
uint8_t pinA = moduleConfig.canned_message.inputbroker_pin_a;
uint8_t pinB = moduleConfig.canned_message.inputbroker_pin_b;
uint8_t pinPress = moduleConfig.canned_message.inputbroker_pin_press;
input_broker_event eventCw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_cw);
input_broker_event eventCcw = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_ccw);
input_broker_event eventPressed = static_cast<input_broker_event>(moduleConfig.canned_message.inputbroker_event_press);
input_broker_event eventPressedLong = INPUT_BROKER_SELECT_LONG;
// moduleConfig.canned_message.ext_notification_module_output
RotaryEncoderInterruptBase::init(pinA, pinB, pinPress, eventCw, eventCcw, eventPressed, eventPressedLong,
RotaryEncoderInterruptImpl1::handleIntA, RotaryEncoderInterruptImpl1::handleIntB,
RotaryEncoderInterruptImpl1::handleIntPressed);
inputBroker->registerSource(this);
// moduleConfig.canned_message.ext_notification_module_output
RotaryEncoderInterruptBase::init(pinA, pinB, pinPress, eventCw, eventCcw, eventPressed, eventPressedLong, RotaryEncoderInterruptImpl1::handleIntA,
RotaryEncoderInterruptImpl1::handleIntB, RotaryEncoderInterruptImpl1::handleIntPressed);
inputBroker->registerSource(this);
#ifndef HAS_PHYSICAL_KEYBOARD
osk_found = true;
osk_found = true;
#endif
return true;
return true;
}
void RotaryEncoderInterruptImpl1::handleIntA()
{
rotaryEncoderInterruptImpl1->intAHandler();
}
void RotaryEncoderInterruptImpl1::handleIntB()
{
rotaryEncoderInterruptImpl1->intBHandler();
}
void RotaryEncoderInterruptImpl1::handleIntPressed()
{
rotaryEncoderInterruptImpl1->intPressHandler();
}
void RotaryEncoderInterruptImpl1::handleIntA() { rotaryEncoderInterruptImpl1->intAHandler(); }
void RotaryEncoderInterruptImpl1::handleIntB() { rotaryEncoderInterruptImpl1->intBHandler(); }
void RotaryEncoderInterruptImpl1::handleIntPressed() { rotaryEncoderInterruptImpl1->intPressHandler(); }

View File

@@ -8,14 +8,13 @@
* to your device as you wish, but you always need to have separate event
* handlers, thus you need to have a RotaryEncoderInterrupt implementation.
*/
class RotaryEncoderInterruptImpl1 : public RotaryEncoderInterruptBase
{
public:
RotaryEncoderInterruptImpl1();
bool init();
static void handleIntA();
static void handleIntB();
static void handleIntPressed();
class RotaryEncoderInterruptImpl1 : public RotaryEncoderInterruptBase {
public:
RotaryEncoderInterruptImpl1();
bool init();
static void handleIntA();
static void handleIntB();
static void handleIntPressed();
};
extern RotaryEncoderInterruptImpl1 *rotaryEncoderInterruptImpl1;

View File

@@ -6,78 +6,73 @@ using namespace concurrency;
SeesawRotary *seesawRotary;
SeesawRotary::SeesawRotary(const char *name) : OSThread(name)
{
_originName = name;
SeesawRotary::SeesawRotary(const char *name) : OSThread(name) { _originName = name; }
bool SeesawRotary::init() {
if (inputBroker)
inputBroker->registerSource(this);
if (!ss.begin(SEESAW_ADDR)) {
return false;
}
// attachButtonInterrupts();
uint32_t version = ((ss.getVersion() >> 16) & 0xFFFF);
if (version != 4991) {
LOG_WARN("Wrong firmware loaded? %u", version);
} else {
LOG_INFO("Found Product 4991");
}
/*
#ifdef ARCH_ESP32
// Register callbacks for before and after lightsleep
// Used to detach and reattach interrupts
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
#endif
*/
ss.pinMode(SS_SWITCH, INPUT_PULLUP);
// get starting position
encoder_position = ss.getEncoderPosition();
ss.setGPIOInterrupts((uint32_t)1 << SS_SWITCH, 1);
ss.enableEncoderInterrupt();
canSleep = true; // Assume we should not keep the board awake
return true;
}
bool SeesawRotary::init()
{
if (inputBroker)
inputBroker->registerSource(this);
int32_t SeesawRotary::runOnce() {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
bool currentlyPressed = !ss.digitalRead(SS_SWITCH);
if (!ss.begin(SEESAW_ADDR)) {
return false;
}
// attachButtonInterrupts();
if (currentlyPressed && !wasPressed) {
e.inputEvent = INPUT_BROKER_SELECT;
}
wasPressed = currentlyPressed;
uint32_t version = ((ss.getVersion() >> 16) & 0xFFFF);
if (version != 4991) {
LOG_WARN("Wrong firmware loaded? %u", version);
int32_t new_position = ss.getEncoderPosition();
// did we move arounde?
if (encoder_position != new_position) {
if (encoder_position == 0 && new_position != 1) {
e.inputEvent = INPUT_BROKER_ALT_PRESS;
} else if (new_position == 0 && encoder_position != 1) {
e.inputEvent = INPUT_BROKER_USER_PRESS;
} else if (new_position > encoder_position) {
e.inputEvent = INPUT_BROKER_USER_PRESS;
} else {
LOG_INFO("Found Product 4991");
e.inputEvent = INPUT_BROKER_ALT_PRESS;
}
/*
#ifdef ARCH_ESP32
// Register callbacks for before and after lightsleep
// Used to detach and reattach interrupts
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
#endif
*/
ss.pinMode(SS_SWITCH, INPUT_PULLUP);
encoder_position = new_position;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
e.source = this->_originName;
e.kbchar = 0x00;
this->notifyObservers(&e);
}
// get starting position
encoder_position = ss.getEncoderPosition();
ss.setGPIOInterrupts((uint32_t)1 << SS_SWITCH, 1);
ss.enableEncoderInterrupt();
canSleep = true; // Assume we should not keep the board awake
return true;
}
int32_t SeesawRotary::runOnce()
{
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
bool currentlyPressed = !ss.digitalRead(SS_SWITCH);
if (currentlyPressed && !wasPressed) {
e.inputEvent = INPUT_BROKER_SELECT;
}
wasPressed = currentlyPressed;
int32_t new_position = ss.getEncoderPosition();
// did we move arounde?
if (encoder_position != new_position) {
if (encoder_position == 0 && new_position != 1) {
e.inputEvent = INPUT_BROKER_ALT_PRESS;
} else if (new_position == 0 && encoder_position != 1) {
e.inputEvent = INPUT_BROKER_USER_PRESS;
} else if (new_position > encoder_position) {
e.inputEvent = INPUT_BROKER_USER_PRESS;
} else {
e.inputEvent = INPUT_BROKER_ALT_PRESS;
}
encoder_position = new_position;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
e.source = this->_originName;
e.kbchar = 0x00;
this->notifyObservers(&e);
}
return 50;
return 50;
}
#endif

View File

@@ -11,18 +11,17 @@
#define SEESAW_ADDR 0x36
class SeesawRotary : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
const char *_originName;
bool init();
SeesawRotary(const char *name);
int32_t runOnce() override;
class SeesawRotary : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
const char *_originName;
bool init();
SeesawRotary(const char *name);
int32_t runOnce() override;
private:
Adafruit_seesaw ss;
int32_t encoder_position;
bool wasPressed = false;
private:
Adafruit_seesaw ss;
int32_t encoder_position;
bool wasPressed = false;
};
extern SeesawRotary *seesawRotary;

View File

@@ -24,164 +24,161 @@ unsigned char KeyMap[3][4][10] = {{{'.', 'a', 'd', 'g', 'j', 'm', 'p', 't', 'w',
#endif
SerialKeyboard::SerialKeyboard(const char *name) : concurrency::OSThread(name)
{
this->_originName = name;
SerialKeyboard::SerialKeyboard(const char *name) : concurrency::OSThread(name) {
this->_originName = name;
globalSerialKeyboard = this;
globalSerialKeyboard = this;
}
void SerialKeyboard::erase()
{
InputEvent e = {};
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
e.source = this->_originName;
this->notifyObservers(&e);
void SerialKeyboard::erase() {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
e.source = this->_originName;
this->notifyObservers(&e);
}
int32_t SerialKeyboard::runOnce()
{
if (!INPUTBROKER_SERIAL_TYPE) {
// Input device is not requested.
return disable();
int32_t SerialKeyboard::runOnce() {
if (!INPUTBROKER_SERIAL_TYPE) {
// Input device is not requested.
return disable();
}
if (firstTime) {
// This is the first time the OSThread library has called this function, so do port setup
firstTime = 0;
pinMode(KB_LOAD, OUTPUT);
pinMode(KB_CLK, OUTPUT);
pinMode(KB_DATA, INPUT);
digitalWrite(KB_LOAD, HIGH);
digitalWrite(KB_CLK, LOW);
prevKeys = 0b1111111111111111;
LOG_DEBUG("Serial Keyboard setup");
}
if (INPUTBROKER_SERIAL_TYPE == 1) { // Chatter V1.0 & V2.0 keypads
// scan for keypresses
// Write pulse to load pin
digitalWrite(KB_LOAD, LOW);
delayMicroseconds(5);
digitalWrite(KB_LOAD, HIGH);
delayMicroseconds(5);
// Get data from 74HC165
byte shiftRegister1 = shiftIn(KB_DATA, KB_CLK, LSBFIRST);
byte shiftRegister2 = shiftIn(KB_DATA, KB_CLK, LSBFIRST);
keys = (shiftRegister1 << 8) + shiftRegister2;
// Print to serial monitor
// Serial.print (shiftRegister1, BIN);
// Serial.print ("X");
// Serial.println (shiftRegister2, BIN);
if (!Throttle::isWithinTimespanMs(lastPressTime, 500)) {
quickPress = 0;
}
if (firstTime) {
// This is the first time the OSThread library has called this function, so do port setup
firstTime = 0;
pinMode(KB_LOAD, OUTPUT);
pinMode(KB_CLK, OUTPUT);
pinMode(KB_DATA, INPUT);
digitalWrite(KB_LOAD, HIGH);
digitalWrite(KB_CLK, LOW);
prevKeys = 0b1111111111111111;
LOG_DEBUG("Serial Keyboard setup");
}
if (keys < prevKeys) { // a new key has been pressed (and not released), doesn't works for multiple presses at once
// but shouldn't be a limitation
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
// SELECT OR SEND OR CANCEL EVENT
if (!(shiftRegister2 & (1 << 3))) {
if (shift > 0) {
e.inputEvent = INPUT_BROKER_ANYKEY; // REQUIRED
e.kbchar = 0x09; // TAB
shift = 0; // reset shift after TAB
} else {
e.inputEvent = INPUT_BROKER_LEFT;
}
} else if (!(shiftRegister2 & (1 << 2))) {
if (shift > 0) {
e.inputEvent = INPUT_BROKER_ANYKEY; // REQUIRED
e.kbchar = 0x09; // TAB
shift = 0; // reset shift after TAB
} else {
e.inputEvent = INPUT_BROKER_RIGHT;
}
e.kbchar = 0;
} else if (!(shiftRegister2 & (1 << 1))) {
e.inputEvent = INPUT_BROKER_SELECT;
} else if (!(shiftRegister2 & (1 << 0))) {
e.inputEvent = INPUT_BROKER_CANCEL;
}
if (INPUTBROKER_SERIAL_TYPE == 1) { // Chatter V1.0 & V2.0 keypads
// scan for keypresses
// Write pulse to load pin
digitalWrite(KB_LOAD, LOW);
delayMicroseconds(5);
digitalWrite(KB_LOAD, HIGH);
delayMicroseconds(5);
// TEXT INPUT EVENT
else if (!(shiftRegister1 & (1 << 4))) {
keyPressed = 0;
} else if (!(shiftRegister1 & (1 << 3))) {
keyPressed = 1;
} else if (!(shiftRegister2 & (1 << 4))) {
keyPressed = 2;
} else if (!(shiftRegister1 & (1 << 5))) {
keyPressed = 3;
} else if (!(shiftRegister1 & (1 << 2))) {
keyPressed = 4;
} else if (!(shiftRegister2 & (1 << 5))) {
keyPressed = 5;
} else if (!(shiftRegister1 & (1 << 6))) {
keyPressed = 6;
} else if (!(shiftRegister1 & (1 << 1))) {
keyPressed = 7;
} else if (!(shiftRegister2 & (1 << 6))) {
keyPressed = 8;
} else if (!(shiftRegister1 & (1 << 0))) {
keyPressed = 9;
}
// BACKSPACE or TAB
else if (!(shiftRegister1 & (1 << 7))) {
if (shift == 0 || shift == 2) { // BACKSPACE
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
} else { // shift = 1 => TAB
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x09;
}
}
// SHIFT
else if (!(shiftRegister2 & (1 << 7))) {
keyPressed = 10;
}
// Get data from 74HC165
byte shiftRegister1 = shiftIn(KB_DATA, KB_CLK, LSBFIRST);
byte shiftRegister2 = shiftIn(KB_DATA, KB_CLK, LSBFIRST);
keys = (shiftRegister1 << 8) + shiftRegister2;
// Print to serial monitor
// Serial.print (shiftRegister1, BIN);
// Serial.print ("X");
// Serial.println (shiftRegister2, BIN);
if (!Throttle::isWithinTimespanMs(lastPressTime, 500)) {
if (keyPressed < 11) {
if (keyPressed == lastKeyPressed && millis() - lastPressTime < 500) {
quickPress += 1;
if (quickPress > 3) {
quickPress = 0;
}
}
if (keys < prevKeys) { // a new key has been pressed (and not released), doesn't works for multiple presses at once but
// shouldn't be a limitation
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
// SELECT OR SEND OR CANCEL EVENT
if (!(shiftRegister2 & (1 << 3))) {
if (shift > 0) {
e.inputEvent = INPUT_BROKER_ANYKEY; // REQUIRED
e.kbchar = 0x09; // TAB
shift = 0; // reset shift after TAB
} else {
e.inputEvent = INPUT_BROKER_LEFT;
}
} else if (!(shiftRegister2 & (1 << 2))) {
if (shift > 0) {
e.inputEvent = INPUT_BROKER_ANYKEY; // REQUIRED
e.kbchar = 0x09; // TAB
shift = 0; // reset shift after TAB
} else {
e.inputEvent = INPUT_BROKER_RIGHT;
}
e.kbchar = 0;
} else if (!(shiftRegister2 & (1 << 1))) {
e.inputEvent = INPUT_BROKER_SELECT;
} else if (!(shiftRegister2 & (1 << 0))) {
e.inputEvent = INPUT_BROKER_CANCEL;
}
// TEXT INPUT EVENT
else if (!(shiftRegister1 & (1 << 4))) {
keyPressed = 0;
} else if (!(shiftRegister1 & (1 << 3))) {
keyPressed = 1;
} else if (!(shiftRegister2 & (1 << 4))) {
keyPressed = 2;
} else if (!(shiftRegister1 & (1 << 5))) {
keyPressed = 3;
} else if (!(shiftRegister1 & (1 << 2))) {
keyPressed = 4;
} else if (!(shiftRegister2 & (1 << 5))) {
keyPressed = 5;
} else if (!(shiftRegister1 & (1 << 6))) {
keyPressed = 6;
} else if (!(shiftRegister1 & (1 << 1))) {
keyPressed = 7;
} else if (!(shiftRegister2 & (1 << 6))) {
keyPressed = 8;
} else if (!(shiftRegister1 & (1 << 0))) {
keyPressed = 9;
}
// BACKSPACE or TAB
else if (!(shiftRegister1 & (1 << 7))) {
if (shift == 0 || shift == 2) { // BACKSPACE
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
} else { // shift = 1 => TAB
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x09;
}
}
// SHIFT
else if (!(shiftRegister2 & (1 << 7))) {
keyPressed = 10;
}
if (keyPressed < 11) {
if (keyPressed == lastKeyPressed && millis() - lastPressTime < 500) {
quickPress += 1;
if (quickPress > 3) {
quickPress = 0;
}
}
if (keyPressed != lastKeyPressed) {
quickPress = 0;
}
if (keyPressed < 10) { // if it's a letter
if (keyPressed == lastKeyPressed && millis() - lastPressTime < 500) {
erase();
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = char(KeyMap[shift][quickPress][keyPressed]);
} else { // then it's shift
shift += 1;
if (shift > 2) {
shift = 0;
}
}
lastPressTime = millis();
lastKeyPressed = keyPressed;
keyPressed = 13;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
if (keyPressed != lastKeyPressed) {
quickPress = 0;
}
prevKeys = keys;
if (keyPressed < 10) { // if it's a letter
if (keyPressed == lastKeyPressed && millis() - lastPressTime < 500) {
erase();
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = char(KeyMap[shift][quickPress][keyPressed]);
} else { // then it's shift
shift += 1;
if (shift > 2) {
shift = 0;
}
}
lastPressTime = millis();
lastKeyPressed = keyPressed;
keyPressed = 13;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
}
return 50;
prevKeys = keys;
}
return 50;
}
#endif // INPUTBROKER_SERIAL_TYPE

View File

@@ -3,27 +3,26 @@
#include "InputBroker.h"
#include "concurrency/OSThread.h"
class SerialKeyboard : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit SerialKeyboard(const char *name);
class SerialKeyboard : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit SerialKeyboard(const char *name);
uint8_t getShift() const { return shift; }
uint8_t getShift() const { return shift; }
protected:
virtual int32_t runOnce() override;
void erase();
protected:
virtual int32_t runOnce() override;
void erase();
private:
const char *_originName;
bool firstTime = 1;
int prevKeys = 0;
int keys = 0;
int shift = 0;
int keyPressed = 13;
int lastKeyPressed = 13;
int quickPress = 0;
unsigned long lastPressTime = 0;
private:
const char *_originName;
bool firstTime = 1;
int prevKeys = 0;
int keys = 0;
int shift = 0;
int keyPressed = 13;
int lastKeyPressed = 13;
int quickPress = 0;
unsigned long lastPressTime = 0;
};
extern SerialKeyboard *globalSerialKeyboard;

View File

@@ -8,14 +8,13 @@ SerialKeyboardImpl *aSerialKeyboardImpl;
SerialKeyboardImpl::SerialKeyboardImpl() : SerialKeyboard("serialKB") {}
void SerialKeyboardImpl::init()
{
if (!INPUTBROKER_SERIAL_TYPE) {
disable();
return;
}
void SerialKeyboardImpl::init() {
if (!INPUTBROKER_SERIAL_TYPE) {
disable();
return;
}
inputBroker->registerSource(this);
inputBroker->registerSource(this);
}
#endif // INPUTBROKER_SERIAL_TYPE

View File

@@ -9,11 +9,10 @@
* to your device as you wish, but you always need to have separate event
* handlers, thus you need to have a RotaryEncoderInterrupt implementation.
*/
class SerialKeyboardImpl : public SerialKeyboard
{
public:
SerialKeyboardImpl();
void init();
class SerialKeyboardImpl : public SerialKeyboard {
public:
SerialKeyboardImpl();
void init();
};
extern SerialKeyboardImpl *aSerialKeyboardImpl;

View File

@@ -44,94 +44,88 @@ static unsigned char TCA8418LongPressMap[_TCA8418_NUM_KEYS] = {
TCA8418Keyboard::TCA8418Keyboard()
: TCA8418KeyboardBase(_TCA8418_ROWS, _TCA8418_COLS), last_key(-1), next_key(-1), last_tap(0L), char_idx(0), tap_interval(0),
should_backspace(false)
{
should_backspace(false) {}
void TCA8418Keyboard::reset() {
TCA8418KeyboardBase::reset();
// Set COL9 as GPIO output
writeRegister(TCA8418_REG_GPIO_DIR_3, 0x02);
// Switch off keyboard backlight (COL9 = LOW)
writeRegister(TCA8418_REG_GPIO_DAT_OUT_3, 0x00);
}
void TCA8418Keyboard::reset()
{
TCA8418KeyboardBase::reset();
void TCA8418Keyboard::pressed(uint8_t key) {
if (state == Init || state == Busy) {
return;
}
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
// Set COL9 as GPIO output
writeRegister(TCA8418_REG_GPIO_DIR_3, 0x02);
// Switch off keyboard backlight (COL9 = LOW)
writeRegister(TCA8418_REG_GPIO_DAT_OUT_3, 0x00);
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
// Compute key index based on dynamic row/column
next_key = row * _TCA8418_COLS + col;
// LOG_DEBUG("TCA8418: Key %u -> Next Key %u", key, next_key);
state = Held;
uint32_t now = millis();
tap_interval = now - last_tap;
if (tap_interval < 0) {
// Long running, millis has overflowed.
last_tap = 0;
state = Busy;
return;
}
// Check if the key is the same as the last one or if the time interval has passed
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0; // Reset char index if new key or long press
should_backspace = false; // dont backspace on new key
} else {
char_idx += 1; // Cycle through characters if same key pressed
should_backspace = true; // allow backspace on same key
}
// Store the current key as the last key
last_key = next_key;
last_tap = now;
}
void TCA8418Keyboard::pressed(uint8_t key)
{
if (state == Init || state == Busy) {
return;
}
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
void TCA8418Keyboard::released() {
if (state != Held) {
return;
}
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
// Compute key index based on dynamic row/column
next_key = row * _TCA8418_COLS + col;
// LOG_DEBUG("TCA8418: Key %u -> Next Key %u", key, next_key);
state = Held;
uint32_t now = millis();
tap_interval = now - last_tap;
if (tap_interval < 0) {
// Long running, millis has overflowed.
last_tap = 0;
state = Busy;
return;
}
// Check if the key is the same as the last one or if the time interval has passed
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0; // Reset char index if new key or long press
should_backspace = false; // dont backspace on new key
} else {
char_idx += 1; // Cycle through characters if same key pressed
should_backspace = true; // allow backspace on same key
}
// Store the current key as the last key
last_key = next_key;
last_tap = now;
if (last_key < 0 || last_key > _TCA8418_NUM_KEYS) { // reset to idle if last_key out of bounds
last_key = -1;
state = Idle;
return;
}
uint32_t now = millis();
int32_t held_interval = now - last_tap;
last_tap = now;
if (tap_interval < _TCA8418_MULTI_TAP_THRESHOLD && should_backspace) {
queueEvent(BSP);
}
if (held_interval > _TCA8418_LONG_PRESS_THRESHOLD) {
queueEvent(TCA8418LongPressMap[last_key]);
// LOG_DEBUG("Long Press Key: %i Map: %i", last_key, TCA8418LongPressMap[last_key]);
} else {
queueEvent(TCA8418TapMap[last_key][(char_idx % TCA8418TapMod[last_key])]);
// LOG_DEBUG("Key Press: %i Index:%i if %i Map: %c", last_key, char_idx, TCA8418TapMod[last_key],
// TCA8418TapMap[last_key][(char_idx % TCA8418TapMod[last_key])]);
}
}
void TCA8418Keyboard::released()
{
if (state != Held) {
return;
}
if (last_key < 0 || last_key > _TCA8418_NUM_KEYS) { // reset to idle if last_key out of bounds
last_key = -1;
state = Idle;
return;
}
uint32_t now = millis();
int32_t held_interval = now - last_tap;
last_tap = now;
if (tap_interval < _TCA8418_MULTI_TAP_THRESHOLD && should_backspace) {
queueEvent(BSP);
}
if (held_interval > _TCA8418_LONG_PRESS_THRESHOLD) {
queueEvent(TCA8418LongPressMap[last_key]);
// LOG_DEBUG("Long Press Key: %i Map: %i", last_key, TCA8418LongPressMap[last_key]);
} else {
queueEvent(TCA8418TapMap[last_key][(char_idx % TCA8418TapMod[last_key])]);
// LOG_DEBUG("Key Press: %i Index:%i if %i Map: %c", last_key, char_idx, TCA8418TapMod[last_key],
// TCA8418TapMap[last_key][(char_idx % TCA8418TapMod[last_key])]);
}
}
void TCA8418Keyboard::setBacklight(bool on)
{
if (on) {
digitalWrite(TCA8418_COL9, HIGH);
} else {
digitalWrite(TCA8418_COL9, LOW);
}
void TCA8418Keyboard::setBacklight(bool on) {
if (on) {
digitalWrite(TCA8418_COL9, HIGH);
} else {
digitalWrite(TCA8418_COL9, LOW);
}
}

View File

@@ -3,21 +3,20 @@
/**
* @brief 3x4 keypad with 3 columns and 4 rows
*/
class TCA8418Keyboard : public TCA8418KeyboardBase
{
public:
TCA8418Keyboard();
void reset(void) override;
void setBacklight(bool on) override;
class TCA8418Keyboard : public TCA8418KeyboardBase {
public:
TCA8418Keyboard();
void reset(void) override;
void setBacklight(bool on) override;
protected:
void pressed(uint8_t key) override;
void released(void) override;
protected:
void pressed(uint8_t key) override;
void released(void) override;
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
bool should_backspace;
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
bool should_backspace;
};

View File

@@ -32,346 +32,314 @@
#define _TCA8418_REG_LCK_EC_KLEC_0 0x01 // Key event count bit 0
TCA8418KeyboardBase::TCA8418KeyboardBase(uint8_t rows, uint8_t columns)
: rows(rows), columns(columns), state(Init), queue(""), m_wire(nullptr), m_addr(0), readCallback(nullptr),
writeCallback(nullptr)
{
: rows(rows), columns(columns), state(Init), queue(""), m_wire(nullptr), m_addr(0), readCallback(nullptr), writeCallback(nullptr) {}
void TCA8418KeyboardBase::begin(uint8_t addr, TwoWire *wire) {
m_addr = addr;
m_wire = wire;
m_wire->begin();
reset();
}
void TCA8418KeyboardBase::begin(uint8_t addr, TwoWire *wire)
{
m_addr = addr;
m_wire = wire;
m_wire->begin();
reset();
void TCA8418KeyboardBase::begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr) {
m_addr = addr;
m_wire = nullptr;
writeCallback = w;
readCallback = r;
reset();
}
void TCA8418KeyboardBase::begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr)
{
m_addr = addr;
m_wire = nullptr;
writeCallback = w;
readCallback = r;
reset();
void TCA8418KeyboardBase::reset() {
LOG_DEBUG("TCA8418 Reset");
// GPIO
// set default all GIO pins to INPUT
writeRegister(TCA8418_REG_GPIO_DIR_1, 0x00);
writeRegister(TCA8418_REG_GPIO_DIR_2, 0x00);
writeRegister(TCA8418_REG_GPIO_DIR_3, 0x00);
// add all pins to key events
writeRegister(TCA8418_REG_GPI_EM_1, 0xFF);
writeRegister(TCA8418_REG_GPI_EM_2, 0xFF);
writeRegister(TCA8418_REG_GPI_EM_3, 0xFF);
// set all pins to FALLING interrupts
writeRegister(TCA8418_REG_GPIO_INT_LVL_1, 0x00);
writeRegister(TCA8418_REG_GPIO_INT_LVL_2, 0x00);
writeRegister(TCA8418_REG_GPIO_INT_LVL_3, 0x00);
// add all pins to interrupts
writeRegister(TCA8418_REG_GPIO_INT_EN_1, 0xFF);
writeRegister(TCA8418_REG_GPIO_INT_EN_2, 0xFF);
writeRegister(TCA8418_REG_GPIO_INT_EN_3, 0xFF);
// Set keyboard matrix size
matrix(rows, columns);
enableDebounce();
flush();
state = Idle;
}
void TCA8418KeyboardBase::reset()
{
LOG_DEBUG("TCA8418 Reset");
// GPIO
// set default all GIO pins to INPUT
writeRegister(TCA8418_REG_GPIO_DIR_1, 0x00);
writeRegister(TCA8418_REG_GPIO_DIR_2, 0x00);
writeRegister(TCA8418_REG_GPIO_DIR_3, 0x00);
bool TCA8418KeyboardBase::matrix(uint8_t rows, uint8_t columns) {
if (rows < 1 || rows > 8 || columns < 1 || columns > 10)
return false;
// add all pins to key events
writeRegister(TCA8418_REG_GPI_EM_1, 0xFF);
writeRegister(TCA8418_REG_GPI_EM_2, 0xFF);
writeRegister(TCA8418_REG_GPI_EM_3, 0xFF);
// Setup the keypad matrix.
uint8_t mask = 0x00;
for (int r = 0; r < rows; r++) {
mask <<= 1;
mask |= 1;
}
writeRegister(TCA8418_REG_KP_GPIO_1, mask);
// set all pins to FALLING interrupts
writeRegister(TCA8418_REG_GPIO_INT_LVL_1, 0x00);
writeRegister(TCA8418_REG_GPIO_INT_LVL_2, 0x00);
writeRegister(TCA8418_REG_GPIO_INT_LVL_3, 0x00);
mask = 0x00;
for (int c = 0; c < columns && c < 8; c++) {
mask <<= 1;
mask |= 1;
}
writeRegister(TCA8418_REG_KP_GPIO_2, mask);
// add all pins to interrupts
writeRegister(TCA8418_REG_GPIO_INT_EN_1, 0xFF);
writeRegister(TCA8418_REG_GPIO_INT_EN_2, 0xFF);
writeRegister(TCA8418_REG_GPIO_INT_EN_3, 0xFF);
if (columns > 8) {
if (columns == 9)
mask = 0x01;
else
mask = 0x03;
writeRegister(TCA8418_REG_KP_GPIO_3, mask);
}
// Set keyboard matrix size
matrix(rows, columns);
enableDebounce();
flush();
state = Idle;
return true;
}
bool TCA8418KeyboardBase::matrix(uint8_t rows, uint8_t columns)
{
if (rows < 1 || rows > 8 || columns < 1 || columns > 10)
return false;
// Setup the keypad matrix.
uint8_t mask = 0x00;
for (int r = 0; r < rows; r++) {
mask <<= 1;
mask |= 1;
}
writeRegister(TCA8418_REG_KP_GPIO_1, mask);
mask = 0x00;
for (int c = 0; c < columns && c < 8; c++) {
mask <<= 1;
mask |= 1;
}
writeRegister(TCA8418_REG_KP_GPIO_2, mask);
if (columns > 8) {
if (columns == 9)
mask = 0x01;
else
mask = 0x03;
writeRegister(TCA8418_REG_KP_GPIO_3, mask);
}
return true;
uint8_t TCA8418KeyboardBase::keyCount() const {
uint8_t eventCount = readRegister(TCA8418_REG_KEY_LCK_EC);
eventCount &= 0x0F; // lower 4 bits only
return eventCount;
}
uint8_t TCA8418KeyboardBase::keyCount() const
{
uint8_t eventCount = readRegister(TCA8418_REG_KEY_LCK_EC);
eventCount &= 0x0F; // lower 4 bits only
return eventCount;
bool TCA8418KeyboardBase::hasEvent() const { return queue.length() > 0; }
void TCA8418KeyboardBase::queueEvent(char next) {
if (next == NONE) {
return;
}
queue.concat(next);
}
bool TCA8418KeyboardBase::hasEvent() const
{
return queue.length() > 0;
char TCA8418KeyboardBase::dequeueEvent() {
if (queue.length() < 1) {
return NONE;
}
char next = queue.charAt(0);
queue.remove(0, 1);
return next;
}
void TCA8418KeyboardBase::queueEvent(char next)
{
if (next == NONE) {
return;
}
queue.concat(next);
}
char TCA8418KeyboardBase::dequeueEvent()
{
if (queue.length() < 1) {
return NONE;
}
char next = queue.charAt(0);
queue.remove(0, 1);
return next;
}
void TCA8418KeyboardBase::trigger()
{
if (keyCount() == 0) {
return;
}
if (state != Init) {
// Read the key register
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A);
uint8_t key = k & 0x7F;
if (k & 0x80) {
if (state == Idle)
pressed(key);
return;
} else {
if (state == Held) {
released();
}
state = Idle;
return;
}
void TCA8418KeyboardBase::trigger() {
if (keyCount() == 0) {
return;
}
if (state != Init) {
// Read the key register
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A);
uint8_t key = k & 0x7F;
if (k & 0x80) {
if (state == Idle)
pressed(key);
return;
} else {
reset();
if (state == Held) {
released();
}
state = Idle;
return;
}
} else {
reset();
}
}
void TCA8418KeyboardBase::pressed(uint8_t key)
{
// must be defined in derived class
LOG_ERROR("pressed() not implemented in derived class");
void TCA8418KeyboardBase::pressed(uint8_t key) {
// must be defined in derived class
LOG_ERROR("pressed() not implemented in derived class");
}
void TCA8418KeyboardBase::released()
{
// must be defined in derived class
LOG_ERROR("released() not implemented in derived class");
void TCA8418KeyboardBase::released() {
// must be defined in derived class
LOG_ERROR("released() not implemented in derived class");
}
uint8_t TCA8418KeyboardBase::flush()
{
// Flush key events
uint8_t count = 0;
while (readRegister(TCA8418_REG_KEY_EVENT_A) != 0)
count++;
uint8_t TCA8418KeyboardBase::flush() {
// Flush key events
uint8_t count = 0;
while (readRegister(TCA8418_REG_KEY_EVENT_A) != 0)
count++;
// Flush gpio events
readRegister(TCA8418_REG_GPIO_INT_STAT_1);
readRegister(TCA8418_REG_GPIO_INT_STAT_2);
readRegister(TCA8418_REG_GPIO_INT_STAT_3);
// Flush gpio events
readRegister(TCA8418_REG_GPIO_INT_STAT_1);
readRegister(TCA8418_REG_GPIO_INT_STAT_2);
readRegister(TCA8418_REG_GPIO_INT_STAT_3);
// Clear INT_STAT register
writeRegister(TCA8418_REG_INT_STAT, 3);
return count;
// Clear INT_STAT register
writeRegister(TCA8418_REG_INT_STAT, 3);
return count;
}
void TCA8418KeyboardBase::clearInt()
{
writeRegister(TCA8418_REG_INT_STAT, 3);
void TCA8418KeyboardBase::clearInt() { writeRegister(TCA8418_REG_INT_STAT, 3); }
uint8_t TCA8418KeyboardBase::digitalRead(uint8_t pinnum) const {
if (pinnum > TCA8418_COL9)
return 0xFF;
uint8_t reg = TCA8418_REG_GPIO_DAT_STAT_1 + pinnum / 8;
uint8_t mask = (1 << (pinnum % 8));
// Level 0 = low other = high
uint8_t value = readRegister(reg);
if (value & mask)
return HIGH;
return LOW;
}
uint8_t TCA8418KeyboardBase::digitalRead(uint8_t pinnum) const
{
if (pinnum > TCA8418_COL9)
return 0xFF;
bool TCA8418KeyboardBase::digitalWrite(uint8_t pinnum, uint8_t level) {
if (pinnum > TCA8418_COL9)
return false;
uint8_t reg = TCA8418_REG_GPIO_DAT_STAT_1 + pinnum / 8;
uint8_t mask = (1 << (pinnum % 8));
uint8_t reg = TCA8418_REG_GPIO_DAT_OUT_1 + pinnum / 8;
uint8_t mask = (1 << (pinnum % 8));
// Level 0 = low other = high
uint8_t value = readRegister(reg);
if (value & mask)
return HIGH;
return LOW;
}
bool TCA8418KeyboardBase::digitalWrite(uint8_t pinnum, uint8_t level)
{
if (pinnum > TCA8418_COL9)
return false;
uint8_t reg = TCA8418_REG_GPIO_DAT_OUT_1 + pinnum / 8;
uint8_t mask = (1 << (pinnum % 8));
// Level 0 = low other = high
uint8_t value = readRegister(reg);
if (level == LOW)
value &= ~mask;
else
value |= mask;
writeRegister(reg, value);
return true;
}
bool TCA8418KeyboardBase::pinMode(uint8_t pinnum, uint8_t mode)
{
if (pinnum > TCA8418_COL9)
return false;
uint8_t idx = pinnum / 8;
uint8_t reg = TCA8418_REG_GPIO_DIR_1 + idx;
uint8_t mask = (1 << (pinnum % 8));
// Mode 0 = input 1 = output
uint8_t value = readRegister(reg);
if (mode == OUTPUT)
value |= mask;
else
value &= ~mask;
writeRegister(reg, value);
// Pullup 0 = enabled 1 = disabled
reg = TCA8418_REG_GPIO_PULL_1 + idx;
value = readRegister(reg);
if (mode == INPUT_PULLUP)
value &= ~mask;
else
value |= mask;
writeRegister(reg, value);
return true;
}
bool TCA8418KeyboardBase::pinIRQMode(uint8_t pinnum, uint8_t mode)
{
if (pinnum > TCA8418_COL9)
return false;
if ((mode != RISING) && (mode != FALLING))
return false;
// Mode 0 = falling 1 = rising
uint8_t idx = pinnum / 8;
uint8_t reg = TCA8418_REG_GPIO_INT_LVL_1 + idx;
uint8_t mask = (1 << (pinnum % 8));
uint8_t value = readRegister(reg);
if (mode == RISING)
value |= mask;
else
value &= ~mask;
writeRegister(reg, value);
// Enable interrupt
reg = TCA8418_REG_GPIO_INT_EN_1 + idx;
value = readRegister(reg);
// Level 0 = low other = high
uint8_t value = readRegister(reg);
if (level == LOW)
value &= ~mask;
else
value |= mask;
writeRegister(reg, value);
return true;
writeRegister(reg, value);
return true;
}
void TCA8418KeyboardBase::enableInterrupts()
{
uint8_t value = readRegister(TCA8418_REG_CFG);
value |= (_TCA8418_REG_CFG_GPI_IEN | _TCA8418_REG_CFG_KE_IEN);
writeRegister(TCA8418_REG_CFG, value);
};
bool TCA8418KeyboardBase::pinMode(uint8_t pinnum, uint8_t mode) {
if (pinnum > TCA8418_COL9)
return false;
void TCA8418KeyboardBase::disableInterrupts()
{
uint8_t value = readRegister(TCA8418_REG_CFG);
value &= ~(_TCA8418_REG_CFG_GPI_IEN | _TCA8418_REG_CFG_KE_IEN);
writeRegister(TCA8418_REG_CFG, value);
};
uint8_t idx = pinnum / 8;
uint8_t reg = TCA8418_REG_GPIO_DIR_1 + idx;
uint8_t mask = (1 << (pinnum % 8));
void TCA8418KeyboardBase::enableMatrixOverflow()
{
uint8_t value = readRegister(TCA8418_REG_CFG);
value |= _TCA8418_REG_CFG_OVR_FLOW_M;
writeRegister(TCA8418_REG_CFG, value);
};
// Mode 0 = input 1 = output
uint8_t value = readRegister(reg);
if (mode == OUTPUT)
value |= mask;
else
value &= ~mask;
writeRegister(reg, value);
void TCA8418KeyboardBase::disableMatrixOverflow()
{
uint8_t value = readRegister(TCA8418_REG_CFG);
value &= ~_TCA8418_REG_CFG_OVR_FLOW_M;
writeRegister(TCA8418_REG_CFG, value);
};
// Pullup 0 = enabled 1 = disabled
reg = TCA8418_REG_GPIO_PULL_1 + idx;
value = readRegister(reg);
if (mode == INPUT_PULLUP)
value &= ~mask;
else
value |= mask;
writeRegister(reg, value);
void TCA8418KeyboardBase::enableDebounce()
{
writeRegister(TCA8418_REG_DEBOUNCE_DIS_1, 0x00);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_2, 0x00);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_3, 0x00);
return true;
}
void TCA8418KeyboardBase::disableDebounce()
{
writeRegister(TCA8418_REG_DEBOUNCE_DIS_1, 0xFF);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_2, 0xFF);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_3, 0xFF);
bool TCA8418KeyboardBase::pinIRQMode(uint8_t pinnum, uint8_t mode) {
if (pinnum > TCA8418_COL9)
return false;
if ((mode != RISING) && (mode != FALLING))
return false;
// Mode 0 = falling 1 = rising
uint8_t idx = pinnum / 8;
uint8_t reg = TCA8418_REG_GPIO_INT_LVL_1 + idx;
uint8_t mask = (1 << (pinnum % 8));
uint8_t value = readRegister(reg);
if (mode == RISING)
value |= mask;
else
value &= ~mask;
writeRegister(reg, value);
// Enable interrupt
reg = TCA8418_REG_GPIO_INT_EN_1 + idx;
value = readRegister(reg);
value |= mask;
writeRegister(reg, value);
return true;
}
void TCA8418KeyboardBase::enableInterrupts() {
uint8_t value = readRegister(TCA8418_REG_CFG);
value |= (_TCA8418_REG_CFG_GPI_IEN | _TCA8418_REG_CFG_KE_IEN);
writeRegister(TCA8418_REG_CFG, value);
};
void TCA8418KeyboardBase::disableInterrupts() {
uint8_t value = readRegister(TCA8418_REG_CFG);
value &= ~(_TCA8418_REG_CFG_GPI_IEN | _TCA8418_REG_CFG_KE_IEN);
writeRegister(TCA8418_REG_CFG, value);
};
void TCA8418KeyboardBase::enableMatrixOverflow() {
uint8_t value = readRegister(TCA8418_REG_CFG);
value |= _TCA8418_REG_CFG_OVR_FLOW_M;
writeRegister(TCA8418_REG_CFG, value);
};
void TCA8418KeyboardBase::disableMatrixOverflow() {
uint8_t value = readRegister(TCA8418_REG_CFG);
value &= ~_TCA8418_REG_CFG_OVR_FLOW_M;
writeRegister(TCA8418_REG_CFG, value);
};
void TCA8418KeyboardBase::enableDebounce() {
writeRegister(TCA8418_REG_DEBOUNCE_DIS_1, 0x00);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_2, 0x00);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_3, 0x00);
}
void TCA8418KeyboardBase::disableDebounce() {
writeRegister(TCA8418_REG_DEBOUNCE_DIS_1, 0xFF);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_2, 0xFF);
writeRegister(TCA8418_REG_DEBOUNCE_DIS_3, 0xFF);
}
void TCA8418KeyboardBase::setBacklight(bool on) {}
uint8_t TCA8418KeyboardBase::readRegister(uint8_t reg) const
{
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
uint8_t TCA8418KeyboardBase::readRegister(uint8_t reg) const {
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(reg);
m_wire->endTransmission();
m_wire->requestFrom(m_addr, (uint8_t)1);
if (m_wire->available() < 1)
return 0;
m_wire->requestFrom(m_addr, (uint8_t)1);
if (m_wire->available() < 1)
return 0;
return m_wire->read();
}
if (readCallback) {
uint8_t data;
readCallback(m_addr, reg, &data, 1);
return data;
}
return 0;
return m_wire->read();
}
if (readCallback) {
uint8_t data;
readCallback(m_addr, reg, &data, 1);
return data;
}
return 0;
}
void TCA8418KeyboardBase::writeRegister(uint8_t reg, uint8_t value)
{
uint8_t data[2];
data[0] = reg;
data[1] = value;
void TCA8418KeyboardBase::writeRegister(uint8_t reg, uint8_t value) {
uint8_t data[2];
data[0] = reg;
data[1] = value;
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(data, sizeof(uint8_t) * 2);
m_wire->endTransmission();
}
if (writeCallback) {
writeCallback(m_addr, data[0], &(data[1]), 1);
}
if (m_wire) {
m_wire->beginTransmission(m_addr);
m_wire->write(data, sizeof(uint8_t) * 2);
m_wire->endTransmission();
}
if (writeCallback) {
writeCallback(m_addr, data[0], &(data[1]), 1);
}
}

View File

@@ -8,165 +8,164 @@
* and handling key states. It is designed to be extended for specific keyboard implementations.
* It supports both I2C communication and function pointers for custom I2C operations.
*/
class TCA8418KeyboardBase
{
public:
enum TCA8418Key : uint8_t {
NONE = 0x00,
BSP = 0x08,
TAB = 0x09,
SELECT = 0x0d,
ESC = 0x1b,
REBOOT = 0x90,
LEFT = 0xb4,
UP = 0xb5,
DOWN = 0xb6,
RIGHT = 0xb7,
BT_TOGGLE = 0xAA,
GPS_TOGGLE = 0x9E,
MUTE_TOGGLE = 0xAC,
SEND_PING = 0xAF,
BL_TOGGLE = 0xAB
};
class TCA8418KeyboardBase {
public:
enum TCA8418Key : uint8_t {
NONE = 0x00,
BSP = 0x08,
TAB = 0x09,
SELECT = 0x0d,
ESC = 0x1b,
REBOOT = 0x90,
LEFT = 0xb4,
UP = 0xb5,
DOWN = 0xb6,
RIGHT = 0xb7,
BT_TOGGLE = 0xAA,
GPS_TOGGLE = 0x9E,
MUTE_TOGGLE = 0xAC,
SEND_PING = 0xAF,
BL_TOGGLE = 0xAB
};
typedef uint8_t (*i2c_com_fptr_t)(uint8_t dev_addr, uint8_t reg_addr, uint8_t *data, uint8_t len);
typedef uint8_t (*i2c_com_fptr_t)(uint8_t dev_addr, uint8_t reg_addr, uint8_t *data, uint8_t len);
TCA8418KeyboardBase(uint8_t rows, uint8_t columns);
TCA8418KeyboardBase(uint8_t rows, uint8_t columns);
virtual void begin(uint8_t addr = TCA8418_KB_ADDR, TwoWire *wire = &Wire);
virtual void begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr = TCA8418_KB_ADDR);
virtual void begin(uint8_t addr = TCA8418_KB_ADDR, TwoWire *wire = &Wire);
virtual void begin(i2c_com_fptr_t r, i2c_com_fptr_t w, uint8_t addr = TCA8418_KB_ADDR);
virtual void reset(void);
void clearInt(void);
virtual void reset(void);
void clearInt(void);
virtual void trigger(void);
virtual void trigger(void);
virtual void setBacklight(bool on);
virtual void setBacklight(bool on);
// Key events available
virtual bool hasEvent(void) const;
virtual char dequeueEvent(void);
// Key events available
virtual bool hasEvent(void) const;
virtual char dequeueEvent(void);
protected:
enum KeyState { Init, Idle, Held, Busy };
protected:
enum KeyState { Init, Idle, Held, Busy };
enum TCA8418Register : uint8_t {
TCA8418_REG_RESERVED = 0x00,
TCA8418_REG_CFG = 0x01,
TCA8418_REG_INT_STAT = 0x02,
TCA8418_REG_KEY_LCK_EC = 0x03,
TCA8418_REG_KEY_EVENT_A = 0x04,
TCA8418_REG_KEY_EVENT_B = 0x05,
TCA8418_REG_KEY_EVENT_C = 0x06,
TCA8418_REG_KEY_EVENT_D = 0x07,
TCA8418_REG_KEY_EVENT_E = 0x08,
TCA8418_REG_KEY_EVENT_F = 0x09,
TCA8418_REG_KEY_EVENT_G = 0x0A,
TCA8418_REG_KEY_EVENT_H = 0x0B,
TCA8418_REG_KEY_EVENT_I = 0x0C,
TCA8418_REG_KEY_EVENT_J = 0x0D,
TCA8418_REG_KP_LCK_TIMER = 0x0E,
TCA8418_REG_UNLOCK_1 = 0x0F,
TCA8418_REG_UNLOCK_2 = 0x10,
TCA8418_REG_GPIO_INT_STAT_1 = 0x11,
TCA8418_REG_GPIO_INT_STAT_2 = 0x12,
TCA8418_REG_GPIO_INT_STAT_3 = 0x13,
TCA8418_REG_GPIO_DAT_STAT_1 = 0x14,
TCA8418_REG_GPIO_DAT_STAT_2 = 0x15,
TCA8418_REG_GPIO_DAT_STAT_3 = 0x16,
TCA8418_REG_GPIO_DAT_OUT_1 = 0x17,
TCA8418_REG_GPIO_DAT_OUT_2 = 0x18,
TCA8418_REG_GPIO_DAT_OUT_3 = 0x19,
TCA8418_REG_GPIO_INT_EN_1 = 0x1A,
TCA8418_REG_GPIO_INT_EN_2 = 0x1B,
TCA8418_REG_GPIO_INT_EN_3 = 0x1C,
TCA8418_REG_KP_GPIO_1 = 0x1D,
TCA8418_REG_KP_GPIO_2 = 0x1E,
TCA8418_REG_KP_GPIO_3 = 0x1F,
TCA8418_REG_GPI_EM_1 = 0x20,
TCA8418_REG_GPI_EM_2 = 0x21,
TCA8418_REG_GPI_EM_3 = 0x22,
TCA8418_REG_GPIO_DIR_1 = 0x23,
TCA8418_REG_GPIO_DIR_2 = 0x24,
TCA8418_REG_GPIO_DIR_3 = 0x25,
TCA8418_REG_GPIO_INT_LVL_1 = 0x26,
TCA8418_REG_GPIO_INT_LVL_2 = 0x27,
TCA8418_REG_GPIO_INT_LVL_3 = 0x28,
TCA8418_REG_DEBOUNCE_DIS_1 = 0x29,
TCA8418_REG_DEBOUNCE_DIS_2 = 0x2A,
TCA8418_REG_DEBOUNCE_DIS_3 = 0x2B,
TCA8418_REG_GPIO_PULL_1 = 0x2C,
TCA8418_REG_GPIO_PULL_2 = 0x2D,
TCA8418_REG_GPIO_PULL_3 = 0x2E
};
enum TCA8418Register : uint8_t {
TCA8418_REG_RESERVED = 0x00,
TCA8418_REG_CFG = 0x01,
TCA8418_REG_INT_STAT = 0x02,
TCA8418_REG_KEY_LCK_EC = 0x03,
TCA8418_REG_KEY_EVENT_A = 0x04,
TCA8418_REG_KEY_EVENT_B = 0x05,
TCA8418_REG_KEY_EVENT_C = 0x06,
TCA8418_REG_KEY_EVENT_D = 0x07,
TCA8418_REG_KEY_EVENT_E = 0x08,
TCA8418_REG_KEY_EVENT_F = 0x09,
TCA8418_REG_KEY_EVENT_G = 0x0A,
TCA8418_REG_KEY_EVENT_H = 0x0B,
TCA8418_REG_KEY_EVENT_I = 0x0C,
TCA8418_REG_KEY_EVENT_J = 0x0D,
TCA8418_REG_KP_LCK_TIMER = 0x0E,
TCA8418_REG_UNLOCK_1 = 0x0F,
TCA8418_REG_UNLOCK_2 = 0x10,
TCA8418_REG_GPIO_INT_STAT_1 = 0x11,
TCA8418_REG_GPIO_INT_STAT_2 = 0x12,
TCA8418_REG_GPIO_INT_STAT_3 = 0x13,
TCA8418_REG_GPIO_DAT_STAT_1 = 0x14,
TCA8418_REG_GPIO_DAT_STAT_2 = 0x15,
TCA8418_REG_GPIO_DAT_STAT_3 = 0x16,
TCA8418_REG_GPIO_DAT_OUT_1 = 0x17,
TCA8418_REG_GPIO_DAT_OUT_2 = 0x18,
TCA8418_REG_GPIO_DAT_OUT_3 = 0x19,
TCA8418_REG_GPIO_INT_EN_1 = 0x1A,
TCA8418_REG_GPIO_INT_EN_2 = 0x1B,
TCA8418_REG_GPIO_INT_EN_3 = 0x1C,
TCA8418_REG_KP_GPIO_1 = 0x1D,
TCA8418_REG_KP_GPIO_2 = 0x1E,
TCA8418_REG_KP_GPIO_3 = 0x1F,
TCA8418_REG_GPI_EM_1 = 0x20,
TCA8418_REG_GPI_EM_2 = 0x21,
TCA8418_REG_GPI_EM_3 = 0x22,
TCA8418_REG_GPIO_DIR_1 = 0x23,
TCA8418_REG_GPIO_DIR_2 = 0x24,
TCA8418_REG_GPIO_DIR_3 = 0x25,
TCA8418_REG_GPIO_INT_LVL_1 = 0x26,
TCA8418_REG_GPIO_INT_LVL_2 = 0x27,
TCA8418_REG_GPIO_INT_LVL_3 = 0x28,
TCA8418_REG_DEBOUNCE_DIS_1 = 0x29,
TCA8418_REG_DEBOUNCE_DIS_2 = 0x2A,
TCA8418_REG_DEBOUNCE_DIS_3 = 0x2B,
TCA8418_REG_GPIO_PULL_1 = 0x2C,
TCA8418_REG_GPIO_PULL_2 = 0x2D,
TCA8418_REG_GPIO_PULL_3 = 0x2E
};
// Pin IDs for matrix rows/columns
enum TCA8418PinId : uint8_t {
TCA8418_ROW0, // Pin ID for row 0
TCA8418_ROW1, // Pin ID for row 1
TCA8418_ROW2, // Pin ID for row 2
TCA8418_ROW3, // Pin ID for row 3
TCA8418_ROW4, // Pin ID for row 4
TCA8418_ROW5, // Pin ID for row 5
TCA8418_ROW6, // Pin ID for row 6
TCA8418_ROW7, // Pin ID for row 7
TCA8418_COL0, // Pin ID for column 0
TCA8418_COL1, // Pin ID for column 1
TCA8418_COL2, // Pin ID for column 2
TCA8418_COL3, // Pin ID for column 3
TCA8418_COL4, // Pin ID for column 4
TCA8418_COL5, // Pin ID for column 5
TCA8418_COL6, // Pin ID for column 6
TCA8418_COL7, // Pin ID for column 7
TCA8418_COL8, // Pin ID for column 8
TCA8418_COL9 // Pin ID for column 9
};
// Pin IDs for matrix rows/columns
enum TCA8418PinId : uint8_t {
TCA8418_ROW0, // Pin ID for row 0
TCA8418_ROW1, // Pin ID for row 1
TCA8418_ROW2, // Pin ID for row 2
TCA8418_ROW3, // Pin ID for row 3
TCA8418_ROW4, // Pin ID for row 4
TCA8418_ROW5, // Pin ID for row 5
TCA8418_ROW6, // Pin ID for row 6
TCA8418_ROW7, // Pin ID for row 7
TCA8418_COL0, // Pin ID for column 0
TCA8418_COL1, // Pin ID for column 1
TCA8418_COL2, // Pin ID for column 2
TCA8418_COL3, // Pin ID for column 3
TCA8418_COL4, // Pin ID for column 4
TCA8418_COL5, // Pin ID for column 5
TCA8418_COL6, // Pin ID for column 6
TCA8418_COL7, // Pin ID for column 7
TCA8418_COL8, // Pin ID for column 8
TCA8418_COL9 // Pin ID for column 9
};
virtual void pressed(uint8_t key);
virtual void released(void);
virtual void pressed(uint8_t key);
virtual void released(void);
virtual void queueEvent(char);
virtual void queueEvent(char);
virtual ~TCA8418KeyboardBase() {}
virtual ~TCA8418KeyboardBase() {}
protected:
// Set the size of the keypad matrix
// All other rows and columns are set as inputs.
bool matrix(uint8_t rows, uint8_t columns);
protected:
// Set the size of the keypad matrix
// All other rows and columns are set as inputs.
bool matrix(uint8_t rows, uint8_t columns);
uint8_t keyCount(void) const;
uint8_t keyCount(void) const;
// Flush all events in the FIFO buffer + GPIO events.
uint8_t flush(void);
// Flush all events in the FIFO buffer + GPIO events.
uint8_t flush(void);
// debounce keys.
void enableDebounce();
void disableDebounce();
// debounce keys.
void enableDebounce();
void disableDebounce();
// enable / disable interrupts for matrix and GPI pins
void enableInterrupts();
void disableInterrupts();
// enable / disable interrupts for matrix and GPI pins
void enableInterrupts();
void disableInterrupts();
// ignore key events when FIFO buffer is full or not.
void enableMatrixOverflow();
void disableMatrixOverflow();
// ignore key events when FIFO buffer is full or not.
void enableMatrixOverflow();
void disableMatrixOverflow();
uint8_t digitalRead(uint8_t pinnum) const;
bool digitalWrite(uint8_t pinnum, uint8_t level);
bool pinMode(uint8_t pinnum, uint8_t mode);
bool pinIRQMode(uint8_t pinnum, uint8_t mode); // MODE FALLING or RISING
uint8_t readRegister(uint8_t reg) const;
void writeRegister(uint8_t reg, uint8_t value);
uint8_t digitalRead(uint8_t pinnum) const;
bool digitalWrite(uint8_t pinnum, uint8_t level);
bool pinMode(uint8_t pinnum, uint8_t mode);
bool pinIRQMode(uint8_t pinnum, uint8_t mode); // MODE FALLING or RISING
uint8_t readRegister(uint8_t reg) const;
void writeRegister(uint8_t reg, uint8_t value);
protected:
uint8_t rows;
uint8_t columns;
KeyState state;
String queue;
protected:
uint8_t rows;
uint8_t columns;
KeyState state;
String queue;
private:
TwoWire *m_wire;
uint8_t m_addr;
i2c_com_fptr_t readCallback;
i2c_com_fptr_t writeCallback;
private:
TwoWire *m_wire;
uint8_t m_addr;
i2c_com_fptr_t readCallback;
i2c_com_fptr_t writeCallback;
};

View File

@@ -62,135 +62,123 @@ static unsigned char TDeckProTapMap[_TCA8418_NUM_KEYS][5] = {
};
TDeckProKeyboard::TDeckProKeyboard()
: TCA8418KeyboardBase(_TCA8418_ROWS, _TCA8418_COLS), modifierFlag(0), last_modifier_time(0), last_key(-1), next_key(-1),
last_tap(0L), char_idx(0), tap_interval(0)
{
}
: TCA8418KeyboardBase(_TCA8418_ROWS, _TCA8418_COLS), modifierFlag(0), last_modifier_time(0), last_key(-1), next_key(-1), last_tap(0L),
char_idx(0), tap_interval(0) {}
void TDeckProKeyboard::reset()
{
TCA8418KeyboardBase::reset();
pinMode(KB_BL_PIN, OUTPUT);
setBacklight(false);
void TDeckProKeyboard::reset() {
TCA8418KeyboardBase::reset();
pinMode(KB_BL_PIN, OUTPUT);
setBacklight(false);
}
// handle multi-key presses (shift and alt)
void TDeckProKeyboard::trigger()
{
uint8_t count = keyCount();
if (count == 0)
return;
for (uint8_t i = 0; i < count; ++i) {
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A + i);
uint8_t key = k & 0x7F;
if (k & 0x80) {
pressed(key);
} else {
released();
state = Idle;
}
}
}
void TDeckProKeyboard::pressed(uint8_t key)
{
if (state == Init || state == Busy) {
return;
}
if (modifierFlag && (millis() - last_modifier_time > _TCA8418_MULTI_TAP_THRESHOLD)) {
modifierFlag = 0;
}
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
next_key = row * _TCA8418_COLS + col;
state = Held;
uint32_t now = millis();
tap_interval = now - last_tap;
updateModifierFlag(next_key);
if (isModifierKey(next_key)) {
last_modifier_time = now;
}
if (tap_interval < 0) {
last_tap = 0;
state = Busy;
return;
}
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0;
void TDeckProKeyboard::trigger() {
uint8_t count = keyCount();
if (count == 0)
return;
for (uint8_t i = 0; i < count; ++i) {
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A + i);
uint8_t key = k & 0x7F;
if (k & 0x80) {
pressed(key);
} else {
char_idx += 1;
released();
state = Idle;
}
last_key = next_key;
last_tap = now;
}
}
void TDeckProKeyboard::released()
{
if (state != Held) {
return;
}
void TDeckProKeyboard::pressed(uint8_t key) {
if (state == Init || state == Busy) {
return;
}
if (modifierFlag && (millis() - last_modifier_time > _TCA8418_MULTI_TAP_THRESHOLD)) {
modifierFlag = 0;
}
if (last_key < 0 || last_key >= _TCA8418_NUM_KEYS) {
last_key = -1;
state = Idle;
return;
}
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
uint32_t now = millis();
last_tap = now;
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
if (TDeckProTapMap[last_key][modifierFlag % TDeckProTapMod[last_key]] == Key::BL_TOGGLE) {
toggleBacklight();
return;
}
next_key = row * _TCA8418_COLS + col;
state = Held;
queueEvent(TDeckProTapMap[last_key][modifierFlag % TDeckProTapMod[last_key]]);
if (isModifierKey(last_key) == false)
modifierFlag = 0;
uint32_t now = millis();
tap_interval = now - last_tap;
updateModifierFlag(next_key);
if (isModifierKey(next_key)) {
last_modifier_time = now;
}
if (tap_interval < 0) {
last_tap = 0;
state = Busy;
return;
}
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0;
} else {
char_idx += 1;
}
last_key = next_key;
last_tap = now;
}
void TDeckProKeyboard::setBacklight(bool on)
{
if (on) {
digitalWrite(KB_BL_PIN, HIGH);
} else {
digitalWrite(KB_BL_PIN, LOW);
}
void TDeckProKeyboard::released() {
if (state != Held) {
return;
}
if (last_key < 0 || last_key >= _TCA8418_NUM_KEYS) {
last_key = -1;
state = Idle;
return;
}
uint32_t now = millis();
last_tap = now;
if (TDeckProTapMap[last_key][modifierFlag % TDeckProTapMod[last_key]] == Key::BL_TOGGLE) {
toggleBacklight();
return;
}
queueEvent(TDeckProTapMap[last_key][modifierFlag % TDeckProTapMod[last_key]]);
if (isModifierKey(last_key) == false)
modifierFlag = 0;
}
void TDeckProKeyboard::toggleBacklight(void)
{
digitalWrite(KB_BL_PIN, !digitalRead(KB_BL_PIN));
void TDeckProKeyboard::setBacklight(bool on) {
if (on) {
digitalWrite(KB_BL_PIN, HIGH);
} else {
digitalWrite(KB_BL_PIN, LOW);
}
}
void TDeckProKeyboard::updateModifierFlag(uint8_t key)
{
if (key == modifierRightShiftKey) {
modifierFlag ^= modifierRightShift;
} else if (key == modifierLeftShiftKey) {
modifierFlag ^= modifierLeftShift;
} else if (key == modifierSymKey) {
modifierFlag ^= modifierSym;
} else if (key == modifierAltKey) {
modifierFlag ^= modifierAlt;
}
void TDeckProKeyboard::toggleBacklight(void) { digitalWrite(KB_BL_PIN, !digitalRead(KB_BL_PIN)); }
void TDeckProKeyboard::updateModifierFlag(uint8_t key) {
if (key == modifierRightShiftKey) {
modifierFlag ^= modifierRightShift;
} else if (key == modifierLeftShiftKey) {
modifierFlag ^= modifierLeftShift;
} else if (key == modifierSymKey) {
modifierFlag ^= modifierSym;
} else if (key == modifierAltKey) {
modifierFlag ^= modifierAlt;
}
}
bool TDeckProKeyboard::isModifierKey(uint8_t key)
{
return (key == modifierRightShiftKey || key == modifierLeftShiftKey || key == modifierAltKey || key == modifierSymKey);
bool TDeckProKeyboard::isModifierKey(uint8_t key) {
return (key == modifierRightShiftKey || key == modifierLeftShiftKey || key == modifierAltKey || key == modifierSymKey);
}
#endif // T_DECK_PRO

View File

@@ -1,27 +1,26 @@
#include "TCA8418KeyboardBase.h"
class TDeckProKeyboard : public TCA8418KeyboardBase
{
public:
TDeckProKeyboard();
void reset(void) override;
void trigger(void) override;
void setBacklight(bool on) override;
class TDeckProKeyboard : public TCA8418KeyboardBase {
public:
TDeckProKeyboard();
void reset(void) override;
void trigger(void) override;
void setBacklight(bool on) override;
protected:
void pressed(uint8_t key) override;
void released(void) override;
protected:
void pressed(uint8_t key) override;
void released(void) override;
void updateModifierFlag(uint8_t key);
bool isModifierKey(uint8_t key);
void toggleBacklight(void);
void updateModifierFlag(uint8_t key);
bool isModifierKey(uint8_t key);
void toggleBacklight(void);
private:
uint8_t modifierFlag; // Flag to indicate if a modifier key is pressed
uint32_t last_modifier_time; // Timestamp of the last modifier key press
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
private:
uint8_t modifierFlag; // Flag to indicate if a modifier key is pressed
uint32_t last_modifier_time; // Timestamp of the last modifier key press
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
};

View File

@@ -29,8 +29,7 @@ constexpr uint8_t modifierSymKey = 21 - 1;
constexpr uint8_t modifierSym = 0b0010;
// Num chars per key, Modulus for rotating through characters
static uint8_t TLoraPagerTapMod[_TCA8418_NUM_KEYS] = {3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3};
static uint8_t TLoraPagerTapMod[_TCA8418_NUM_KEYS] = {3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3};
static unsigned char TLoraPagerTapMap[_TCA8418_NUM_KEYS][3] = {{'q', 'Q', '1'},
{'w', 'W', '2'},
@@ -65,168 +64,156 @@ static unsigned char TLoraPagerTapMap[_TCA8418_NUM_KEYS][3] = {{'q', 'Q', '1'},
{' ', 0x00, Key::BL_TOGGLE}};
TLoraPagerKeyboard::TLoraPagerKeyboard()
: TCA8418KeyboardBase(_TCA8418_ROWS, _TCA8418_COLS), modifierFlag(0), last_modifier_time(0), last_key(-1), next_key(-1),
last_tap(0L), char_idx(0), tap_interval(0)
{
: TCA8418KeyboardBase(_TCA8418_ROWS, _TCA8418_COLS), modifierFlag(0), last_modifier_time(0), last_key(-1), next_key(-1), last_tap(0L),
char_idx(0), tap_interval(0) {
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
ledcAttach(KB_BL_PIN, LEDC_BACKLIGHT_FREQ, LEDC_BACKLIGHT_BIT_WIDTH);
ledcAttach(KB_BL_PIN, LEDC_BACKLIGHT_FREQ, LEDC_BACKLIGHT_BIT_WIDTH);
#else
ledcSetup(LEDC_BACKLIGHT_CHANNEL, LEDC_BACKLIGHT_FREQ, LEDC_BACKLIGHT_BIT_WIDTH);
ledcAttachPin(KB_BL_PIN, LEDC_BACKLIGHT_CHANNEL);
ledcSetup(LEDC_BACKLIGHT_CHANNEL, LEDC_BACKLIGHT_FREQ, LEDC_BACKLIGHT_BIT_WIDTH);
ledcAttachPin(KB_BL_PIN, LEDC_BACKLIGHT_CHANNEL);
#endif
reset();
reset();
}
void TLoraPagerKeyboard::reset(void)
{
TCA8418KeyboardBase::reset();
pinMode(KB_BL_PIN, OUTPUT);
digitalWrite(KB_BL_PIN, LOW);
setBacklight(false);
void TLoraPagerKeyboard::reset(void) {
TCA8418KeyboardBase::reset();
pinMode(KB_BL_PIN, OUTPUT);
digitalWrite(KB_BL_PIN, LOW);
setBacklight(false);
}
// handle multi-key presses (shift and alt)
void TLoraPagerKeyboard::trigger()
{
uint8_t count = keyCount();
if (count == 0)
return;
for (uint8_t i = 0; i < count; ++i) {
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A + i);
uint8_t key = k & 0x7F;
if (k & 0x80) {
pressed(key);
} else {
released();
state = Idle;
}
void TLoraPagerKeyboard::trigger() {
uint8_t count = keyCount();
if (count == 0)
return;
for (uint8_t i = 0; i < count; ++i) {
uint8_t k = readRegister(TCA8418_REG_KEY_EVENT_A + i);
uint8_t key = k & 0x7F;
if (k & 0x80) {
pressed(key);
} else {
released();
state = Idle;
}
}
}
void TLoraPagerKeyboard::setBacklight(bool on)
{
uint32_t _brightness = 0;
if (on)
_brightness = brightness;
void TLoraPagerKeyboard::setBacklight(bool on) {
uint32_t _brightness = 0;
if (on)
_brightness = brightness;
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
ledcWrite(KB_BL_PIN, _brightness);
ledcWrite(KB_BL_PIN, _brightness);
#else
ledcWrite(LEDC_BACKLIGHT_CHANNEL, _brightness);
ledcWrite(LEDC_BACKLIGHT_CHANNEL, _brightness);
#endif
}
void TLoraPagerKeyboard::pressed(uint8_t key)
{
if (state == Init || state == Busy) {
return;
}
if (config.device.buzzer_mode == meshtastic_Config_DeviceConfig_BuzzerMode_ALL_ENABLED ||
config.device.buzzer_mode == meshtastic_Config_DeviceConfig_BuzzerMode_SYSTEM_ONLY) {
hapticFeedback();
}
void TLoraPagerKeyboard::pressed(uint8_t key) {
if (state == Init || state == Busy) {
return;
}
if (config.device.buzzer_mode == meshtastic_Config_DeviceConfig_BuzzerMode_ALL_ENABLED ||
config.device.buzzer_mode == meshtastic_Config_DeviceConfig_BuzzerMode_SYSTEM_ONLY) {
hapticFeedback();
}
if (modifierFlag && (millis() - last_modifier_time > _TCA8418_MULTI_TAP_THRESHOLD)) {
modifierFlag = 0;
}
if (modifierFlag && (millis() - last_modifier_time > _TCA8418_MULTI_TAP_THRESHOLD)) {
modifierFlag = 0;
}
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
uint8_t next_key = 0;
int row = (key - 1) / 10;
int col = (key - 1) % 10;
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
if (row >= _TCA8418_ROWS || col >= _TCA8418_COLS) {
return; // Invalid key
}
next_key = row * _TCA8418_COLS + col;
state = Held;
next_key = row * _TCA8418_COLS + col;
state = Held;
uint32_t now = millis();
tap_interval = now - last_tap;
uint32_t now = millis();
tap_interval = now - last_tap;
updateModifierFlag(next_key);
if (isModifierKey(next_key)) {
last_modifier_time = now;
}
updateModifierFlag(next_key);
if (isModifierKey(next_key)) {
last_modifier_time = now;
}
if (tap_interval < 0) {
last_tap = 0;
state = Busy;
return;
}
if (tap_interval < 0) {
last_tap = 0;
state = Busy;
return;
}
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0;
} else {
char_idx += 1;
}
if (next_key != last_key || tap_interval > _TCA8418_MULTI_TAP_THRESHOLD) {
char_idx = 0;
} else {
char_idx += 1;
}
last_key = next_key;
last_tap = now;
last_key = next_key;
last_tap = now;
}
void TLoraPagerKeyboard::released()
{
if (state != Held) {
return;
}
void TLoraPagerKeyboard::released() {
if (state != Held) {
return;
}
if (last_key < 0 || last_key >= _TCA8418_NUM_KEYS) {
last_key = -1;
state = Idle;
return;
}
if (last_key < 0 || last_key >= _TCA8418_NUM_KEYS) {
last_key = -1;
state = Idle;
return;
}
uint32_t now = millis();
last_tap = now;
uint32_t now = millis();
last_tap = now;
if (TLoraPagerTapMap[last_key][modifierFlag % TLoraPagerTapMod[last_key]] == Key::BL_TOGGLE) {
toggleBacklight();
return;
}
if (TLoraPagerTapMap[last_key][modifierFlag % TLoraPagerTapMod[last_key]] == Key::BL_TOGGLE) {
toggleBacklight();
return;
}
queueEvent(TLoraPagerTapMap[last_key][modifierFlag % TLoraPagerTapMod[last_key]]);
if (isModifierKey(last_key) == false)
modifierFlag = 0;
queueEvent(TLoraPagerTapMap[last_key][modifierFlag % TLoraPagerTapMod[last_key]]);
if (isModifierKey(last_key) == false)
modifierFlag = 0;
}
void TLoraPagerKeyboard::hapticFeedback()
{
drv.setWaveform(0, 14); // strong buzz 100%
drv.setWaveform(1, 0); // end waveform
drv.go();
void TLoraPagerKeyboard::hapticFeedback() {
drv.setWaveform(0, 14); // strong buzz 100%
drv.setWaveform(1, 0); // end waveform
drv.go();
}
// toggle brightness of the backlight in three steps
void TLoraPagerKeyboard::toggleBacklight(bool off)
{
if (off) {
brightness = 0;
} else {
if (brightness == 0) {
brightness = 40;
} else if (brightness == 40) {
brightness = 127;
} else if (brightness >= 127) {
brightness = 0;
}
void TLoraPagerKeyboard::toggleBacklight(bool off) {
if (off) {
brightness = 0;
} else {
if (brightness == 0) {
brightness = 40;
} else if (brightness == 40) {
brightness = 127;
} else if (brightness >= 127) {
brightness = 0;
}
LOG_DEBUG("Toggle backlight: %d", brightness);
}
LOG_DEBUG("Toggle backlight: %d", brightness);
setBacklight(true);
setBacklight(true);
}
void TLoraPagerKeyboard::updateModifierFlag(uint8_t key)
{
if (key == modifierRightShiftKey) {
modifierFlag ^= modifierRightShift;
} else if (key == modifierSymKey) {
modifierFlag ^= modifierSym;
}
void TLoraPagerKeyboard::updateModifierFlag(uint8_t key) {
if (key == modifierRightShiftKey) {
modifierFlag ^= modifierRightShift;
} else if (key == modifierSymKey) {
modifierFlag ^= modifierSym;
}
}
bool TLoraPagerKeyboard::isModifierKey(uint8_t key)
{
return (key == modifierRightShiftKey || key == modifierSymKey);
}
bool TLoraPagerKeyboard::isModifierKey(uint8_t key) { return (key == modifierRightShiftKey || key == modifierSymKey); }
#endif

View File

@@ -1,30 +1,29 @@
#include "TCA8418KeyboardBase.h"
class TLoraPagerKeyboard : public TCA8418KeyboardBase
{
public:
TLoraPagerKeyboard();
void reset(void);
void trigger(void) override;
void setBacklight(bool on) override;
virtual ~TLoraPagerKeyboard() {}
class TLoraPagerKeyboard : public TCA8418KeyboardBase {
public:
TLoraPagerKeyboard();
void reset(void);
void trigger(void) override;
void setBacklight(bool on) override;
virtual ~TLoraPagerKeyboard() {}
protected:
void pressed(uint8_t key) override;
void released(void) override;
void hapticFeedback(void);
protected:
void pressed(uint8_t key) override;
void released(void) override;
void hapticFeedback(void);
void updateModifierFlag(uint8_t key);
bool isModifierKey(uint8_t key);
void toggleBacklight(bool off = false);
void updateModifierFlag(uint8_t key);
bool isModifierKey(uint8_t key);
void toggleBacklight(bool off = false);
private:
uint8_t modifierFlag; // Flag to indicate if a modifier key is pressed
uint32_t last_modifier_time; // Timestamp of the last modifier key press
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
uint32_t brightness = 0;
private:
uint8_t modifierFlag; // Flag to indicate if a modifier key is pressed
uint32_t last_modifier_time; // Timestamp of the last modifier key press
int8_t last_key;
int8_t next_key;
uint32_t last_tap;
uint8_t char_idx;
int32_t tap_interval;
uint32_t brightness = 0;
};

View File

@@ -19,141 +19,136 @@
#endif
TouchScreenBase::TouchScreenBase(const char *name, uint16_t width, uint16_t height)
: concurrency::OSThread(name), _display_width(width), _display_height(height), _first_x(0), _last_x(0), _first_y(0),
_last_y(0), _start(0), _tapped(false), _originName(name)
{
: concurrency::OSThread(name), _display_width(width), _display_height(height), _first_x(0), _last_x(0), _first_y(0), _last_y(0), _start(0),
_tapped(false), _originName(name) {}
void TouchScreenBase::init(bool hasTouch) {
if (hasTouch) {
LOG_INFO("TouchScreen initialized %d %d", TOUCH_THRESHOLD_X, TOUCH_THRESHOLD_Y);
this->setInterval(100);
} else {
disable();
this->setInterval(UINT_MAX);
}
}
void TouchScreenBase::init(bool hasTouch)
{
if (hasTouch) {
LOG_INFO("TouchScreen initialized %d %d", TOUCH_THRESHOLD_X, TOUCH_THRESHOLD_Y);
this->setInterval(100);
} else {
disable();
this->setInterval(UINT_MAX);
}
}
int32_t TouchScreenBase::runOnce() {
TouchEvent e;
e.touchEvent = static_cast<char>(TOUCH_ACTION_NONE);
int32_t TouchScreenBase::runOnce()
{
TouchEvent e;
e.touchEvent = static_cast<char>(TOUCH_ACTION_NONE);
// process touch events
int16_t x, y;
bool touched = getTouch(x, y);
if (x < 0 || y < 0) // T-deck can emit phantom touch events with a negative value when turing off the screen
touched = false;
// process touch events
int16_t x, y;
bool touched = getTouch(x, y);
if (x < 0 || y < 0) // T-deck can emit phantom touch events with a negative value when turing off the screen
touched = false;
if (touched) {
this->setInterval(20);
_last_x = x;
_last_y = y;
}
if (touched != _touchedOld) {
if (touched) {
this->setInterval(20);
_last_x = x;
_last_y = y;
}
if (touched != _touchedOld) {
if (touched) {
hapticFeedback();
_state = TOUCH_EVENT_OCCURRED;
_start = millis();
_first_x = x;
_first_y = y;
} else {
_state = TOUCH_EVENT_CLEARED;
time_t duration = millis() - _start;
x = _last_x;
y = _last_y;
this->setInterval(50);
hapticFeedback();
_state = TOUCH_EVENT_OCCURRED;
_start = millis();
_first_x = x;
_first_y = y;
} else {
_state = TOUCH_EVENT_CLEARED;
time_t duration = millis() - _start;
x = _last_x;
y = _last_y;
this->setInterval(50);
// compute distance
int16_t dx = x - _first_x;
int16_t dy = y - _first_y;
uint16_t adx = abs(dx);
uint16_t ady = abs(dy);
// compute distance
int16_t dx = x - _first_x;
int16_t dy = y - _first_y;
uint16_t adx = abs(dx);
uint16_t ady = abs(dy);
// swipe horizontal
if (adx > ady && adx > TOUCH_THRESHOLD_X) {
if (0 > dx) { // swipe right to left
e.touchEvent = static_cast<char>(TOUCH_ACTION_LEFT);
LOG_DEBUG("action SWIPE: right to left");
} else { // swipe left to right
e.touchEvent = static_cast<char>(TOUCH_ACTION_RIGHT);
LOG_DEBUG("action SWIPE: left to right");
}
}
// swipe vertical
else if (ady > adx && ady > TOUCH_THRESHOLD_Y) {
if (0 > dy) { // swipe bottom to top
e.touchEvent = static_cast<char>(TOUCH_ACTION_UP);
LOG_DEBUG("action SWIPE: bottom to top");
} else { // swipe top to bottom
e.touchEvent = static_cast<char>(TOUCH_ACTION_DOWN);
LOG_DEBUG("action SWIPE: top to bottom");
}
}
// tap
else {
if (duration > 0 && duration < TIME_LONG_PRESS) {
if (_tapped) {
_tapped = false;
} else {
_tapped = true;
}
} else {
_tapped = false;
}
}
// swipe horizontal
if (adx > ady && adx > TOUCH_THRESHOLD_X) {
if (0 > dx) { // swipe right to left
e.touchEvent = static_cast<char>(TOUCH_ACTION_LEFT);
LOG_DEBUG("action SWIPE: right to left");
} else { // swipe left to right
e.touchEvent = static_cast<char>(TOUCH_ACTION_RIGHT);
LOG_DEBUG("action SWIPE: left to right");
}
}
// swipe vertical
else if (ady > adx && ady > TOUCH_THRESHOLD_Y) {
if (0 > dy) { // swipe bottom to top
e.touchEvent = static_cast<char>(TOUCH_ACTION_UP);
LOG_DEBUG("action SWIPE: bottom to top");
} else { // swipe top to bottom
e.touchEvent = static_cast<char>(TOUCH_ACTION_DOWN);
LOG_DEBUG("action SWIPE: top to bottom");
}
}
// tap
else {
if (duration > 0 && duration < TIME_LONG_PRESS) {
if (_tapped) {
_tapped = false;
} else {
_tapped = true;
}
} else {
_tapped = false;
}
}
}
_touchedOld = touched;
}
_touchedOld = touched;
#if defined RAK14014
// Speed up the processing speed of the keyboard in virtual keyboard mode
auto state = cannedMessageModule->getRunState();
if (state == CANNED_MESSAGE_RUN_STATE_FREETEXT) {
if (_tapped) {
_tapped = false;
e.touchEvent = static_cast<char>(TOUCH_ACTION_TAP);
LOG_DEBUG("action TAP(%d/%d)", _last_x, _last_y);
}
} else {
if (_tapped && (time_t(millis()) - _start) > TIME_LONG_PRESS - 50) {
_tapped = false;
e.touchEvent = static_cast<char>(TOUCH_ACTION_TAP);
LOG_DEBUG("action TAP(%d/%d)", _last_x, _last_y);
}
}
#else
// fire TAP event when no 2nd tap occured within time
// Speed up the processing speed of the keyboard in virtual keyboard mode
auto state = cannedMessageModule->getRunState();
if (state == CANNED_MESSAGE_RUN_STATE_FREETEXT) {
if (_tapped) {
_tapped = false;
e.touchEvent = static_cast<char>(TOUCH_ACTION_TAP);
LOG_DEBUG("action TAP(%d/%d)", _last_x, _last_y);
_tapped = false;
e.touchEvent = static_cast<char>(TOUCH_ACTION_TAP);
LOG_DEBUG("action TAP(%d/%d)", _last_x, _last_y);
}
} else {
if (_tapped && (time_t(millis()) - _start) > TIME_LONG_PRESS - 50) {
_tapped = false;
e.touchEvent = static_cast<char>(TOUCH_ACTION_TAP);
LOG_DEBUG("action TAP(%d/%d)", _last_x, _last_y);
}
}
#else
// fire TAP event when no 2nd tap occured within time
if (_tapped) {
_tapped = false;
e.touchEvent = static_cast<char>(TOUCH_ACTION_TAP);
LOG_DEBUG("action TAP(%d/%d)", _last_x, _last_y);
}
#endif
// fire LONG_PRESS event without the need for release
if (touched && (time_t(millis()) - _start) > TIME_LONG_PRESS) {
// tricky: prevent reoccurring events and another touch event when releasing
_start = millis() + 30000;
e.touchEvent = static_cast<char>(TOUCH_ACTION_LONG_PRESS);
LOG_DEBUG("action LONG PRESS(%d/%d)", _last_x, _last_y);
}
// fire LONG_PRESS event without the need for release
if (touched && (time_t(millis()) - _start) > TIME_LONG_PRESS) {
// tricky: prevent reoccurring events and another touch event when releasing
_start = millis() + 30000;
e.touchEvent = static_cast<char>(TOUCH_ACTION_LONG_PRESS);
LOG_DEBUG("action LONG PRESS(%d/%d)", _last_x, _last_y);
}
if (e.touchEvent != TOUCH_ACTION_NONE) {
e.source = this->_originName;
e.x = _last_x;
e.y = _last_y;
onEvent(e);
}
if (e.touchEvent != TOUCH_ACTION_NONE) {
e.source = this->_originName;
e.x = _last_x;
e.y = _last_y;
onEvent(e);
}
return interval;
return interval;
}
void TouchScreenBase::hapticFeedback()
{
void TouchScreenBase::hapticFeedback() {
#ifdef T_WATCH_S3
drv.setWaveform(0, 75);
drv.setWaveform(1, 0); // end waveform
drv.go();
drv.setWaveform(0, 75);
drv.setWaveform(1, 0); // end waveform
drv.go();
#endif
}

View File

@@ -6,50 +6,49 @@
#include "time.h"
typedef struct _TouchEvent {
const char *source;
char touchEvent;
uint16_t x;
uint16_t y;
const char *source;
char touchEvent;
uint16_t x;
uint16_t y;
} TouchEvent;
class TouchScreenBase : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit TouchScreenBase(const char *name, uint16_t width, uint16_t height);
void init(bool hasTouch);
class TouchScreenBase : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit TouchScreenBase(const char *name, uint16_t width, uint16_t height);
void init(bool hasTouch);
protected:
enum TouchScreenBaseStateType { TOUCH_EVENT_OCCURRED, TOUCH_EVENT_CLEARED };
protected:
enum TouchScreenBaseStateType { TOUCH_EVENT_OCCURRED, TOUCH_EVENT_CLEARED };
enum TouchScreenBaseEventType {
TOUCH_ACTION_NONE,
TOUCH_ACTION_UP,
TOUCH_ACTION_DOWN,
TOUCH_ACTION_LEFT,
TOUCH_ACTION_RIGHT,
TOUCH_ACTION_TAP,
TOUCH_ACTION_LONG_PRESS
};
enum TouchScreenBaseEventType {
TOUCH_ACTION_NONE,
TOUCH_ACTION_UP,
TOUCH_ACTION_DOWN,
TOUCH_ACTION_LEFT,
TOUCH_ACTION_RIGHT,
TOUCH_ACTION_TAP,
TOUCH_ACTION_LONG_PRESS
};
virtual int32_t runOnce() override;
virtual int32_t runOnce() override;
virtual bool getTouch(int16_t &x, int16_t &y) = 0;
virtual void onEvent(const TouchEvent &event) = 0;
virtual bool getTouch(int16_t &x, int16_t &y) = 0;
virtual void onEvent(const TouchEvent &event) = 0;
volatile TouchScreenBaseStateType _state = TOUCH_EVENT_CLEARED;
volatile TouchScreenBaseEventType _action = TOUCH_ACTION_NONE;
void hapticFeedback();
volatile TouchScreenBaseStateType _state = TOUCH_EVENT_CLEARED;
volatile TouchScreenBaseEventType _action = TOUCH_ACTION_NONE;
void hapticFeedback();
protected:
uint16_t _display_width;
uint16_t _display_height;
protected:
uint16_t _display_width;
uint16_t _display_height;
private:
bool _touchedOld = false; // previous touch state
int16_t _first_x, _last_x; // horizontal swipe direction
int16_t _first_y, _last_y; // vertical swipe direction
time_t _start; // for LONG_PRESS
bool _tapped; // for DOUBLE_TAP
private:
bool _touchedOld = false; // previous touch state
int16_t _first_x, _last_x; // horizontal swipe direction
int16_t _first_y, _last_y; // vertical swipe direction
time_t _start; // for LONG_PRESS
bool _tapped; // for DOUBLE_TAP
const char *_originName;
const char *_originName;
};

View File

@@ -11,32 +11,26 @@
TouchScreenImpl1 *touchScreenImpl1;
TouchScreenImpl1::TouchScreenImpl1(uint16_t width, uint16_t height, bool (*getTouch)(int16_t *, int16_t *))
: TouchScreenBase("touchscreen1", width, height), _getTouch(getTouch)
{
}
: TouchScreenBase("touchscreen1", width, height), _getTouch(getTouch) {}
void TouchScreenImpl1::init()
{
void TouchScreenImpl1::init() {
#if ARCH_PORTDUINO
if (portduino_config.touchscreenModule) {
TouchScreenBase::init(true);
inputBroker->registerSource(this);
} else {
TouchScreenBase::init(false);
}
#elif !HAS_TOUCHSCREEN
TouchScreenBase::init(false);
return;
#else
if (portduino_config.touchscreenModule) {
TouchScreenBase::init(true);
inputBroker->registerSource(this);
} else {
TouchScreenBase::init(false);
}
#elif !HAS_TOUCHSCREEN
TouchScreenBase::init(false);
return;
#else
TouchScreenBase::init(true);
inputBroker->registerSource(this);
#endif
}
bool TouchScreenImpl1::getTouch(int16_t &x, int16_t &y)
{
return _getTouch(&x, &y);
}
bool TouchScreenImpl1::getTouch(int16_t &x, int16_t &y) { return _getTouch(&x, &y); }
/**
* @brief forward touchscreen event
@@ -45,41 +39,40 @@ bool TouchScreenImpl1::getTouch(int16_t &x, int16_t &y)
*
* The touchscreen events are translated to input events and reversed
*/
void TouchScreenImpl1::onEvent(const TouchEvent &event)
{
InputEvent e = {};
e.source = event.source;
e.kbchar = 0;
e.touchX = event.x;
e.touchY = event.y;
void TouchScreenImpl1::onEvent(const TouchEvent &event) {
InputEvent e = {};
e.source = event.source;
e.kbchar = 0;
e.touchX = event.x;
e.touchY = event.y;
switch (event.touchEvent) {
case TOUCH_ACTION_LEFT: {
e.inputEvent = INPUT_BROKER_LEFT;
break;
}
case TOUCH_ACTION_RIGHT: {
e.inputEvent = INPUT_BROKER_RIGHT;
break;
}
case TOUCH_ACTION_UP: {
e.inputEvent = INPUT_BROKER_UP;
break;
}
case TOUCH_ACTION_DOWN: {
e.inputEvent = INPUT_BROKER_DOWN;
break;
}
case TOUCH_ACTION_LONG_PRESS: {
e.inputEvent = INPUT_BROKER_SELECT;
break;
}
case TOUCH_ACTION_TAP: {
e.inputEvent = INPUT_BROKER_USER_PRESS;
break;
}
default:
return;
}
this->notifyObservers(&e);
switch (event.touchEvent) {
case TOUCH_ACTION_LEFT: {
e.inputEvent = INPUT_BROKER_LEFT;
break;
}
case TOUCH_ACTION_RIGHT: {
e.inputEvent = INPUT_BROKER_RIGHT;
break;
}
case TOUCH_ACTION_UP: {
e.inputEvent = INPUT_BROKER_UP;
break;
}
case TOUCH_ACTION_DOWN: {
e.inputEvent = INPUT_BROKER_DOWN;
break;
}
case TOUCH_ACTION_LONG_PRESS: {
e.inputEvent = INPUT_BROKER_SELECT;
break;
}
case TOUCH_ACTION_TAP: {
e.inputEvent = INPUT_BROKER_USER_PRESS;
break;
}
default:
return;
}
this->notifyObservers(&e);
}

View File

@@ -1,17 +1,16 @@
#pragma once
#include "TouchScreenBase.h"
class TouchScreenImpl1 : public TouchScreenBase
{
public:
TouchScreenImpl1(uint16_t width, uint16_t height, bool (*getTouch)(int16_t *, int16_t *));
void init(void);
class TouchScreenImpl1 : public TouchScreenBase {
public:
TouchScreenImpl1(uint16_t width, uint16_t height, bool (*getTouch)(int16_t *, int16_t *));
void init(void);
protected:
virtual bool getTouch(int16_t &x, int16_t &y);
virtual void onEvent(const TouchEvent &event);
protected:
virtual bool getTouch(int16_t &x, int16_t &y);
virtual void onEvent(const TouchEvent &event);
bool (*_getTouch)(int16_t *, int16_t *);
bool (*_getTouch)(int16_t *, int16_t *);
};
extern TouchScreenImpl1 *touchScreenImpl1;

View File

@@ -4,219 +4,201 @@ extern bool osk_found;
TrackballInterruptBase::TrackballInterruptBase(const char *name) : concurrency::OSThread(name), _originName(name) {}
void TrackballInterruptBase::init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress,
input_broker_event eventDown, input_broker_event eventUp, input_broker_event eventLeft,
input_broker_event eventRight, input_broker_event eventPressed,
input_broker_event eventPressedLong, void (*onIntDown)(), void (*onIntUp)(),
void (*onIntLeft)(), void (*onIntRight)(), void (*onIntPress)())
{
this->_pinDown = pinDown;
this->_pinUp = pinUp;
this->_pinLeft = pinLeft;
this->_pinRight = pinRight;
this->_pinPress = pinPress;
this->_eventDown = eventDown;
this->_eventUp = eventUp;
this->_eventLeft = eventLeft;
this->_eventRight = eventRight;
this->_eventPressed = eventPressed;
this->_eventPressedLong = eventPressedLong;
void TrackballInterruptBase::init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress, input_broker_event eventDown,
input_broker_event eventUp, input_broker_event eventLeft, input_broker_event eventRight,
input_broker_event eventPressed, input_broker_event eventPressedLong, void (*onIntDown)(), void (*onIntUp)(),
void (*onIntLeft)(), void (*onIntRight)(), void (*onIntPress)()) {
this->_pinDown = pinDown;
this->_pinUp = pinUp;
this->_pinLeft = pinLeft;
this->_pinRight = pinRight;
this->_pinPress = pinPress;
this->_eventDown = eventDown;
this->_eventUp = eventUp;
this->_eventLeft = eventLeft;
this->_eventRight = eventRight;
this->_eventPressed = eventPressed;
this->_eventPressedLong = eventPressedLong;
if (pinPress != 255) {
pinMode(pinPress, INPUT_PULLUP);
attachInterrupt(pinPress, onIntPress, TB_DIRECTION);
}
if (this->_pinDown != 255) {
pinMode(this->_pinDown, INPUT_PULLUP);
attachInterrupt(this->_pinDown, onIntDown, TB_DIRECTION);
}
if (this->_pinUp != 255) {
pinMode(this->_pinUp, INPUT_PULLUP);
attachInterrupt(this->_pinUp, onIntUp, TB_DIRECTION);
}
if (this->_pinLeft != 255) {
pinMode(this->_pinLeft, INPUT_PULLUP);
attachInterrupt(this->_pinLeft, onIntLeft, TB_DIRECTION);
}
if (this->_pinRight != 255) {
pinMode(this->_pinRight, INPUT_PULLUP);
attachInterrupt(this->_pinRight, onIntRight, TB_DIRECTION);
}
if (pinPress != 255) {
pinMode(pinPress, INPUT_PULLUP);
attachInterrupt(pinPress, onIntPress, TB_DIRECTION);
}
if (this->_pinDown != 255) {
pinMode(this->_pinDown, INPUT_PULLUP);
attachInterrupt(this->_pinDown, onIntDown, TB_DIRECTION);
}
if (this->_pinUp != 255) {
pinMode(this->_pinUp, INPUT_PULLUP);
attachInterrupt(this->_pinUp, onIntUp, TB_DIRECTION);
}
if (this->_pinLeft != 255) {
pinMode(this->_pinLeft, INPUT_PULLUP);
attachInterrupt(this->_pinLeft, onIntLeft, TB_DIRECTION);
}
if (this->_pinRight != 255) {
pinMode(this->_pinRight, INPUT_PULLUP);
attachInterrupt(this->_pinRight, onIntRight, TB_DIRECTION);
}
LOG_DEBUG("Trackball GPIO initialized - UP:%d DOWN:%d LEFT:%d RIGHT:%d PRESS:%d", this->_pinUp, this->_pinDown,
this->_pinLeft, this->_pinRight, pinPress);
LOG_DEBUG("Trackball GPIO initialized - UP:%d DOWN:%d LEFT:%d RIGHT:%d PRESS:%d", this->_pinUp, this->_pinDown, this->_pinLeft, this->_pinRight,
pinPress);
#ifndef HAS_PHYSICAL_KEYBOARD
osk_found = true;
osk_found = true;
#endif
this->setInterval(100);
this->setInterval(100);
}
int32_t TrackballInterruptBase::runOnce()
{
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
int32_t TrackballInterruptBase::runOnce() {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
// Handle long press detection for press button
if (pressDetected && pressStartTime > 0) {
uint32_t pressDuration = millis() - pressStartTime;
bool buttonStillPressed = false;
// Handle long press detection for press button
if (pressDetected && pressStartTime > 0) {
uint32_t pressDuration = millis() - pressStartTime;
bool buttonStillPressed = false;
#if defined(T_DECK)
buttonStillPressed = (this->action == TB_ACTION_PRESSED);
buttonStillPressed = (this->action == TB_ACTION_PRESSED);
#else
buttonStillPressed = !digitalRead(_pinPress);
buttonStillPressed = !digitalRead(_pinPress);
#endif
if (!buttonStillPressed) {
// Button released
if (pressDuration < LONG_PRESS_DURATION) {
// Short press
e.inputEvent = this->_eventPressed;
}
// Reset state
pressDetected = false;
pressStartTime = 0;
lastLongPressEventTime = 0;
this->action = TB_ACTION_NONE;
} else if (pressDuration >= LONG_PRESS_DURATION) {
// Long press detected
uint32_t currentTime = millis();
// Only trigger long press event if enough time has passed since the last one
if (lastLongPressEventTime == 0 || (currentTime - lastLongPressEventTime) >= LONG_PRESS_REPEAT_INTERVAL) {
e.inputEvent = this->_eventPressedLong;
lastLongPressEventTime = currentTime;
}
this->action = TB_ACTION_PRESSED_LONG;
}
if (!buttonStillPressed) {
// Button released
if (pressDuration < LONG_PRESS_DURATION) {
// Short press
e.inputEvent = this->_eventPressed;
}
// Reset state
pressDetected = false;
pressStartTime = 0;
lastLongPressEventTime = 0;
this->action = TB_ACTION_NONE;
} else if (pressDuration >= LONG_PRESS_DURATION) {
// Long press detected
uint32_t currentTime = millis();
// Only trigger long press event if enough time has passed since the last one
if (lastLongPressEventTime == 0 || (currentTime - lastLongPressEventTime) >= LONG_PRESS_REPEAT_INTERVAL) {
e.inputEvent = this->_eventPressedLong;
lastLongPressEventTime = currentTime;
}
this->action = TB_ACTION_PRESSED_LONG;
}
}
if (directionDetected && directionStartTime > 0) {
uint32_t directionDuration = millis() - directionStartTime;
uint8_t directionPressedNow = 0;
directionInterval++;
if (!digitalRead(_pinUp)) {
directionPressedNow = TB_ACTION_UP;
} else if (!digitalRead(_pinDown)) {
directionPressedNow = TB_ACTION_DOWN;
} else if (!digitalRead(_pinLeft)) {
directionPressedNow = TB_ACTION_LEFT;
} else if (!digitalRead(_pinRight)) {
directionPressedNow = TB_ACTION_RIGHT;
}
if (directionDetected && directionStartTime > 0) {
uint32_t directionDuration = millis() - directionStartTime;
uint8_t directionPressedNow = 0;
directionInterval++;
const uint8_t DIRECTION_REPEAT_THRESHOLD = 3;
if (!digitalRead(_pinUp)) {
directionPressedNow = TB_ACTION_UP;
} else if (!digitalRead(_pinDown)) {
directionPressedNow = TB_ACTION_DOWN;
} else if (!digitalRead(_pinLeft)) {
directionPressedNow = TB_ACTION_LEFT;
} else if (!digitalRead(_pinRight)) {
directionPressedNow = TB_ACTION_RIGHT;
}
if (directionPressedNow == TB_ACTION_NONE) {
// Reset state
directionDetected = false;
directionStartTime = 0;
directionInterval = 0;
this->action = TB_ACTION_NONE;
} else if (directionDuration >= LONG_PRESS_DURATION && directionInterval >= DIRECTION_REPEAT_THRESHOLD) {
// repeat event when long press these direction.
switch (directionPressedNow) {
case TB_ACTION_UP:
e.inputEvent = this->_eventUp;
break;
case TB_ACTION_DOWN:
e.inputEvent = this->_eventDown;
break;
case TB_ACTION_LEFT:
e.inputEvent = this->_eventLeft;
break;
case TB_ACTION_RIGHT:
e.inputEvent = this->_eventRight;
break;
}
const uint8_t DIRECTION_REPEAT_THRESHOLD = 3;
if (directionPressedNow == TB_ACTION_NONE) {
// Reset state
directionDetected = false;
directionStartTime = 0;
directionInterval = 0;
this->action = TB_ACTION_NONE;
} else if (directionDuration >= LONG_PRESS_DURATION && directionInterval >= DIRECTION_REPEAT_THRESHOLD) {
// repeat event when long press these direction.
switch (directionPressedNow) {
case TB_ACTION_UP:
e.inputEvent = this->_eventUp;
break;
case TB_ACTION_DOWN:
e.inputEvent = this->_eventDown;
break;
case TB_ACTION_LEFT:
e.inputEvent = this->_eventLeft;
break;
case TB_ACTION_RIGHT:
e.inputEvent = this->_eventRight;
break;
}
directionInterval = 0;
}
directionInterval = 0;
}
}
#if defined(T_DECK) // T-deck gets a super-simple debounce on trackball
if (this->action == TB_ACTION_PRESSED && !pressDetected) {
// Start long press detection
pressDetected = true;
pressStartTime = millis();
// Don't send event yet, wait to see if it's a long press
} else if (this->action == TB_ACTION_UP && lastEvent == TB_ACTION_UP) {
// LOG_DEBUG("Trackball event UP");
e.inputEvent = this->_eventUp;
} else if (this->action == TB_ACTION_DOWN && lastEvent == TB_ACTION_DOWN) {
// LOG_DEBUG("Trackball event DOWN");
e.inputEvent = this->_eventDown;
} else if (this->action == TB_ACTION_LEFT && lastEvent == TB_ACTION_LEFT) {
// LOG_DEBUG("Trackball event LEFT");
e.inputEvent = this->_eventLeft;
} else if (this->action == TB_ACTION_RIGHT && lastEvent == TB_ACTION_RIGHT) {
// LOG_DEBUG("Trackball event RIGHT");
e.inputEvent = this->_eventRight;
}
if (this->action == TB_ACTION_PRESSED && !pressDetected) {
// Start long press detection
pressDetected = true;
pressStartTime = millis();
// Don't send event yet, wait to see if it's a long press
} else if (this->action == TB_ACTION_UP && lastEvent == TB_ACTION_UP) {
// LOG_DEBUG("Trackball event UP");
e.inputEvent = this->_eventUp;
} else if (this->action == TB_ACTION_DOWN && lastEvent == TB_ACTION_DOWN) {
// LOG_DEBUG("Trackball event DOWN");
e.inputEvent = this->_eventDown;
} else if (this->action == TB_ACTION_LEFT && lastEvent == TB_ACTION_LEFT) {
// LOG_DEBUG("Trackball event LEFT");
e.inputEvent = this->_eventLeft;
} else if (this->action == TB_ACTION_RIGHT && lastEvent == TB_ACTION_RIGHT) {
// LOG_DEBUG("Trackball event RIGHT");
e.inputEvent = this->_eventRight;
}
#else
if (this->action == TB_ACTION_PRESSED && !digitalRead(_pinPress) && !pressDetected) {
// Start long press detection
pressDetected = true;
pressStartTime = millis();
// Don't send event yet, wait to see if it's a long press
} else if (this->action == TB_ACTION_UP && !digitalRead(_pinUp) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventUp;
// send event first,will automatically trigger every 50ms * 3 after 500ms
} else if (this->action == TB_ACTION_DOWN && !digitalRead(_pinDown) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventDown;
} else if (this->action == TB_ACTION_LEFT && !digitalRead(_pinLeft) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventLeft;
} else if (this->action == TB_ACTION_RIGHT && !digitalRead(_pinRight) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventRight;
}
if (this->action == TB_ACTION_PRESSED && !digitalRead(_pinPress) && !pressDetected) {
// Start long press detection
pressDetected = true;
pressStartTime = millis();
// Don't send event yet, wait to see if it's a long press
} else if (this->action == TB_ACTION_UP && !digitalRead(_pinUp) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventUp;
// send event first,will automatically trigger every 50ms * 3 after 500ms
} else if (this->action == TB_ACTION_DOWN && !digitalRead(_pinDown) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventDown;
} else if (this->action == TB_ACTION_LEFT && !digitalRead(_pinLeft) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventLeft;
} else if (this->action == TB_ACTION_RIGHT && !digitalRead(_pinRight) && !directionDetected) {
directionDetected = true;
directionStartTime = millis();
e.inputEvent = this->_eventRight;
}
#endif
if (e.inputEvent != INPUT_BROKER_NONE) {
e.source = this->_originName;
e.kbchar = 0x00;
this->notifyObservers(&e);
if (e.inputEvent != INPUT_BROKER_NONE) {
e.source = this->_originName;
e.kbchar = 0x00;
this->notifyObservers(&e);
}
// Only update lastEvent for non-press actions or completed press actions
if (this->action != TB_ACTION_PRESSED || !pressDetected) {
lastEvent = action;
if (!pressDetected) {
this->action = TB_ACTION_NONE;
}
}
// Only update lastEvent for non-press actions or completed press actions
if (this->action != TB_ACTION_PRESSED || !pressDetected) {
lastEvent = action;
if (!pressDetected) {
this->action = TB_ACTION_NONE;
}
}
return 50; // Check more frequently for better long press detection
return 50; // Check more frequently for better long press detection
}
void TrackballInterruptBase::intPressHandler()
{
this->action = TB_ACTION_PRESSED;
}
void TrackballInterruptBase::intPressHandler() { this->action = TB_ACTION_PRESSED; }
void TrackballInterruptBase::intDownHandler()
{
this->action = TB_ACTION_DOWN;
}
void TrackballInterruptBase::intDownHandler() { this->action = TB_ACTION_DOWN; }
void TrackballInterruptBase::intUpHandler()
{
this->action = TB_ACTION_UP;
}
void TrackballInterruptBase::intUpHandler() { this->action = TB_ACTION_UP; }
void TrackballInterruptBase::intLeftHandler()
{
this->action = TB_ACTION_LEFT;
}
void TrackballInterruptBase::intLeftHandler() { this->action = TB_ACTION_LEFT; }
void TrackballInterruptBase::intRightHandler()
{
this->action = TB_ACTION_RIGHT;
}
void TrackballInterruptBase::intRightHandler() { this->action = TB_ACTION_RIGHT; }

View File

@@ -12,59 +12,58 @@
#endif
#endif
class TrackballInterruptBase : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit TrackballInterruptBase(const char *name);
void init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress, input_broker_event eventDown,
input_broker_event eventUp, input_broker_event eventLeft, input_broker_event eventRight,
input_broker_event eventPressed, input_broker_event eventPressedLong, void (*onIntDown)(), void (*onIntUp)(),
void (*onIntLeft)(), void (*onIntRight)(), void (*onIntPress)());
void intPressHandler();
void intDownHandler();
void intUpHandler();
void intLeftHandler();
void intRightHandler();
uint32_t lastTime = 0;
class TrackballInterruptBase : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit TrackballInterruptBase(const char *name);
void init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress, input_broker_event eventDown,
input_broker_event eventUp, input_broker_event eventLeft, input_broker_event eventRight, input_broker_event eventPressed,
input_broker_event eventPressedLong, void (*onIntDown)(), void (*onIntUp)(), void (*onIntLeft)(), void (*onIntRight)(),
void (*onIntPress)());
void intPressHandler();
void intDownHandler();
void intUpHandler();
void intLeftHandler();
void intRightHandler();
uint32_t lastTime = 0;
virtual int32_t runOnce() override;
virtual int32_t runOnce() override;
protected:
enum TrackballInterruptBaseActionType {
TB_ACTION_NONE,
TB_ACTION_PRESSED,
TB_ACTION_PRESSED_LONG,
TB_ACTION_UP,
TB_ACTION_DOWN,
TB_ACTION_LEFT,
TB_ACTION_RIGHT
};
uint8_t _pinDown = 0;
uint8_t _pinUp = 0;
uint8_t _pinLeft = 0;
uint8_t _pinRight = 0;
uint8_t _pinPress = 0;
protected:
enum TrackballInterruptBaseActionType {
TB_ACTION_NONE,
TB_ACTION_PRESSED,
TB_ACTION_PRESSED_LONG,
TB_ACTION_UP,
TB_ACTION_DOWN,
TB_ACTION_LEFT,
TB_ACTION_RIGHT
};
uint8_t _pinDown = 0;
uint8_t _pinUp = 0;
uint8_t _pinLeft = 0;
uint8_t _pinRight = 0;
uint8_t _pinPress = 0;
volatile TrackballInterruptBaseActionType action = TB_ACTION_NONE;
volatile TrackballInterruptBaseActionType action = TB_ACTION_NONE;
// Long press detection for press button
uint32_t pressStartTime = 0;
uint32_t directionStartTime = 0;
uint8_t directionInterval = 0;
bool pressDetected = false;
bool directionDetected = false;
uint32_t lastLongPressEventTime = 0;
uint32_t lastDirectionPressEventTime = 0;
static const uint32_t LONG_PRESS_DURATION = 500; // ms
static const uint32_t LONG_PRESS_REPEAT_INTERVAL = 300; // ms - interval between repeated long press events
// Long press detection for press button
uint32_t pressStartTime = 0;
uint32_t directionStartTime = 0;
uint8_t directionInterval = 0;
bool pressDetected = false;
bool directionDetected = false;
uint32_t lastLongPressEventTime = 0;
uint32_t lastDirectionPressEventTime = 0;
static const uint32_t LONG_PRESS_DURATION = 500; // ms
static const uint32_t LONG_PRESS_REPEAT_INTERVAL = 300; // ms - interval between repeated long press events
private:
input_broker_event _eventDown = INPUT_BROKER_NONE;
input_broker_event _eventUp = INPUT_BROKER_NONE;
input_broker_event _eventLeft = INPUT_BROKER_NONE;
input_broker_event _eventRight = INPUT_BROKER_NONE;
input_broker_event _eventPressed = INPUT_BROKER_NONE;
input_broker_event _eventPressedLong = INPUT_BROKER_NONE;
const char *_originName;
TrackballInterruptBaseActionType lastEvent = TB_ACTION_NONE;
private:
input_broker_event _eventDown = INPUT_BROKER_NONE;
input_broker_event _eventUp = INPUT_BROKER_NONE;
input_broker_event _eventLeft = INPUT_BROKER_NONE;
input_broker_event _eventRight = INPUT_BROKER_NONE;
input_broker_event _eventPressed = INPUT_BROKER_NONE;
input_broker_event _eventPressedLong = INPUT_BROKER_NONE;
const char *_originName;
TrackballInterruptBaseActionType lastEvent = TB_ACTION_NONE;
};

View File

@@ -6,59 +6,52 @@ TrackballInterruptImpl1 *trackballInterruptImpl1;
TrackballInterruptImpl1::TrackballInterruptImpl1() : TrackballInterruptBase("trackball1") {}
void TrackballInterruptImpl1::init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress)
{
input_broker_event eventDown = INPUT_BROKER_DOWN;
input_broker_event eventUp = INPUT_BROKER_UP;
input_broker_event eventLeft = INPUT_BROKER_LEFT;
input_broker_event eventRight = INPUT_BROKER_RIGHT;
input_broker_event eventPressed = INPUT_BROKER_SELECT;
input_broker_event eventPressedLong = INPUT_BROKER_SELECT_LONG;
void TrackballInterruptImpl1::init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress) {
input_broker_event eventDown = INPUT_BROKER_DOWN;
input_broker_event eventUp = INPUT_BROKER_UP;
input_broker_event eventLeft = INPUT_BROKER_LEFT;
input_broker_event eventRight = INPUT_BROKER_RIGHT;
input_broker_event eventPressed = INPUT_BROKER_SELECT;
input_broker_event eventPressedLong = INPUT_BROKER_SELECT_LONG;
TrackballInterruptBase::init(pinDown, pinUp, pinLeft, pinRight, pinPress, eventDown, eventUp, eventLeft, eventRight,
eventPressed, eventPressedLong, TrackballInterruptImpl1::handleIntDown,
TrackballInterruptImpl1::handleIntUp, TrackballInterruptImpl1::handleIntLeft,
TrackballInterruptImpl1::handleIntRight, TrackballInterruptImpl1::handleIntPressed);
inputBroker->registerSource(this);
TrackballInterruptBase::init(pinDown, pinUp, pinLeft, pinRight, pinPress, eventDown, eventUp, eventLeft, eventRight, eventPressed, eventPressedLong,
TrackballInterruptImpl1::handleIntDown, TrackballInterruptImpl1::handleIntUp, TrackballInterruptImpl1::handleIntLeft,
TrackballInterruptImpl1::handleIntRight, TrackballInterruptImpl1::handleIntPressed);
inputBroker->registerSource(this);
}
void TrackballInterruptImpl1::handleIntDown()
{
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intDownHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
void TrackballInterruptImpl1::handleIntDown() {
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intDownHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
}
void TrackballInterruptImpl1::handleIntUp()
{
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intUpHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
void TrackballInterruptImpl1::handleIntUp() {
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intUpHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
}
void TrackballInterruptImpl1::handleIntLeft()
{
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intLeftHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
void TrackballInterruptImpl1::handleIntLeft() {
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intLeftHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
}
void TrackballInterruptImpl1::handleIntRight()
{
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intRightHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
void TrackballInterruptImpl1::handleIntRight() {
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intRightHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
}
void TrackballInterruptImpl1::handleIntPressed()
{
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intPressHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
void TrackballInterruptImpl1::handleIntPressed() {
if (TB_DIRECTION == RISING || millis() > trackballInterruptImpl1->lastTime + 10) {
trackballInterruptImpl1->lastTime = millis();
trackballInterruptImpl1->intPressHandler();
trackballInterruptImpl1->setIntervalFromNow(20);
}
}

View File

@@ -1,16 +1,15 @@
#pragma once
#include "TrackballInterruptBase.h"
class TrackballInterruptImpl1 : public TrackballInterruptBase
{
public:
TrackballInterruptImpl1();
void init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress);
static void handleIntDown();
static void handleIntUp();
static void handleIntLeft();
static void handleIntRight();
static void handleIntPressed();
class TrackballInterruptImpl1 : public TrackballInterruptBase {
public:
TrackballInterruptImpl1();
void init(uint8_t pinDown, uint8_t pinUp, uint8_t pinLeft, uint8_t pinRight, uint8_t pinPress);
static void handleIntDown();
static void handleIntUp();
static void handleIntLeft();
static void handleIntRight();
static void handleIntPressed();
};
extern TrackballInterruptImpl1 *trackballInterruptImpl1;

View File

@@ -1,165 +1,151 @@
#include "UpDownInterruptBase.h"
#include "configuration.h"
UpDownInterruptBase::UpDownInterruptBase(const char *name) : concurrency::OSThread(name)
{
this->_originName = name;
}
UpDownInterruptBase::UpDownInterruptBase(const char *name) : concurrency::OSThread(name) { this->_originName = name; }
void UpDownInterruptBase::init(uint8_t pinDown, uint8_t pinUp, uint8_t pinPress, input_broker_event eventDown,
input_broker_event eventUp, input_broker_event eventPressed, input_broker_event eventPressedLong,
input_broker_event eventUpLong, input_broker_event eventDownLong, void (*onIntDown)(),
void (*onIntUp)(), void (*onIntPress)(), unsigned long updownDebounceMs)
{
this->_pinDown = pinDown;
this->_pinUp = pinUp;
this->_pinPress = pinPress;
this->_eventDown = eventDown;
this->_eventUp = eventUp;
this->_eventPressed = eventPressed;
this->_eventPressedLong = eventPressedLong;
this->_eventUpLong = eventUpLong;
this->_eventDownLong = eventDownLong;
void UpDownInterruptBase::init(uint8_t pinDown, uint8_t pinUp, uint8_t pinPress, input_broker_event eventDown, input_broker_event eventUp,
input_broker_event eventPressed, input_broker_event eventPressedLong, input_broker_event eventUpLong,
input_broker_event eventDownLong, void (*onIntDown)(), void (*onIntUp)(), void (*onIntPress)(),
unsigned long updownDebounceMs) {
this->_pinDown = pinDown;
this->_pinUp = pinUp;
this->_pinPress = pinPress;
this->_eventDown = eventDown;
this->_eventUp = eventUp;
this->_eventPressed = eventPressed;
this->_eventPressedLong = eventPressedLong;
this->_eventUpLong = eventUpLong;
this->_eventDownLong = eventDownLong;
// Store debounce configuration passed by caller
this->updownDebounceMs = updownDebounceMs;
bool isRAK = false;
// Store debounce configuration passed by caller
this->updownDebounceMs = updownDebounceMs;
bool isRAK = false;
#ifdef RAK_4631
isRAK = true;
isRAK = true;
#endif
if (!isRAK || pinPress != 0) {
pinMode(pinPress, INPUT_PULLUP);
attachInterrupt(pinPress, onIntPress, FALLING);
}
if (!isRAK || this->_pinDown != 0) {
pinMode(this->_pinDown, INPUT_PULLUP);
attachInterrupt(this->_pinDown, onIntDown, FALLING);
}
if (!isRAK || this->_pinUp != 0) {
pinMode(this->_pinUp, INPUT_PULLUP);
attachInterrupt(this->_pinUp, onIntUp, FALLING);
}
if (!isRAK || pinPress != 0) {
pinMode(pinPress, INPUT_PULLUP);
attachInterrupt(pinPress, onIntPress, FALLING);
}
if (!isRAK || this->_pinDown != 0) {
pinMode(this->_pinDown, INPUT_PULLUP);
attachInterrupt(this->_pinDown, onIntDown, FALLING);
}
if (!isRAK || this->_pinUp != 0) {
pinMode(this->_pinUp, INPUT_PULLUP);
attachInterrupt(this->_pinUp, onIntUp, FALLING);
}
LOG_DEBUG("Up/down/press GPIO initialized (%d, %d, %d)", this->_pinUp, this->_pinDown, pinPress);
LOG_DEBUG("Up/down/press GPIO initialized (%d, %d, %d)", this->_pinUp, this->_pinDown, pinPress);
this->setInterval(20);
this->setInterval(20);
}
int32_t UpDownInterruptBase::runOnce()
{
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
unsigned long now = millis();
int32_t UpDownInterruptBase::runOnce() {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
unsigned long now = millis();
// Read all button states once at the beginning
bool pressButtonPressed = !digitalRead(_pinPress);
bool upButtonPressed = !digitalRead(_pinUp);
bool downButtonPressed = !digitalRead(_pinDown);
// Read all button states once at the beginning
bool pressButtonPressed = !digitalRead(_pinPress);
bool upButtonPressed = !digitalRead(_pinUp);
bool downButtonPressed = !digitalRead(_pinDown);
// Handle initial button press detection - only if not already detected
if (this->action == UPDOWN_ACTION_PRESSED && pressButtonPressed && !pressDetected) {
pressDetected = true;
pressStartTime = now;
} else if (this->action == UPDOWN_ACTION_UP && upButtonPressed && !upDetected) {
upDetected = true;
upStartTime = now;
} else if (this->action == UPDOWN_ACTION_DOWN && downButtonPressed && !downDetected) {
downDetected = true;
downStartTime = now;
// Handle initial button press detection - only if not already detected
if (this->action == UPDOWN_ACTION_PRESSED && pressButtonPressed && !pressDetected) {
pressDetected = true;
pressStartTime = now;
} else if (this->action == UPDOWN_ACTION_UP && upButtonPressed && !upDetected) {
upDetected = true;
upStartTime = now;
} else if (this->action == UPDOWN_ACTION_DOWN && downButtonPressed && !downDetected) {
downDetected = true;
downStartTime = now;
}
// Handle long press detection for press button
if (pressDetected && pressStartTime > 0) {
uint32_t pressDuration = now - pressStartTime;
if (!pressButtonPressed) {
// Button released
if (pressDuration < LONG_PRESS_DURATION && now - lastPressKeyTime >= pressDebounceMs) {
lastPressKeyTime = now;
e.inputEvent = this->_eventPressed;
}
// Reset state
pressDetected = false;
pressStartTime = 0;
lastPressLongEventTime = 0;
} else if (pressDuration >= LONG_PRESS_DURATION && lastPressLongEventTime == 0) {
// First long press event only - avoid repeated events causing lag
e.inputEvent = this->_eventPressedLong;
lastPressLongEventTime = now;
}
}
// Handle long press detection for press button
if (pressDetected && pressStartTime > 0) {
uint32_t pressDuration = now - pressStartTime;
// Handle long press detection for up button
if (upDetected && upStartTime > 0) {
uint32_t upDuration = now - upStartTime;
if (!pressButtonPressed) {
// Button released
if (pressDuration < LONG_PRESS_DURATION && now - lastPressKeyTime >= pressDebounceMs) {
lastPressKeyTime = now;
e.inputEvent = this->_eventPressed;
}
// Reset state
pressDetected = false;
pressStartTime = 0;
lastPressLongEventTime = 0;
} else if (pressDuration >= LONG_PRESS_DURATION && lastPressLongEventTime == 0) {
// First long press event only - avoid repeated events causing lag
e.inputEvent = this->_eventPressedLong;
lastPressLongEventTime = now;
}
if (!upButtonPressed) {
// Button released
if (upDuration < LONG_PRESS_DURATION && now - lastUpKeyTime >= updownDebounceMs) {
lastUpKeyTime = now;
e.inputEvent = this->_eventUp;
}
// Reset state
upDetected = false;
upStartTime = 0;
lastUpLongEventTime = 0;
} else if (upDuration >= LONG_PRESS_DURATION) {
// Auto-repeat long press events
if (lastUpLongEventTime == 0 || (now - lastUpLongEventTime) >= LONG_PRESS_REPEAT_INTERVAL) {
e.inputEvent = this->_eventUpLong;
lastUpLongEventTime = now;
}
}
}
// Handle long press detection for up button
if (upDetected && upStartTime > 0) {
uint32_t upDuration = now - upStartTime;
// Handle long press detection for down button
if (downDetected && downStartTime > 0) {
uint32_t downDuration = now - downStartTime;
if (!upButtonPressed) {
// Button released
if (upDuration < LONG_PRESS_DURATION && now - lastUpKeyTime >= updownDebounceMs) {
lastUpKeyTime = now;
e.inputEvent = this->_eventUp;
}
// Reset state
upDetected = false;
upStartTime = 0;
lastUpLongEventTime = 0;
} else if (upDuration >= LONG_PRESS_DURATION) {
// Auto-repeat long press events
if (lastUpLongEventTime == 0 || (now - lastUpLongEventTime) >= LONG_PRESS_REPEAT_INTERVAL) {
e.inputEvent = this->_eventUpLong;
lastUpLongEventTime = now;
}
}
if (!downButtonPressed) {
// Button released
if (downDuration < LONG_PRESS_DURATION && now - lastDownKeyTime >= updownDebounceMs) {
lastDownKeyTime = now;
e.inputEvent = this->_eventDown;
}
// Reset state
downDetected = false;
downStartTime = 0;
lastDownLongEventTime = 0;
} else if (downDuration >= LONG_PRESS_DURATION) {
// Auto-repeat long press events
if (lastDownLongEventTime == 0 || (now - lastDownLongEventTime) >= LONG_PRESS_REPEAT_INTERVAL) {
e.inputEvent = this->_eventDownLong;
lastDownLongEventTime = now;
}
}
}
// Handle long press detection for down button
if (downDetected && downStartTime > 0) {
uint32_t downDuration = now - downStartTime;
if (e.inputEvent != INPUT_BROKER_NONE) {
e.source = this->_originName;
e.kbchar = INPUT_BROKER_NONE;
this->notifyObservers(&e);
}
if (!downButtonPressed) {
// Button released
if (downDuration < LONG_PRESS_DURATION && now - lastDownKeyTime >= updownDebounceMs) {
lastDownKeyTime = now;
e.inputEvent = this->_eventDown;
}
// Reset state
downDetected = false;
downStartTime = 0;
lastDownLongEventTime = 0;
} else if (downDuration >= LONG_PRESS_DURATION) {
// Auto-repeat long press events
if (lastDownLongEventTime == 0 || (now - lastDownLongEventTime) >= LONG_PRESS_REPEAT_INTERVAL) {
e.inputEvent = this->_eventDownLong;
lastDownLongEventTime = now;
}
}
}
if (!pressDetected && !upDetected && !downDetected) {
this->action = UPDOWN_ACTION_NONE;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
e.source = this->_originName;
e.kbchar = INPUT_BROKER_NONE;
this->notifyObservers(&e);
}
if (!pressDetected && !upDetected && !downDetected) {
this->action = UPDOWN_ACTION_NONE;
}
return 20; // This will control how the input frequency
return 20; // This will control how the input frequency
}
void UpDownInterruptBase::intPressHandler()
{
this->action = UPDOWN_ACTION_PRESSED;
}
void UpDownInterruptBase::intPressHandler() { this->action = UPDOWN_ACTION_PRESSED; }
void UpDownInterruptBase::intDownHandler()
{
this->action = UPDOWN_ACTION_DOWN;
}
void UpDownInterruptBase::intDownHandler() { this->action = UPDOWN_ACTION_DOWN; }
void UpDownInterruptBase::intUpHandler()
{
this->action = UPDOWN_ACTION_UP;
}
void UpDownInterruptBase::intUpHandler() { this->action = UPDOWN_ACTION_UP; }

View File

@@ -11,61 +11,59 @@
#define UPDOWN_LONG_PRESS_REPEAT_INTERVAL 300
#endif
class UpDownInterruptBase : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit UpDownInterruptBase(const char *name);
void init(uint8_t pinDown, uint8_t pinUp, uint8_t pinPress, input_broker_event eventDown, input_broker_event eventUp,
input_broker_event eventPressed, input_broker_event eventPressedLong, input_broker_event eventUpLong,
input_broker_event eventDownLong, void (*onIntDown)(), void (*onIntUp)(), void (*onIntPress)(),
unsigned long updownDebounceMs = 50);
void intPressHandler();
void intDownHandler();
void intUpHandler();
class UpDownInterruptBase : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit UpDownInterruptBase(const char *name);
void init(uint8_t pinDown, uint8_t pinUp, uint8_t pinPress, input_broker_event eventDown, input_broker_event eventUp,
input_broker_event eventPressed, input_broker_event eventPressedLong, input_broker_event eventUpLong, input_broker_event eventDownLong,
void (*onIntDown)(), void (*onIntUp)(), void (*onIntPress)(), unsigned long updownDebounceMs = 50);
void intPressHandler();
void intDownHandler();
void intUpHandler();
int32_t runOnce() override;
int32_t runOnce() override;
protected:
enum UpDownInterruptBaseActionType {
UPDOWN_ACTION_NONE,
UPDOWN_ACTION_PRESSED,
UPDOWN_ACTION_PRESSED_LONG,
UPDOWN_ACTION_UP,
UPDOWN_ACTION_UP_LONG,
UPDOWN_ACTION_DOWN,
UPDOWN_ACTION_DOWN_LONG
};
protected:
enum UpDownInterruptBaseActionType {
UPDOWN_ACTION_NONE,
UPDOWN_ACTION_PRESSED,
UPDOWN_ACTION_PRESSED_LONG,
UPDOWN_ACTION_UP,
UPDOWN_ACTION_UP_LONG,
UPDOWN_ACTION_DOWN,
UPDOWN_ACTION_DOWN_LONG
};
volatile UpDownInterruptBaseActionType action = UPDOWN_ACTION_NONE;
volatile UpDownInterruptBaseActionType action = UPDOWN_ACTION_NONE;
// Long press detection variables
uint32_t pressStartTime = 0;
uint32_t upStartTime = 0;
uint32_t downStartTime = 0;
bool pressDetected = false;
bool upDetected = false;
bool downDetected = false;
uint32_t lastPressLongEventTime = 0;
uint32_t lastUpLongEventTime = 0;
uint32_t lastDownLongEventTime = 0;
static const uint32_t LONG_PRESS_DURATION = UPDOWN_LONG_PRESS_DURATION;
static const uint32_t LONG_PRESS_REPEAT_INTERVAL = UPDOWN_LONG_PRESS_REPEAT_INTERVAL;
// Long press detection variables
uint32_t pressStartTime = 0;
uint32_t upStartTime = 0;
uint32_t downStartTime = 0;
bool pressDetected = false;
bool upDetected = false;
bool downDetected = false;
uint32_t lastPressLongEventTime = 0;
uint32_t lastUpLongEventTime = 0;
uint32_t lastDownLongEventTime = 0;
static const uint32_t LONG_PRESS_DURATION = UPDOWN_LONG_PRESS_DURATION;
static const uint32_t LONG_PRESS_REPEAT_INTERVAL = UPDOWN_LONG_PRESS_REPEAT_INTERVAL;
private:
uint8_t _pinDown = 0;
uint8_t _pinUp = 0;
uint8_t _pinPress = 0;
input_broker_event _eventDown = INPUT_BROKER_NONE;
input_broker_event _eventUp = INPUT_BROKER_NONE;
input_broker_event _eventPressed = INPUT_BROKER_NONE;
input_broker_event _eventPressedLong = INPUT_BROKER_NONE;
input_broker_event _eventUpLong = INPUT_BROKER_NONE;
input_broker_event _eventDownLong = INPUT_BROKER_NONE;
const char *_originName;
private:
uint8_t _pinDown = 0;
uint8_t _pinUp = 0;
uint8_t _pinPress = 0;
input_broker_event _eventDown = INPUT_BROKER_NONE;
input_broker_event _eventUp = INPUT_BROKER_NONE;
input_broker_event _eventPressed = INPUT_BROKER_NONE;
input_broker_event _eventPressedLong = INPUT_BROKER_NONE;
input_broker_event _eventUpLong = INPUT_BROKER_NONE;
input_broker_event _eventDownLong = INPUT_BROKER_NONE;
const char *_originName;
unsigned long lastUpKeyTime = 0;
unsigned long lastDownKeyTime = 0;
unsigned long lastPressKeyTime = 0;
unsigned long updownDebounceMs = 50;
const unsigned long pressDebounceMs = 200;
unsigned long lastUpKeyTime = 0;
unsigned long lastDownKeyTime = 0;
unsigned long lastPressKeyTime = 0;
unsigned long updownDebounceMs = 50;
const unsigned long pressDebounceMs = 200;
};

View File

@@ -6,44 +6,33 @@ UpDownInterruptImpl1 *upDownInterruptImpl1;
UpDownInterruptImpl1::UpDownInterruptImpl1() : UpDownInterruptBase("upDown1") {}
bool UpDownInterruptImpl1::init()
{
bool UpDownInterruptImpl1::init() {
if (!moduleConfig.canned_message.updown1_enabled) {
// Input device is disabled.
return false;
}
if (!moduleConfig.canned_message.updown1_enabled) {
// Input device is disabled.
return false;
}
uint8_t pinUp = moduleConfig.canned_message.inputbroker_pin_a;
uint8_t pinDown = moduleConfig.canned_message.inputbroker_pin_b;
uint8_t pinPress = moduleConfig.canned_message.inputbroker_pin_press;
uint8_t pinUp = moduleConfig.canned_message.inputbroker_pin_a;
uint8_t pinDown = moduleConfig.canned_message.inputbroker_pin_b;
uint8_t pinPress = moduleConfig.canned_message.inputbroker_pin_press;
input_broker_event eventDown = INPUT_BROKER_USER_PRESS; // acts like RIGHT/DOWN
input_broker_event eventUp = INPUT_BROKER_ALT_PRESS; // acts like LEFT/UP
input_broker_event eventPressed = INPUT_BROKER_SELECT;
input_broker_event eventPressedLong = INPUT_BROKER_SELECT_LONG;
input_broker_event eventUpLong = INPUT_BROKER_UP_LONG;
input_broker_event eventDownLong = INPUT_BROKER_DOWN_LONG;
input_broker_event eventDown = INPUT_BROKER_USER_PRESS; // acts like RIGHT/DOWN
input_broker_event eventUp = INPUT_BROKER_ALT_PRESS; // acts like LEFT/UP
input_broker_event eventPressed = INPUT_BROKER_SELECT;
input_broker_event eventPressedLong = INPUT_BROKER_SELECT_LONG;
input_broker_event eventUpLong = INPUT_BROKER_UP_LONG;
input_broker_event eventDownLong = INPUT_BROKER_DOWN_LONG;
UpDownInterruptBase::init(pinDown, pinUp, pinPress, eventDown, eventUp, eventPressed, eventPressedLong, eventUpLong,
eventDownLong, UpDownInterruptImpl1::handleIntDown, UpDownInterruptImpl1::handleIntUp,
UpDownInterruptImpl1::handleIntPressed);
inputBroker->registerSource(this);
UpDownInterruptBase::init(pinDown, pinUp, pinPress, eventDown, eventUp, eventPressed, eventPressedLong, eventUpLong, eventDownLong,
UpDownInterruptImpl1::handleIntDown, UpDownInterruptImpl1::handleIntUp, UpDownInterruptImpl1::handleIntPressed);
inputBroker->registerSource(this);
#ifndef HAS_PHYSICAL_KEYBOARD
osk_found = true;
osk_found = true;
#endif
return true;
return true;
}
void UpDownInterruptImpl1::handleIntDown()
{
upDownInterruptImpl1->intDownHandler();
}
void UpDownInterruptImpl1::handleIntUp()
{
upDownInterruptImpl1->intUpHandler();
}
void UpDownInterruptImpl1::handleIntPressed()
{
upDownInterruptImpl1->intPressHandler();
}
void UpDownInterruptImpl1::handleIntDown() { upDownInterruptImpl1->intDownHandler(); }
void UpDownInterruptImpl1::handleIntUp() { upDownInterruptImpl1->intUpHandler(); }
void UpDownInterruptImpl1::handleIntPressed() { upDownInterruptImpl1->intPressHandler(); }

View File

@@ -1,14 +1,13 @@
#pragma once
#include "UpDownInterruptBase.h"
class UpDownInterruptImpl1 : public UpDownInterruptBase
{
public:
UpDownInterruptImpl1();
bool init();
static void handleIntDown();
static void handleIntUp();
static void handleIntPressed();
class UpDownInterruptImpl1 : public UpDownInterruptBase {
public:
UpDownInterruptImpl1();
bool init();
static void handleIntDown();
static void handleIntUp();
static void handleIntPressed();
};
extern UpDownInterruptImpl1 *upDownInterruptImpl1;

View File

@@ -7,69 +7,68 @@ CardKbI2cImpl *cardKbI2cImpl;
CardKbI2cImpl::CardKbI2cImpl() : KbI2cBase("cardKB") {}
void CardKbI2cImpl::init()
{
void CardKbI2cImpl::init() {
#if !MESHTASTIC_EXCLUDE_I2C && !defined(ARCH_PORTDUINO) && !defined(I2C_NO_RESCAN)
if (cardkb_found.address == 0x00) {
LOG_DEBUG("Rescan for I2C keyboard");
uint8_t i2caddr_scan[] = {CARDKB_ADDR, TDECK_KB_ADDR, BBQ10_KB_ADDR, MPR121_KB_ADDR, TCA8418_KB_ADDR};
if (cardkb_found.address == 0x00) {
LOG_DEBUG("Rescan for I2C keyboard");
uint8_t i2caddr_scan[] = {CARDKB_ADDR, TDECK_KB_ADDR, BBQ10_KB_ADDR, MPR121_KB_ADDR, TCA8418_KB_ADDR};
#if defined(T_LORA_PAGER)
uint8_t i2caddr_asize = sizeof(i2caddr_scan) / sizeof(i2caddr_scan[0]);
uint8_t i2caddr_asize = sizeof(i2caddr_scan) / sizeof(i2caddr_scan[0]);
#else
uint8_t i2caddr_asize = 5;
uint8_t i2caddr_asize = 5;
#endif
auto i2cScanner = std::unique_ptr<ScanI2CTwoWire>(new ScanI2CTwoWire());
auto i2cScanner = std::unique_ptr<ScanI2CTwoWire>(new ScanI2CTwoWire());
#if WIRE_INTERFACES_COUNT == 2
i2cScanner->scanPort(ScanI2C::I2CPort::WIRE1, i2caddr_scan, i2caddr_asize);
i2cScanner->scanPort(ScanI2C::I2CPort::WIRE1, i2caddr_scan, i2caddr_asize);
#endif
i2cScanner->scanPort(ScanI2C::I2CPort::WIRE, i2caddr_scan, i2caddr_asize);
auto kb_info = i2cScanner->firstKeyboard();
i2cScanner->scanPort(ScanI2C::I2CPort::WIRE, i2caddr_scan, i2caddr_asize);
auto kb_info = i2cScanner->firstKeyboard();
if (kb_info.type != ScanI2C::DeviceType::NONE) {
cardkb_found = kb_info.address;
switch (kb_info.type) {
case ScanI2C::DeviceType::RAK14004:
kb_model = 0x02;
break;
case ScanI2C::DeviceType::CARDKB:
kb_model = 0x00;
break;
case ScanI2C::DeviceType::TDECKKB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x10;
break;
case ScanI2C::DeviceType::BBQ10KB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x11;
break;
case ScanI2C::DeviceType::MPR121KB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x37;
break;
case ScanI2C::DeviceType::TCA8418KB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x84;
break;
default:
// use this as default since it's also just zero
LOG_WARN("kb_info.type is unknown(0x%02x), setting kb_model=0x00", kb_info.type);
kb_model = 0x00;
}
}
if (cardkb_found.address == 0x00) {
disable();
return;
} else {
LOG_DEBUG("Keyboard Type: 0x%02x Model: 0x%02x Address: 0x%02x", kb_info.type, kb_model, cardkb_found.address);
}
if (kb_info.type != ScanI2C::DeviceType::NONE) {
cardkb_found = kb_info.address;
switch (kb_info.type) {
case ScanI2C::DeviceType::RAK14004:
kb_model = 0x02;
break;
case ScanI2C::DeviceType::CARDKB:
kb_model = 0x00;
break;
case ScanI2C::DeviceType::TDECKKB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x10;
break;
case ScanI2C::DeviceType::BBQ10KB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x11;
break;
case ScanI2C::DeviceType::MPR121KB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x37;
break;
case ScanI2C::DeviceType::TCA8418KB:
// assign an arbitrary value to distinguish from other models
kb_model = 0x84;
break;
default:
// use this as default since it's also just zero
LOG_WARN("kb_info.type is unknown(0x%02x), setting kb_model=0x00", kb_info.type);
kb_model = 0x00;
}
}
#else
if (cardkb_found.address == 0x00) {
disable();
return;
disable();
return;
} else {
LOG_DEBUG("Keyboard Type: 0x%02x Model: 0x%02x Address: 0x%02x", kb_info.type, kb_model, cardkb_found.address);
}
}
#else
if (cardkb_found.address == 0x00) {
disable();
return;
}
#endif
inputBroker->registerSource(this);
kb_found = true;
inputBroker->registerSource(this);
kb_found = true;
}

View File

@@ -8,11 +8,10 @@
* to your device as you wish, but you always need to have separate event
* handlers, thus you need to have a RotaryEncoderInterrupt implementation.
*/
class CardKbI2cImpl : public KbI2cBase
{
public:
CardKbI2cImpl();
void init();
class CardKbI2cImpl : public KbI2cBase {
public:
CardKbI2cImpl();
void init();
};
extern CardKbI2cImpl *cardKbI2cImpl;

View File

@@ -31,65 +31,63 @@ extern void i2c_write_byte(uint8_t addr, uint8_t reg, uint8_t value);
#define PI4IO_REG_IN_STA 0x0F
#define PI4IO_REG_CHIP_RESET 0x01
i2cButtonThread::i2cButtonThread(const char *name) : OSThread(name)
{
_originName = name;
if (inputBroker)
inputBroker->registerSource(this);
i2cButtonThread::i2cButtonThread(const char *name) : OSThread(name) {
_originName = name;
if (inputBroker)
inputBroker->registerSource(this);
}
int32_t i2cButtonThread::runOnce()
{
static bool btn1_pressed = false;
static uint32_t press_start_time = 0;
const uint32_t LONG_PRESS_TIME = 1000;
static bool long_press_triggered = false;
int32_t i2cButtonThread::runOnce() {
static bool btn1_pressed = false;
static uint32_t press_start_time = 0;
const uint32_t LONG_PRESS_TIME = 1000;
static bool long_press_triggered = false;
uint8_t in_data;
i2c_read_byte(PI4IO_M_ADDR, PI4IO_REG_IRQ_STA, &in_data);
i2c_write_byte(PI4IO_M_ADDR, PI4IO_REG_IRQ_STA, in_data);
if (getbit(in_data, 0)) {
uint8_t input_state;
i2c_read_byte(PI4IO_M_ADDR, PI4IO_REG_IN_STA, &input_state);
uint8_t in_data;
i2c_read_byte(PI4IO_M_ADDR, PI4IO_REG_IRQ_STA, &in_data);
i2c_write_byte(PI4IO_M_ADDR, PI4IO_REG_IRQ_STA, in_data);
if (getbit(in_data, 0)) {
uint8_t input_state;
i2c_read_byte(PI4IO_M_ADDR, PI4IO_REG_IN_STA, &input_state);
if (!getbit(input_state, 0)) {
if (!btn1_pressed) {
btn1_pressed = true;
press_start_time = millis();
long_press_triggered = false;
}
} else {
if (btn1_pressed) {
btn1_pressed = false;
uint32_t press_duration = millis() - press_start_time;
if (long_press_triggered) {
long_press_triggered = false;
return 50;
}
if (press_duration < LONG_PRESS_TIME) {
InputEvent evt;
evt.source = "UserButton";
evt.inputEvent = INPUT_BROKER_USER_PRESS;
evt.kbchar = 0;
evt.touchX = 0;
evt.touchY = 0;
this->notifyObservers(&evt);
}
}
if (!getbit(input_state, 0)) {
if (!btn1_pressed) {
btn1_pressed = true;
press_start_time = millis();
long_press_triggered = false;
}
} else {
if (btn1_pressed) {
btn1_pressed = false;
uint32_t press_duration = millis() - press_start_time;
if (long_press_triggered) {
long_press_triggered = false;
return 50;
}
}
if (btn1_pressed && !long_press_triggered && (millis() - press_start_time >= LONG_PRESS_TIME)) {
long_press_triggered = true;
InputEvent evt;
evt.source = "UserButton";
evt.inputEvent = INPUT_BROKER_SELECT;
evt.kbchar = 0;
evt.touchX = 0;
evt.touchY = 0;
this->notifyObservers(&evt);
if (press_duration < LONG_PRESS_TIME) {
InputEvent evt;
evt.source = "UserButton";
evt.inputEvent = INPUT_BROKER_USER_PRESS;
evt.kbchar = 0;
evt.touchX = 0;
evt.touchY = 0;
this->notifyObservers(&evt);
}
}
}
return 50;
}
if (btn1_pressed && !long_press_triggered && (millis() - press_start_time >= LONG_PRESS_TIME)) {
long_press_triggered = true;
InputEvent evt;
evt.source = "UserButton";
evt.inputEvent = INPUT_BROKER_SELECT;
evt.kbchar = 0;
evt.touchX = 0;
evt.touchY = 0;
this->notifyObservers(&evt);
}
return 50;
}
#endif

View File

@@ -6,12 +6,11 @@
#include "configuration.h"
#if defined(M5STACK_UNITC6L)
class i2cButtonThread : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
const char *_originName;
explicit i2cButtonThread(const char *name);
int32_t runOnce() override;
class i2cButtonThread : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
const char *_originName;
explicit i2cButtonThread(const char *name);
int32_t runOnce() override;
};
extern i2cButtonThread *i2cButton;

View File

@@ -28,505 +28,502 @@ KbI2cBase::KbI2cBase(const char *name)
TCAKeyboard(*(new TCA8418Keyboard()))
#endif
{
this->_originName = name;
this->_originName = name;
}
uint8_t read_from_14004(TwoWire *i2cBus, uint8_t reg, uint8_t *data, uint8_t length)
{
uint8_t readflag = 0;
i2cBus->beginTransmission(CARDKB_ADDR);
i2cBus->write(reg);
i2cBus->endTransmission(); // stop transmitting
delay(20);
i2cBus->requestFrom(CARDKB_ADDR, (int)length);
int i = 0;
while (i2cBus->available()) // slave may send less than requested
{
data[i++] = i2cBus->read(); // receive a byte as a proper uint8_t
readflag = 1;
}
return readflag;
uint8_t read_from_14004(TwoWire *i2cBus, uint8_t reg, uint8_t *data, uint8_t length) {
uint8_t readflag = 0;
i2cBus->beginTransmission(CARDKB_ADDR);
i2cBus->write(reg);
i2cBus->endTransmission(); // stop transmitting
delay(20);
i2cBus->requestFrom(CARDKB_ADDR, (int)length);
int i = 0;
while (i2cBus->available()) // slave may send less than requested
{
data[i++] = i2cBus->read(); // receive a byte as a proper uint8_t
readflag = 1;
}
return readflag;
}
int32_t KbI2cBase::runOnce()
{
if (!i2cBus) {
switch (cardkb_found.port) {
case ScanI2C::WIRE1:
int32_t KbI2cBase::runOnce() {
if (!i2cBus) {
switch (cardkb_found.port) {
case ScanI2C::WIRE1:
#if WIRE_INTERFACES_COUNT == 2
LOG_DEBUG("Use I2C Bus 1 (the second one)");
i2cBus = &Wire1;
if (cardkb_found.address == BBQ10_KB_ADDR) {
Q10keyboard.begin(BBQ10_KB_ADDR, &Wire1);
Q10keyboard.setBacklight(0);
}
if (cardkb_found.address == MPR121_KB_ADDR) {
MPRkeyboard.begin(MPR121_KB_ADDR, &Wire1);
}
if (cardkb_found.address == TCA8418_KB_ADDR) {
TCAKeyboard.begin(TCA8418_KB_ADDR, &Wire1);
}
break;
LOG_DEBUG("Use I2C Bus 1 (the second one)");
i2cBus = &Wire1;
if (cardkb_found.address == BBQ10_KB_ADDR) {
Q10keyboard.begin(BBQ10_KB_ADDR, &Wire1);
Q10keyboard.setBacklight(0);
}
if (cardkb_found.address == MPR121_KB_ADDR) {
MPRkeyboard.begin(MPR121_KB_ADDR, &Wire1);
}
if (cardkb_found.address == TCA8418_KB_ADDR) {
TCAKeyboard.begin(TCA8418_KB_ADDR, &Wire1);
}
break;
#endif
case ScanI2C::WIRE:
LOG_DEBUG("Use I2C Bus 0 (the first one)");
i2cBus = &Wire;
if (cardkb_found.address == BBQ10_KB_ADDR) {
Q10keyboard.begin(BBQ10_KB_ADDR, &Wire);
Q10keyboard.setBacklight(0);
}
if (cardkb_found.address == MPR121_KB_ADDR) {
MPRkeyboard.begin(MPR121_KB_ADDR, &Wire);
}
if (cardkb_found.address == TCA8418_KB_ADDR) {
TCAKeyboard.begin(TCA8418_KB_ADDR, &Wire);
}
break;
case ScanI2C::NO_I2C:
default:
i2cBus = 0;
}
}
switch (kb_model) {
case 0x11: { // BB Q10
int keyCount = Q10keyboard.keyCount();
while (keyCount--) {
const BBQ10Keyboard::KeyEvent key = Q10keyboard.keyEvent();
if ((key.key != 0x00) && (key.state == BBQ10Keyboard::StateRelease)) {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
switch (key.key) {
case 'p': // TAB
case 't': // TAB as well
if (is_sym) {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x09; // TAB Scancode
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 'q': // ESC
if (is_sym) {
e.inputEvent = INPUT_BROKER_CANCEL;
e.kbchar = 0;
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 0x08: // Back
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = key.key;
break;
case 'e': // sym e
if (is_sym) {
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = INPUT_BROKER_UP;
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 'x': // sym x
if (is_sym) {
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0;
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 's': // sym s
if (is_sym) {
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0x00; // tweak for destSelect
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 'f': // sym f
if (is_sym) {
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0x00; // tweak for destSelect
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 0x13: // Code scanner says the SYM key is 0x13
is_sym = !is_sym;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = is_sym ? INPUT_BROKER_MSG_FN_SYMBOL_ON // send 0xf1 to tell CannedMessages to display that
: INPUT_BROKER_MSG_FN_SYMBOL_OFF; // the modifier key is active
break;
case 0x0a: // apparently Enter on Q10 is a line feed instead of carriage return
e.inputEvent = INPUT_BROKER_SELECT;
break;
case 0x00: // nopress
e.inputEvent = INPUT_BROKER_NONE;
break;
default: // all other keys
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
is_sym = false; // reset sym state after second keypress
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
}
}
break;
}
case 0x37: { // MPR121
MPRkeyboard.trigger();
InputEvent e = {};
while (MPRkeyboard.hasEvent()) {
char nextEvent = MPRkeyboard.dequeueEvent();
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x00;
e.source = this->_originName;
switch (nextEvent) {
case 0x00: // MPR121_NONE
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
case 0x90: // MPR121_REBOOT
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_REBOOT;
break;
case 0xb4: // MPR121_LEFT
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0x00;
break;
case 0xb5: // MPR121_UP
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = 0x00;
break;
case 0xb6: // MPR121_DOWN
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0x00;
break;
case 0xb7: // MPR121_RIGHT
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0x00;
break;
case 0x1b: // MPR121_ESC
e.inputEvent = INPUT_BROKER_CANCEL;
e.kbchar = 0;
break;
case 0x08: // MPR121_BSP
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
break;
case 0x0d: // MPR121_SELECT
e.inputEvent = INPUT_BROKER_SELECT;
e.kbchar = 0x00;
break;
default:
if (nextEvent > 127) {
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = nextEvent;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
LOG_DEBUG("MP121 Notifying: %i Char: %i", e.inputEvent, e.kbchar);
this->notifyObservers(&e);
}
}
break;
}
case 0x84: { // Adafruit TCA8418
TCAKeyboard.trigger();
InputEvent e = {};
while (TCAKeyboard.hasEvent()) {
char nextEvent = TCAKeyboard.dequeueEvent();
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x00;
e.source = this->_originName;
switch (nextEvent) {
case TCA8418KeyboardBase::NONE:
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::REBOOT:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_REBOOT;
break;
case TCA8418KeyboardBase::LEFT:
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::UP:
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::DOWN:
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::RIGHT:
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::BSP:
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
break;
case TCA8418KeyboardBase::SELECT:
e.inputEvent = INPUT_BROKER_SELECT;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::ESC:
e.inputEvent = INPUT_BROKER_CANCEL;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::GPS_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_GPS_TOGGLE;
break;
case TCA8418KeyboardBase::SEND_PING:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_SEND_PING;
break;
case TCA8418KeyboardBase::MUTE_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_MUTE_TOGGLE;
break;
case TCA8418KeyboardBase::BT_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BLUETOOTH_TOGGLE;
break;
case TCA8418KeyboardBase::BL_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BLUETOOTH_TOGGLE;
break;
case TCA8418KeyboardBase::TAB:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_TAB;
break;
default:
if (nextEvent > 127) {
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = nextEvent;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
// LOG_DEBUG("TCA8418 Notifying: %i Char: %c", e.inputEvent, e.kbchar);
this->notifyObservers(&e);
}
TCAKeyboard.trigger();
}
TCAKeyboard.clearInt();
break;
}
case 0x02: {
// RAK14004
uint8_t rDataBuf[8] = {0};
uint8_t PrintDataBuf = 0;
if (read_from_14004(i2cBus, 0x01, rDataBuf, 0x04) == 1) {
for (uint8_t aCount = 0; aCount < 0x04; aCount++) {
for (uint8_t bCount = 0; bCount < 0x04; bCount++) {
if (((rDataBuf[aCount] >> bCount) & 0x01) == 0x01) {
PrintDataBuf = aCount * 0x04 + bCount + 1;
}
}
}
}
if (PrintDataBuf != 0) {
LOG_DEBUG("RAK14004 key 0x%x pressed", PrintDataBuf);
InputEvent e = {};
e.inputEvent = INPUT_BROKER_MATRIXKEY;
e.source = this->_originName;
e.kbchar = PrintDataBuf;
this->notifyObservers(&e);
}
break;
}
case 0x00: // CARDKB
case 0x10: { // T-DECK
i2cBus->requestFrom((int)cardkb_found.address, 1);
if (i2cBus->available()) {
char c = i2cBus->read();
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
switch (c) {
case 0x71: // This is the button q. If modifier and q pressed, it cancels the input
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_CANCEL;
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x74: // letter t. if modifier and t pressed call 'tab'
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x09; // TAB Scancode
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x6d: // letter m. Modifier makes it mute notifications
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_MUTE_TOGGLE; // mute notifications
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x6f: // letter o(+). Modifier makes screen increase in brightness
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BRIGHTNESS_UP; // Increase Brightness code
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x69: // letter i(-). Modifier makes screen decrease in brightness
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BRIGHTNESS_DOWN; // Decrease Brightness code
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x20: // Space. Send network ping like double press does
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_SEND_PING; // (fn + space)
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x67: // letter g. toggle gps
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_GPS_TOGGLE;
e.kbchar = INPUT_BROKER_GPS_TOGGLE;
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x1b: // ESC
e.inputEvent = INPUT_BROKER_CANCEL;
break;
case 0x08: // Back
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0;
break;
case 0xb5: // Up
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = 0;
break;
case 0xb6: // Down
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0;
break;
case 0xb4: // Left
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0;
break;
case 0xb7: // Right
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0;
break;
case 0xc: // Modifier key: 0xc is alt+c (Other options could be: 0xea = shift+mic button or 0x4 shift+$(speaker))
// toggle moddifiers button.
is_sym = !is_sym;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = is_sym ? INPUT_BROKER_MSG_FN_SYMBOL_ON // send 0xf1 to tell CannedMessages to display that the
: INPUT_BROKER_MSG_FN_SYMBOL_OFF; // modifier key is active
break;
case 0x9e: // fn+g INPUT_BROKER_GPS_TOGGLE
e.inputEvent = INPUT_BROKER_GPS_TOGGLE;
e.kbchar = c;
break;
case 0xaf: // fn+space INPUT_BROKER_SEND_PING
e.inputEvent = INPUT_BROKER_SEND_PING;
e.kbchar = c;
break;
case 0x9b: // fn+s INPUT_BROKER_MSG_SHUTDOWN
e.inputEvent = INPUT_BROKER_SHUTDOWN;
e.kbchar = c;
break;
case 0x90: // fn+r INPUT_BROKER_MSG_REBOOT
case 0x91: // fn+t
case 0xac: // fn+m INPUT_BROKER_MSG_MUTE_TOGGLE
case 0xAA: // fn+b INPUT_BROKER_MSG_BLUETOOTH_TOGGLE
case 0x8F: // fn+e INPUT_BROKER_MSG_EMOTE_LIST
// just pass those unmodified
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
break;
case 0x0d: // Enter
e.inputEvent = INPUT_BROKER_SELECT;
break;
case 0x00: // nopress
e.inputEvent = INPUT_BROKER_NONE;
break;
default: // all other keys
if (c > 127) { // bogus key value
e.inputEvent = INPUT_BROKER_NONE;
break;
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
is_sym = false;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
}
break;
}
case ScanI2C::WIRE:
LOG_DEBUG("Use I2C Bus 0 (the first one)");
i2cBus = &Wire;
if (cardkb_found.address == BBQ10_KB_ADDR) {
Q10keyboard.begin(BBQ10_KB_ADDR, &Wire);
Q10keyboard.setBacklight(0);
}
if (cardkb_found.address == MPR121_KB_ADDR) {
MPRkeyboard.begin(MPR121_KB_ADDR, &Wire);
}
if (cardkb_found.address == TCA8418_KB_ADDR) {
TCAKeyboard.begin(TCA8418_KB_ADDR, &Wire);
}
break;
case ScanI2C::NO_I2C:
default:
LOG_WARN("Unknown kb_model 0x%02x", kb_model);
i2cBus = 0;
}
return 300;
}
switch (kb_model) {
case 0x11: { // BB Q10
int keyCount = Q10keyboard.keyCount();
while (keyCount--) {
const BBQ10Keyboard::KeyEvent key = Q10keyboard.keyEvent();
if ((key.key != 0x00) && (key.state == BBQ10Keyboard::StateRelease)) {
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
switch (key.key) {
case 'p': // TAB
case 't': // TAB as well
if (is_sym) {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x09; // TAB Scancode
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 'q': // ESC
if (is_sym) {
e.inputEvent = INPUT_BROKER_CANCEL;
e.kbchar = 0;
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 0x08: // Back
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = key.key;
break;
case 'e': // sym e
if (is_sym) {
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = INPUT_BROKER_UP;
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 'x': // sym x
if (is_sym) {
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0;
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 's': // sym s
if (is_sym) {
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0x00; // tweak for destSelect
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 'f': // sym f
if (is_sym) {
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0x00; // tweak for destSelect
is_sym = false; // reset sym state after second keypress
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
}
break;
case 0x13: // Code scanner says the SYM key is 0x13
is_sym = !is_sym;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = is_sym ? INPUT_BROKER_MSG_FN_SYMBOL_ON // send 0xf1 to tell CannedMessages to display that
: INPUT_BROKER_MSG_FN_SYMBOL_OFF; // the modifier key is active
break;
case 0x0a: // apparently Enter on Q10 is a line feed instead of carriage return
e.inputEvent = INPUT_BROKER_SELECT;
break;
case 0x00: // nopress
e.inputEvent = INPUT_BROKER_NONE;
break;
default: // all other keys
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key.key;
is_sym = false; // reset sym state after second keypress
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
}
}
break;
}
case 0x37: { // MPR121
MPRkeyboard.trigger();
InputEvent e = {};
while (MPRkeyboard.hasEvent()) {
char nextEvent = MPRkeyboard.dequeueEvent();
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x00;
e.source = this->_originName;
switch (nextEvent) {
case 0x00: // MPR121_NONE
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
case 0x90: // MPR121_REBOOT
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_REBOOT;
break;
case 0xb4: // MPR121_LEFT
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0x00;
break;
case 0xb5: // MPR121_UP
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = 0x00;
break;
case 0xb6: // MPR121_DOWN
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0x00;
break;
case 0xb7: // MPR121_RIGHT
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0x00;
break;
case 0x1b: // MPR121_ESC
e.inputEvent = INPUT_BROKER_CANCEL;
e.kbchar = 0;
break;
case 0x08: // MPR121_BSP
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
break;
case 0x0d: // MPR121_SELECT
e.inputEvent = INPUT_BROKER_SELECT;
e.kbchar = 0x00;
break;
default:
if (nextEvent > 127) {
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = nextEvent;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
LOG_DEBUG("MP121 Notifying: %i Char: %i", e.inputEvent, e.kbchar);
this->notifyObservers(&e);
}
}
break;
}
case 0x84: { // Adafruit TCA8418
TCAKeyboard.trigger();
InputEvent e = {};
while (TCAKeyboard.hasEvent()) {
char nextEvent = TCAKeyboard.dequeueEvent();
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x00;
e.source = this->_originName;
switch (nextEvent) {
case TCA8418KeyboardBase::NONE:
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::REBOOT:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_REBOOT;
break;
case TCA8418KeyboardBase::LEFT:
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::UP:
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::DOWN:
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::RIGHT:
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::BSP:
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0x08;
break;
case TCA8418KeyboardBase::SELECT:
e.inputEvent = INPUT_BROKER_SELECT;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::ESC:
e.inputEvent = INPUT_BROKER_CANCEL;
e.kbchar = 0x00;
break;
case TCA8418KeyboardBase::GPS_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_GPS_TOGGLE;
break;
case TCA8418KeyboardBase::SEND_PING:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_SEND_PING;
break;
case TCA8418KeyboardBase::MUTE_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_MUTE_TOGGLE;
break;
case TCA8418KeyboardBase::BT_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BLUETOOTH_TOGGLE;
break;
case TCA8418KeyboardBase::BL_TOGGLE:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BLUETOOTH_TOGGLE;
break;
case TCA8418KeyboardBase::TAB:
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_TAB;
break;
default:
if (nextEvent > 127) {
e.inputEvent = INPUT_BROKER_NONE;
e.kbchar = 0x00;
break;
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = nextEvent;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
// LOG_DEBUG("TCA8418 Notifying: %i Char: %c", e.inputEvent, e.kbchar);
this->notifyObservers(&e);
}
TCAKeyboard.trigger();
}
TCAKeyboard.clearInt();
break;
}
case 0x02: {
// RAK14004
uint8_t rDataBuf[8] = {0};
uint8_t PrintDataBuf = 0;
if (read_from_14004(i2cBus, 0x01, rDataBuf, 0x04) == 1) {
for (uint8_t aCount = 0; aCount < 0x04; aCount++) {
for (uint8_t bCount = 0; bCount < 0x04; bCount++) {
if (((rDataBuf[aCount] >> bCount) & 0x01) == 0x01) {
PrintDataBuf = aCount * 0x04 + bCount + 1;
}
}
}
}
if (PrintDataBuf != 0) {
LOG_DEBUG("RAK14004 key 0x%x pressed", PrintDataBuf);
InputEvent e = {};
e.inputEvent = INPUT_BROKER_MATRIXKEY;
e.source = this->_originName;
e.kbchar = PrintDataBuf;
this->notifyObservers(&e);
}
break;
}
case 0x00: // CARDKB
case 0x10: { // T-DECK
i2cBus->requestFrom((int)cardkb_found.address, 1);
if (i2cBus->available()) {
char c = i2cBus->read();
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
switch (c) {
case 0x71: // This is the button q. If modifier and q pressed, it cancels the input
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_CANCEL;
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x74: // letter t. if modifier and t pressed call 'tab'
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = 0x09; // TAB Scancode
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x6d: // letter m. Modifier makes it mute notifications
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_MUTE_TOGGLE; // mute notifications
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x6f: // letter o(+). Modifier makes screen increase in brightness
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BRIGHTNESS_UP; // Increase Brightness code
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x69: // letter i(-). Modifier makes screen decrease in brightness
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_MSG_BRIGHTNESS_DOWN; // Decrease Brightness code
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x20: // Space. Send network ping like double press does
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = INPUT_BROKER_SEND_PING; // (fn + space)
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x67: // letter g. toggle gps
if (is_sym) {
is_sym = false;
e.inputEvent = INPUT_BROKER_GPS_TOGGLE;
e.kbchar = INPUT_BROKER_GPS_TOGGLE;
} else {
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
}
break;
case 0x1b: // ESC
e.inputEvent = INPUT_BROKER_CANCEL;
break;
case 0x08: // Back
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0;
break;
case 0xb5: // Up
e.inputEvent = INPUT_BROKER_UP;
e.kbchar = 0;
break;
case 0xb6: // Down
e.inputEvent = INPUT_BROKER_DOWN;
e.kbchar = 0;
break;
case 0xb4: // Left
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0;
break;
case 0xb7: // Right
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0;
break;
case 0xc: // Modifier key: 0xc is alt+c (Other options could be: 0xea = shift+mic button or 0x4 shift+$(speaker))
// toggle moddifiers button.
is_sym = !is_sym;
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = is_sym ? INPUT_BROKER_MSG_FN_SYMBOL_ON // send 0xf1 to tell CannedMessages to display that the
: INPUT_BROKER_MSG_FN_SYMBOL_OFF; // modifier key is active
break;
case 0x9e: // fn+g INPUT_BROKER_GPS_TOGGLE
e.inputEvent = INPUT_BROKER_GPS_TOGGLE;
e.kbchar = c;
break;
case 0xaf: // fn+space INPUT_BROKER_SEND_PING
e.inputEvent = INPUT_BROKER_SEND_PING;
e.kbchar = c;
break;
case 0x9b: // fn+s INPUT_BROKER_MSG_SHUTDOWN
e.inputEvent = INPUT_BROKER_SHUTDOWN;
e.kbchar = c;
break;
case 0x90: // fn+r INPUT_BROKER_MSG_REBOOT
case 0x91: // fn+t
case 0xac: // fn+m INPUT_BROKER_MSG_MUTE_TOGGLE
case 0xAA: // fn+b INPUT_BROKER_MSG_BLUETOOTH_TOGGLE
case 0x8F: // fn+e INPUT_BROKER_MSG_EMOTE_LIST
// just pass those unmodified
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
break;
case 0x0d: // Enter
e.inputEvent = INPUT_BROKER_SELECT;
break;
case 0x00: // nopress
e.inputEvent = INPUT_BROKER_NONE;
break;
default: // all other keys
if (c > 127) { // bogus key value
e.inputEvent = INPUT_BROKER_NONE;
break;
}
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = c;
is_sym = false;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
}
break;
}
default:
LOG_WARN("Unknown kb_model 0x%02x", kb_model);
}
return 300;
}
void KbI2cBase::toggleBacklight(bool on)
{
void KbI2cBase::toggleBacklight(bool on) {
#if defined(T_LORA_PAGER)
TCAKeyboard.setBacklight(on);
TCAKeyboard.setBacklight(on);
#endif
}

View File

@@ -8,22 +8,21 @@
class TCA8418KeyboardBase;
class KbI2cBase : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit KbI2cBase(const char *name);
void toggleBacklight(bool on);
class KbI2cBase : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit KbI2cBase(const char *name);
void toggleBacklight(bool on);
protected:
virtual int32_t runOnce() override;
protected:
virtual int32_t runOnce() override;
private:
const char *_originName;
private:
const char *_originName;
TwoWire *i2cBus = 0;
TwoWire *i2cBus = 0;
BBQ10Keyboard Q10keyboard;
MPR121Keyboard MPRkeyboard;
TCA8418KeyboardBase &TCAKeyboard;
bool is_sym = false;
BBQ10Keyboard Q10keyboard;
MPR121Keyboard MPRkeyboard;
TCA8418KeyboardBase &TCAKeyboard;
bool is_sym = false;
};

View File

@@ -30,102 +30,98 @@ unsigned char KeyMap[3][sizeof(keys_rows)][sizeof(keys_cols)] = {{{' ', '.', 'm'
{'1', '2', '3', '4', '5', 0x1a}}};
#endif
KbMatrixBase::KbMatrixBase(const char *name) : concurrency::OSThread(name)
{
this->_originName = name;
}
KbMatrixBase::KbMatrixBase(const char *name) : concurrency::OSThread(name) { this->_originName = name; }
int32_t KbMatrixBase::runOnce()
{
if (!INPUTBROKER_MATRIX_TYPE) {
// Input device is not requested.
return disable();
int32_t KbMatrixBase::runOnce() {
if (!INPUTBROKER_MATRIX_TYPE) {
// Input device is not requested.
return disable();
}
if (firstTime) {
// This is the first time the OSThread library has called this function, so do port setup
firstTime = 0;
for (byte i = 0; i < sizeof(keys_rows); i++) {
pinMode(keys_rows[i], OUTPUT);
digitalWrite(keys_rows[i], HIGH);
}
for (byte i = 0; i < sizeof(keys_cols); i++) {
pinMode(keys_cols[i], INPUT_PULLUP);
}
}
key = 0;
if (INPUTBROKER_MATRIX_TYPE == 1) {
// scan for keypresses
for (byte i = 0; i < sizeof(keys_rows); i++) {
digitalWrite(keys_rows[i], LOW);
for (byte j = 0; j < sizeof(keys_cols); j++) {
if (digitalRead(keys_cols[j]) == LOW) {
key = KeyMap[shift][i][j];
}
}
digitalWrite(keys_rows[i], HIGH);
}
// debounce
if (key != prevkey) {
if (key != 0) {
LOG_DEBUG("Key 0x%x pressed", key);
// reset shift now that we have a keypress
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
switch (key) {
case 0x1b: // ESC
e.inputEvent = INPUT_BROKER_CANCEL;
break;
case 0x08: // Back
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0;
break;
case 0xb5: // Up
e.inputEvent = INPUT_BROKER_UP;
break;
case 0xb6: // Down
e.inputEvent = INPUT_BROKER_DOWN;
break;
case 0xb4: // Left
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0;
break;
case 0xb7: // Right
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0;
break;
case 0x0d: // Enter
e.inputEvent = INPUT_BROKER_SELECT;
break;
case 0x00: // nopress
e.inputEvent = INPUT_BROKER_NONE;
break;
case 0x1a: // Shift
shift++;
if (shift > 2) {
shift = 0;
}
break;
default: // all other keys
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
}
prevkey = key;
}
if (firstTime) {
// This is the first time the OSThread library has called this function, so do port setup
firstTime = 0;
for (byte i = 0; i < sizeof(keys_rows); i++) {
pinMode(keys_rows[i], OUTPUT);
digitalWrite(keys_rows[i], HIGH);
}
for (byte i = 0; i < sizeof(keys_cols); i++) {
pinMode(keys_cols[i], INPUT_PULLUP);
}
}
key = 0;
if (INPUTBROKER_MATRIX_TYPE == 1) {
// scan for keypresses
for (byte i = 0; i < sizeof(keys_rows); i++) {
digitalWrite(keys_rows[i], LOW);
for (byte j = 0; j < sizeof(keys_cols); j++) {
if (digitalRead(keys_cols[j]) == LOW) {
key = KeyMap[shift][i][j];
}
}
digitalWrite(keys_rows[i], HIGH);
}
// debounce
if (key != prevkey) {
if (key != 0) {
LOG_DEBUG("Key 0x%x pressed", key);
// reset shift now that we have a keypress
InputEvent e = {};
e.inputEvent = INPUT_BROKER_NONE;
e.source = this->_originName;
switch (key) {
case 0x1b: // ESC
e.inputEvent = INPUT_BROKER_CANCEL;
break;
case 0x08: // Back
e.inputEvent = INPUT_BROKER_BACK;
e.kbchar = 0;
break;
case 0xb5: // Up
e.inputEvent = INPUT_BROKER_UP;
break;
case 0xb6: // Down
e.inputEvent = INPUT_BROKER_DOWN;
break;
case 0xb4: // Left
e.inputEvent = INPUT_BROKER_LEFT;
e.kbchar = 0;
break;
case 0xb7: // Right
e.inputEvent = INPUT_BROKER_RIGHT;
e.kbchar = 0;
break;
case 0x0d: // Enter
e.inputEvent = INPUT_BROKER_SELECT;
break;
case 0x00: // nopress
e.inputEvent = INPUT_BROKER_NONE;
break;
case 0x1a: // Shift
shift++;
if (shift > 2) {
shift = 0;
}
break;
default: // all other keys
e.inputEvent = INPUT_BROKER_ANYKEY;
e.kbchar = key;
break;
}
if (e.inputEvent != INPUT_BROKER_NONE) {
this->notifyObservers(&e);
}
}
prevkey = key;
}
} else {
LOG_WARN("Unknown kb_model 0x%02x", INPUTBROKER_MATRIX_TYPE);
return disable();
}
return 50; // Keyscan every 50msec to avoid key bounce
} else {
LOG_WARN("Unknown kb_model 0x%02x", INPUTBROKER_MATRIX_TYPE);
return disable();
}
return 50; // Keyscan every 50msec to avoid key bounce
}
#endif // INPUTBROKER_MATRIX_TYPE

View File

@@ -3,18 +3,17 @@
#include "InputBroker.h"
#include "concurrency/OSThread.h"
class KbMatrixBase : public Observable<const InputEvent *>, public concurrency::OSThread
{
public:
explicit KbMatrixBase(const char *name);
class KbMatrixBase : public Observable<const InputEvent *>, public concurrency::OSThread {
public:
explicit KbMatrixBase(const char *name);
protected:
virtual int32_t runOnce() override;
protected:
virtual int32_t runOnce() override;
private:
const char *_originName;
bool firstTime = 1;
int shift = 0;
char key = 0;
char prevkey = 0;
private:
const char *_originName;
bool firstTime = 1;
int shift = 0;
char key = 0;
char prevkey = 0;
};

View File

@@ -7,14 +7,13 @@ KbMatrixImpl *kbMatrixImpl;
KbMatrixImpl::KbMatrixImpl() : KbMatrixBase("matrixKB") {}
void KbMatrixImpl::init()
{
if (!INPUTBROKER_MATRIX_TYPE) {
disable();
return;
}
void KbMatrixImpl::init() {
if (!INPUTBROKER_MATRIX_TYPE) {
disable();
return;
}
inputBroker->registerSource(this);
inputBroker->registerSource(this);
}
#endif // INPUTBROKER_MATRIX_TYPE

View File

@@ -9,11 +9,10 @@
* to your device as you wish, but you always need to have separate event
* handlers, thus you need to have a RotaryEncoderInterrupt implementation.
*/
class KbMatrixImpl : public KbMatrixBase
{
public:
KbMatrixImpl();
void init();
class KbMatrixImpl : public KbMatrixBase {
public:
KbMatrixImpl();
void init();
};
extern KbMatrixImpl *kbMatrixImpl;