add a .clang-format file (#9154)

This commit is contained in:
Jorropo
2026-01-03 21:19:24 +01:00
committed by GitHub
parent abab6ce815
commit 0d11331d18
771 changed files with 77752 additions and 83184 deletions

View File

@@ -8,302 +8,284 @@
using namespace NicheGraphics::Inputs;
TwoButton::TwoButton() : concurrency::OSThread("TwoButton")
{
// Don't start polling buttons for release immediately
// Assume they are in a "released" state at boot
OSThread::disable();
TwoButton::TwoButton() : concurrency::OSThread("TwoButton") {
// Don't start polling buttons for release immediately
// Assume they are in a "released" state at boot
OSThread::disable();
#ifdef ARCH_ESP32
// Register callbacks for before and after lightsleep
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
// Register callbacks for before and after lightsleep
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
#endif
// Explicitly initialize these, just to keep cppcheck quiet..
buttons[0] = Button();
buttons[1] = Button();
// Explicitly initialize these, just to keep cppcheck quiet..
buttons[0] = Button();
buttons[1] = Button();
}
// Get access to (or create) the singleton instance of this class
// Accessible inside the ISRs, even though we maybe shouldn't
TwoButton *TwoButton::getInstance()
{
// Instantiate the class the first time this method is called
static TwoButton *const singletonInstance = new TwoButton;
TwoButton *TwoButton::getInstance() {
// Instantiate the class the first time this method is called
static TwoButton *const singletonInstance = new TwoButton;
return singletonInstance;
return singletonInstance;
}
// Begin receiving button input
// We probably need to do this after sleep, as well as at boot
void TwoButton::start()
{
if (buttons[0].pin != 0xFF)
attachInterrupt(buttons[0].pin, TwoButton::isrPrimary, buttons[0].activeLogic == LOW ? FALLING : RISING);
void TwoButton::start() {
if (buttons[0].pin != 0xFF)
attachInterrupt(buttons[0].pin, TwoButton::isrPrimary, buttons[0].activeLogic == LOW ? FALLING : RISING);
if (buttons[1].pin != 0xFF)
attachInterrupt(buttons[1].pin, TwoButton::isrSecondary, buttons[1].activeLogic == LOW ? FALLING : RISING);
if (buttons[1].pin != 0xFF)
attachInterrupt(buttons[1].pin, TwoButton::isrSecondary, buttons[1].activeLogic == LOW ? FALLING : RISING);
}
// Stop receiving button input, and run custom sleep code
// Called before device sleeps. This might be power-off, or just ESP32 light sleep
// Some devices will want to attach interrupts here, for the user button to wake from sleep
void TwoButton::stop()
{
if (buttons[0].pin != 0xFF)
detachInterrupt(buttons[0].pin);
void TwoButton::stop() {
if (buttons[0].pin != 0xFF)
detachInterrupt(buttons[0].pin);
if (buttons[1].pin != 0xFF)
detachInterrupt(buttons[1].pin);
if (buttons[1].pin != 0xFF)
detachInterrupt(buttons[1].pin);
}
// Attempt to resolve a GPIO pin for the user button, honoring userPrefs.jsonc and device settings
// This helper method isn't used by the TweButton class itself, it could be moved elsewhere.
// Intention is to pass this value to TwoButton::setWiring in the setupNicheGraphics method.
uint8_t TwoButton::getUserButtonPin()
{
uint8_t pin = 0xFF; // Unset
uint8_t TwoButton::getUserButtonPin() {
uint8_t pin = 0xFF; // Unset
// Use default pin for variant, if no better source
// Use default pin for variant, if no better source
#ifdef BUTTON_PIN
pin = BUTTON_PIN;
pin = BUTTON_PIN;
#endif
// From userPrefs.jsonc, if set
// From userPrefs.jsonc, if set
#ifdef USERPREFS_BUTTON_PIN
pin = USERPREFS_BUTTON_PIN;
pin = USERPREFS_BUTTON_PIN;
#endif
// From user's override in device settings, if set
if (config.device.button_gpio)
pin = config.device.button_gpio;
// From user's override in device settings, if set
if (config.device.button_gpio)
pin = config.device.button_gpio;
return pin;
return pin;
}
// Configures the wiring and logic of either button
// Called when outlining your NicheGraphics implementation, in variant/nicheGraphics.cpp
void TwoButton::setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup)
{
// Prevent the same GPIO being assigned to multiple buttons
// Allows an edge case when the user remaps hardware buttons using device settings, due to a broken user button
for (uint8_t i = 0; i < whichButton; i++) {
if (buttons[i].pin == pin) {
LOG_WARN("Attempted reuse of GPIO %d. Ignoring assignment whichButton=%d", pin, whichButton);
return;
}
void TwoButton::setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup) {
// Prevent the same GPIO being assigned to multiple buttons
// Allows an edge case when the user remaps hardware buttons using device settings, due to a broken user button
for (uint8_t i = 0; i < whichButton; i++) {
if (buttons[i].pin == pin) {
LOG_WARN("Attempted reuse of GPIO %d. Ignoring assignment whichButton=%d", pin, whichButton);
return;
}
}
assert(whichButton < 2);
buttons[whichButton].pin = pin;
buttons[whichButton].activeLogic = LOW; // Unimplemented
assert(whichButton < 2);
buttons[whichButton].pin = pin;
buttons[whichButton].activeLogic = LOW; // Unimplemented
pinMode(buttons[whichButton].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(buttons[whichButton].pin, internalPullup ? INPUT_PULLUP : INPUT);
}
void TwoButton::setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs)
{
assert(whichButton < 2);
buttons[whichButton].debounceLength = debounceMs;
buttons[whichButton].longpressLength = longpressMs;
void TwoButton::setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs) {
assert(whichButton < 2);
buttons[whichButton].debounceLength = debounceMs;
buttons[whichButton].longpressLength = longpressMs;
}
// Set what should happen when a button becomes pressed
// Use this to implement a "while held" behavior
void TwoButton::setHandlerDown(uint8_t whichButton, Callback onDown)
{
assert(whichButton < 2);
buttons[whichButton].onDown = onDown;
void TwoButton::setHandlerDown(uint8_t whichButton, Callback onDown) {
assert(whichButton < 2);
buttons[whichButton].onDown = onDown;
}
// Set what should happen when a button becomes unpressed
// Use this to implement a "While held" behavior
void TwoButton::setHandlerUp(uint8_t whichButton, Callback onUp)
{
assert(whichButton < 2);
buttons[whichButton].onUp = onUp;
void TwoButton::setHandlerUp(uint8_t whichButton, Callback onUp) {
assert(whichButton < 2);
buttons[whichButton].onUp = onUp;
}
// Set what should happen when a "short press" event has occurred
void TwoButton::setHandlerShortPress(uint8_t whichButton, Callback onShortPress)
{
assert(whichButton < 2);
buttons[whichButton].onShortPress = onShortPress;
void TwoButton::setHandlerShortPress(uint8_t whichButton, Callback onShortPress) {
assert(whichButton < 2);
buttons[whichButton].onShortPress = onShortPress;
}
// Set what should happen when a "long press" event has fired
// Note: this will occur while the button is still held
void TwoButton::setHandlerLongPress(uint8_t whichButton, Callback onLongPress)
{
assert(whichButton < 2);
buttons[whichButton].onLongPress = onLongPress;
void TwoButton::setHandlerLongPress(uint8_t whichButton, Callback onLongPress) {
assert(whichButton < 2);
buttons[whichButton].onLongPress = onLongPress;
}
// Handle the start of a press to the primary button
// Wakes our button thread
void TwoButton::isrPrimary()
{
static volatile bool isrRunning = false;
void TwoButton::isrPrimary() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButton *b = TwoButton::getInstance();
if (b->buttons[0].state == State::REST) {
b->buttons[0].state = State::IRQ;
b->buttons[0].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButton *b = TwoButton::getInstance();
if (b->buttons[0].state == State::REST) {
b->buttons[0].state = State::IRQ;
b->buttons[0].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
// Handle the start of a press to the secondary button
// Wakes our button thread
void TwoButton::isrSecondary()
{
static volatile bool isrRunning = false;
void TwoButton::isrSecondary() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButton *b = TwoButton::getInstance();
if (b->buttons[1].state == State::REST) {
b->buttons[1].state = State::IRQ;
b->buttons[1].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButton *b = TwoButton::getInstance();
if (b->buttons[1].state == State::REST) {
b->buttons[1].state = State::IRQ;
b->buttons[1].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
// Concise method to start our button thread
// Follows an ISR, listening for button release
void TwoButton::startThread()
{
if (!OSThread::enabled) {
OSThread::setInterval(10);
OSThread::enabled = true;
}
void TwoButton::startThread() {
if (!OSThread::enabled) {
OSThread::setInterval(10);
OSThread::enabled = true;
}
}
// Concise method to stop our button thread
// Called when we no longer need to poll for button release
void TwoButton::stopThread()
{
if (OSThread::enabled) {
OSThread::disable();
}
void TwoButton::stopThread() {
if (OSThread::enabled) {
OSThread::disable();
}
// Reset both buttons manually
// Just in case an IRQ fires during the process of resetting the system
// Can occur with super rapid presses?
buttons[0].state = REST;
buttons[1].state = REST;
// Reset both buttons manually
// Just in case an IRQ fires during the process of resetting the system
// Can occur with super rapid presses?
buttons[0].state = REST;
buttons[1].state = REST;
}
// Our button thread
// Started by an IRQ, on either button
// Polls for button releases
// Stops when both buttons released
int32_t TwoButton::runOnce()
{
constexpr uint8_t BUTTON_COUNT = sizeof(buttons) / sizeof(Button);
int32_t TwoButton::runOnce() {
constexpr uint8_t BUTTON_COUNT = sizeof(buttons) / sizeof(Button);
// Allow either button to request that our thread should continue polling
bool awaitingRelease = false;
// Allow either button to request that our thread should continue polling
bool awaitingRelease = false;
// Check both primary and secondary buttons
for (uint8_t i = 0; i < BUTTON_COUNT; i++) {
switch (buttons[i].state) {
// No action: button has not been pressed
case REST:
break;
// Check both primary and secondary buttons
for (uint8_t i = 0; i < BUTTON_COUNT; i++) {
switch (buttons[i].state) {
// No action: button has not been pressed
case REST:
break;
// New press detected by interrupt
case IRQ:
powerFSM.trigger(EVENT_PRESS); // Tell PowerFSM that press occurred (resets sleep timer)
buttons[i].onDown(); // Run callback: press has begun (possible hold behavior)
buttons[i].state = State::POLLING_UNFIRED; // Mark that button-down has been handled
awaitingRelease = true; // Mark that polling-for-release should continue
break;
// New press detected by interrupt
case IRQ:
powerFSM.trigger(EVENT_PRESS); // Tell PowerFSM that press occurred (resets sleep timer)
buttons[i].onDown(); // Run callback: press has begun (possible hold behavior)
buttons[i].state = State::POLLING_UNFIRED; // Mark that button-down has been handled
awaitingRelease = true; // Mark that polling-for-release should continue
break;
// An existing press continues
// Not held long enough to register as longpress
case POLLING_UNFIRED: {
uint32_t length = millis() - buttons[i].irqAtMillis;
// An existing press continues
// Not held long enough to register as longpress
case POLLING_UNFIRED: {
uint32_t length = millis() - buttons[i].irqAtMillis;
// If button released since last thread tick,
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].onUp(); // Run callback: press has ended (possible release of a hold)
buttons[i].state = State::REST; // Mark that the button has reset
if (length > buttons[i].debounceLength && length < buttons[i].longpressLength) // If too short for longpress,
buttons[i].onShortPress(); // Run callback: short press
}
// If button released since last thread tick,
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].onUp(); // Run callback: press has ended (possible release of a hold)
buttons[i].state = State::REST; // Mark that the button has reset
if (length > buttons[i].debounceLength && length < buttons[i].longpressLength) // If too short for longpress,
buttons[i].onShortPress(); // Run callback: short press
}
// If button not yet released
else {
awaitingRelease = true; // Mark that polling-for-release should continue
if (length >= buttons[i].longpressLength) {
// Run callback: long press (once)
// Then continue waiting for release, to rearm
buttons[i].state = State::POLLING_FIRED;
buttons[i].onLongPress();
}
}
break;
}
// Button still held, but duration long enough that longpress event already fired
// Just waiting for release
case POLLING_FIRED:
// Release detected
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].state = State::REST;
buttons[i].onUp(); // Callback: release of hold (in this case: *after* longpress has fired)
}
// Not yet released, keep polling
else
awaitingRelease = true;
break;
// If button not yet released
else {
awaitingRelease = true; // Mark that polling-for-release should continue
if (length >= buttons[i].longpressLength) {
// Run callback: long press (once)
// Then continue waiting for release, to rearm
buttons[i].state = State::POLLING_FIRED;
buttons[i].onLongPress();
}
}
break;
}
// If both buttons are now released
// we don't need to waste cpu resources polling
// IRQ will restart this thread when we next need it
if (!awaitingRelease)
stopThread();
// Button still held, but duration long enough that longpress event already fired
// Just waiting for release
case POLLING_FIRED:
// Release detected
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].state = State::REST;
buttons[i].onUp(); // Callback: release of hold (in this case: *after* longpress has fired)
}
// Not yet released, keep polling
else
awaitingRelease = true;
break;
}
}
// Run this method again, or don't..
// Use whatever behavior was previously set by stopThread() or startThread()
return OSThread::interval;
// If both buttons are now released
// we don't need to waste cpu resources polling
// IRQ will restart this thread when we next need it
if (!awaitingRelease)
stopThread();
// Run this method again, or don't..
// Use whatever behavior was previously set by stopThread() or startThread()
return OSThread::interval;
}
#ifdef ARCH_ESP32
// Detach our class' interrupts before lightsleep
// Allows sleep.cpp to configure its own interrupts, which wake the device on user-button press
int TwoButton::beforeLightSleep(void *unused)
{
stop();
return 0; // Indicates success
int TwoButton::beforeLightSleep(void *unused) {
stop();
return 0; // Indicates success
}
// Reconfigure our interrupts
// Our class' interrupts were disconnected during sleep, to allow the user button to wake the device from sleep
int TwoButton::afterLightSleep(esp_sleep_wakeup_cause_t cause)
{
start();
int TwoButton::afterLightSleep(esp_sleep_wakeup_cause_t cause) {
start();
// Manually trigger the button-down ISR
// - during light sleep, our ISR is disabled
// - if light sleep ends by button press, pretend our own ISR caught it
// - need to manually confirm by reading pin ourselves, to avoid occasional false positives
// (false positive only when using internal pullup resistors?)
if (cause == ESP_SLEEP_WAKEUP_GPIO && digitalRead(buttons[0].pin) == buttons[0].activeLogic)
isrPrimary();
// Manually trigger the button-down ISR
// - during light sleep, our ISR is disabled
// - if light sleep ends by button press, pretend our own ISR caught it
// - need to manually confirm by reading pin ourselves, to avoid occasional false positives
// (false positive only when using internal pullup resistors?)
if (cause == ESP_SLEEP_WAKEUP_GPIO && digitalRead(buttons[0].pin) == buttons[0].activeLogic)
isrPrimary();
return 0; // Indicates success
return 0; // Indicates success
}
#endif

View File

@@ -22,81 +22,78 @@ Interrupt driven
#include "Observer.h"
namespace NicheGraphics::Inputs
{
namespace NicheGraphics::Inputs {
class TwoButton : protected concurrency::OSThread
{
class TwoButton : protected concurrency::OSThread {
public:
typedef std::function<void()> Callback;
static uint8_t getUserButtonPin(); // Resolve the GPIO, considering the various possible source of definition
static TwoButton *getInstance(); // Create or get the singleton instance
void start(); // Start handling button input
void stop(); // Stop handling button input (disconnect ISRs for sleep)
void setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup = false);
void setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs);
void setHandlerDown(uint8_t whichButton, Callback onDown);
void setHandlerUp(uint8_t whichButton, Callback onUp);
void setHandlerShortPress(uint8_t whichButton, Callback onShortPress);
void setHandlerLongPress(uint8_t whichButton, Callback onLongPress);
// Disconnect and reconnect interrupts for light sleep
#ifdef ARCH_ESP32
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
#endif
private:
// Internal state of a specific button
enum State {
REST, // Up, no activity
IRQ, // Down detected, not yet handled
POLLING_UNFIRED, // Down handled, polling for release
POLLING_FIRED, // Longpress fired, button still held
};
// Contains info about a specific button
// (Array of this struct below)
class Button {
public:
typedef std::function<void()> Callback;
// Per-button config
uint8_t pin = 0xFF; // 0xFF: unset
bool activeLogic = LOW; // Active LOW by default. Currently unimplemented.
uint32_t debounceLength = 50; // Minimum length for shortpress, in ms
uint32_t longpressLength = 500; // How long after button down to fire longpress, in ms
volatile State state = State::REST; // Internal state
volatile uint32_t irqAtMillis; // millis() when button went down
static uint8_t getUserButtonPin(); // Resolve the GPIO, considering the various possible source of definition
static TwoButton *getInstance(); // Create or get the singleton instance
void start(); // Start handling button input
void stop(); // Stop handling button input (disconnect ISRs for sleep)
void setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup = false);
void setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs);
void setHandlerDown(uint8_t whichButton, Callback onDown);
void setHandlerUp(uint8_t whichButton, Callback onUp);
void setHandlerShortPress(uint8_t whichButton, Callback onShortPress);
void setHandlerLongPress(uint8_t whichButton, Callback onLongPress);
// Disconnect and reconnect interrupts for light sleep
#ifdef ARCH_ESP32
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
#endif
private:
// Internal state of a specific button
enum State {
REST, // Up, no activity
IRQ, // Down detected, not yet handled
POLLING_UNFIRED, // Down handled, polling for release
POLLING_FIRED, // Longpress fired, button still held
};
// Contains info about a specific button
// (Array of this struct below)
class Button
{
public:
// Per-button config
uint8_t pin = 0xFF; // 0xFF: unset
bool activeLogic = LOW; // Active LOW by default. Currently unimplemented.
uint32_t debounceLength = 50; // Minimum length for shortpress, in ms
uint32_t longpressLength = 500; // How long after button down to fire longpress, in ms
volatile State state = State::REST; // Internal state
volatile uint32_t irqAtMillis; // millis() when button went down
// Per-button event callbacks
static void noop(){};
std::function<void()> onDown = noop;
std::function<void()> onUp = noop;
std::function<void()> onShortPress = noop;
std::function<void()> onLongPress = noop;
};
// Per-button event callbacks
static void noop(){};
std::function<void()> onDown = noop;
std::function<void()> onUp = noop;
std::function<void()> onShortPress = noop;
std::function<void()> onLongPress = noop;
};
#ifdef ARCH_ESP32
// Get notified when lightsleep begins and ends
CallbackObserver<TwoButton, void *> lsObserver = CallbackObserver<TwoButton, void *>(this, &TwoButton::beforeLightSleep);
CallbackObserver<TwoButton, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<TwoButton, esp_sleep_wakeup_cause_t>(this, &TwoButton::afterLightSleep);
// Get notified when lightsleep begins and ends
CallbackObserver<TwoButton, void *> lsObserver = CallbackObserver<TwoButton, void *>(this, &TwoButton::beforeLightSleep);
CallbackObserver<TwoButton, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<TwoButton, esp_sleep_wakeup_cause_t>(this, &TwoButton::afterLightSleep);
#endif
int32_t runOnce() override; // Timer method. Polls for button release
int32_t runOnce() override; // Timer method. Polls for button release
void startThread(); // Start polling for release
void stopThread(); // Stop polling for release
void startThread(); // Start polling for release
void stopThread(); // Stop polling for release
static void isrPrimary(); // Detect start of press
static void isrSecondary(); // Detect start of press (optional aux button)
static void isrPrimary(); // Detect start of press
static void isrSecondary(); // Detect start of press (optional aux button)
TwoButton(); // Constructor made private: force use of Button::instance()
TwoButton(); // Constructor made private: force use of Button::instance()
// Info about both buttons
Button buttons[2];
// Info about both buttons
Button buttons[2];
};
}; // namespace NicheGraphics::Inputs

View File

@@ -8,514 +8,481 @@
using namespace NicheGraphics::Inputs;
TwoButtonExtended::TwoButtonExtended() : concurrency::OSThread("TwoButtonExtended")
{
// Don't start polling buttons for release immediately
// Assume they are in a "released" state at boot
OSThread::disable();
TwoButtonExtended::TwoButtonExtended() : concurrency::OSThread("TwoButtonExtended") {
// Don't start polling buttons for release immediately
// Assume they are in a "released" state at boot
OSThread::disable();
#ifdef ARCH_ESP32
// Register callbacks for before and after lightsleep
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
// Register callbacks for before and after lightsleep
lsObserver.observe(&notifyLightSleep);
lsEndObserver.observe(&notifyLightSleepEnd);
#endif
// Explicitly initialize these, just to keep cppcheck quiet..
buttons[0] = Button();
buttons[1] = Button();
joystick[Direction::UP] = SimpleButton();
joystick[Direction::DOWN] = SimpleButton();
joystick[Direction::LEFT] = SimpleButton();
joystick[Direction::RIGHT] = SimpleButton();
// Explicitly initialize these, just to keep cppcheck quiet..
buttons[0] = Button();
buttons[1] = Button();
joystick[Direction::UP] = SimpleButton();
joystick[Direction::DOWN] = SimpleButton();
joystick[Direction::LEFT] = SimpleButton();
joystick[Direction::RIGHT] = SimpleButton();
}
// Get access to (or create) the singleton instance of this class
// Accessible inside the ISRs, even though we maybe shouldn't
TwoButtonExtended *TwoButtonExtended::getInstance()
{
// Instantiate the class the first time this method is called
static TwoButtonExtended *const singletonInstance = new TwoButtonExtended;
TwoButtonExtended *TwoButtonExtended::getInstance() {
// Instantiate the class the first time this method is called
static TwoButtonExtended *const singletonInstance = new TwoButtonExtended;
return singletonInstance;
return singletonInstance;
}
// Begin receiving button input
// We probably need to do this after sleep, as well as at boot
void TwoButtonExtended::start()
{
if (buttons[0].pin != 0xFF)
attachInterrupt(buttons[0].pin, TwoButtonExtended::isrPrimary, buttons[0].activeLogic == LOW ? FALLING : RISING);
void TwoButtonExtended::start() {
if (buttons[0].pin != 0xFF)
attachInterrupt(buttons[0].pin, TwoButtonExtended::isrPrimary, buttons[0].activeLogic == LOW ? FALLING : RISING);
if (buttons[1].pin != 0xFF)
attachInterrupt(buttons[1].pin, TwoButtonExtended::isrSecondary, buttons[1].activeLogic == LOW ? FALLING : RISING);
if (buttons[1].pin != 0xFF)
attachInterrupt(buttons[1].pin, TwoButtonExtended::isrSecondary, buttons[1].activeLogic == LOW ? FALLING : RISING);
if (joystick[Direction::UP].pin != 0xFF)
attachInterrupt(joystick[Direction::UP].pin, TwoButtonExtended::isrJoystickUp,
joystickActiveLogic == LOW ? FALLING : RISING);
if (joystick[Direction::UP].pin != 0xFF)
attachInterrupt(joystick[Direction::UP].pin, TwoButtonExtended::isrJoystickUp, joystickActiveLogic == LOW ? FALLING : RISING);
if (joystick[Direction::DOWN].pin != 0xFF)
attachInterrupt(joystick[Direction::DOWN].pin, TwoButtonExtended::isrJoystickDown,
joystickActiveLogic == LOW ? FALLING : RISING);
if (joystick[Direction::DOWN].pin != 0xFF)
attachInterrupt(joystick[Direction::DOWN].pin, TwoButtonExtended::isrJoystickDown, joystickActiveLogic == LOW ? FALLING : RISING);
if (joystick[Direction::LEFT].pin != 0xFF)
attachInterrupt(joystick[Direction::LEFT].pin, TwoButtonExtended::isrJoystickLeft,
joystickActiveLogic == LOW ? FALLING : RISING);
if (joystick[Direction::LEFT].pin != 0xFF)
attachInterrupt(joystick[Direction::LEFT].pin, TwoButtonExtended::isrJoystickLeft, joystickActiveLogic == LOW ? FALLING : RISING);
if (joystick[Direction::RIGHT].pin != 0xFF)
attachInterrupt(joystick[Direction::RIGHT].pin, TwoButtonExtended::isrJoystickRight,
joystickActiveLogic == LOW ? FALLING : RISING);
if (joystick[Direction::RIGHT].pin != 0xFF)
attachInterrupt(joystick[Direction::RIGHT].pin, TwoButtonExtended::isrJoystickRight, joystickActiveLogic == LOW ? FALLING : RISING);
}
// Stop receiving button input, and run custom sleep code
// Called before device sleeps. This might be power-off, or just ESP32 light sleep
// Some devices will want to attach interrupts here, for the user button to wake from sleep
void TwoButtonExtended::stop()
{
if (buttons[0].pin != 0xFF)
detachInterrupt(buttons[0].pin);
void TwoButtonExtended::stop() {
if (buttons[0].pin != 0xFF)
detachInterrupt(buttons[0].pin);
if (buttons[1].pin != 0xFF)
detachInterrupt(buttons[1].pin);
if (buttons[1].pin != 0xFF)
detachInterrupt(buttons[1].pin);
if (joystick[Direction::UP].pin != 0xFF)
detachInterrupt(joystick[Direction::UP].pin);
if (joystick[Direction::UP].pin != 0xFF)
detachInterrupt(joystick[Direction::UP].pin);
if (joystick[Direction::DOWN].pin != 0xFF)
detachInterrupt(joystick[Direction::DOWN].pin);
if (joystick[Direction::DOWN].pin != 0xFF)
detachInterrupt(joystick[Direction::DOWN].pin);
if (joystick[Direction::LEFT].pin != 0xFF)
detachInterrupt(joystick[Direction::LEFT].pin);
if (joystick[Direction::LEFT].pin != 0xFF)
detachInterrupt(joystick[Direction::LEFT].pin);
if (joystick[Direction::RIGHT].pin != 0xFF)
detachInterrupt(joystick[Direction::RIGHT].pin);
if (joystick[Direction::RIGHT].pin != 0xFF)
detachInterrupt(joystick[Direction::RIGHT].pin);
}
// Attempt to resolve a GPIO pin for the user button, honoring userPrefs.jsonc and device settings
// This helper method isn't used by the TwoButtonExtended class itself, it could be moved elsewhere.
// Intention is to pass this value to TwoButtonExtended::setWiring in the setupNicheGraphics method.
uint8_t TwoButtonExtended::getUserButtonPin()
{
uint8_t pin = 0xFF; // Unset
uint8_t TwoButtonExtended::getUserButtonPin() {
uint8_t pin = 0xFF; // Unset
// Use default pin for variant, if no better source
// Use default pin for variant, if no better source
#ifdef BUTTON_PIN
pin = BUTTON_PIN;
pin = BUTTON_PIN;
#endif
// From userPrefs.jsonc, if set
// From userPrefs.jsonc, if set
#ifdef USERPREFS_BUTTON_PIN
pin = USERPREFS_BUTTON_PIN;
pin = USERPREFS_BUTTON_PIN;
#endif
// From user's override in device settings, if set
if (config.device.button_gpio)
pin = config.device.button_gpio;
// From user's override in device settings, if set
if (config.device.button_gpio)
pin = config.device.button_gpio;
return pin;
return pin;
}
// Configures the wiring and logic of either button
// Called when outlining your NicheGraphics implementation, in variant/nicheGraphics.cpp
void TwoButtonExtended::setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup)
{
// Prevent the same GPIO being assigned to multiple buttons
// Allows an edge case when the user remaps hardware buttons using device settings, due to a broken user button
for (uint8_t i = 0; i < whichButton; i++) {
if (buttons[i].pin == pin) {
LOG_WARN("Attempted reuse of GPIO %d. Ignoring assignment whichButton=%d", pin, whichButton);
return;
}
void TwoButtonExtended::setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup) {
// Prevent the same GPIO being assigned to multiple buttons
// Allows an edge case when the user remaps hardware buttons using device settings, due to a broken user button
for (uint8_t i = 0; i < whichButton; i++) {
if (buttons[i].pin == pin) {
LOG_WARN("Attempted reuse of GPIO %d. Ignoring assignment whichButton=%d", pin, whichButton);
return;
}
}
assert(whichButton < 2);
buttons[whichButton].pin = pin;
buttons[whichButton].activeLogic = LOW;
assert(whichButton < 2);
buttons[whichButton].pin = pin;
buttons[whichButton].activeLogic = LOW;
pinMode(buttons[whichButton].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(buttons[whichButton].pin, internalPullup ? INPUT_PULLUP : INPUT);
}
// Configures the wiring and logic of the joystick buttons
// Called when outlining your NicheGraphics implementation, in variant/nicheGraphics.cpp
void TwoButtonExtended::setJoystickWiring(uint8_t uPin, uint8_t dPin, uint8_t lPin, uint8_t rPin, bool internalPullup)
{
if (joystick[Direction::UP].pin == uPin || joystick[Direction::DOWN].pin == dPin || joystick[Direction::LEFT].pin == lPin ||
joystick[Direction::RIGHT].pin == rPin) {
LOG_WARN("Attempted reuse of Joystick GPIO. Ignoring assignment");
return;
}
void TwoButtonExtended::setJoystickWiring(uint8_t uPin, uint8_t dPin, uint8_t lPin, uint8_t rPin, bool internalPullup) {
if (joystick[Direction::UP].pin == uPin || joystick[Direction::DOWN].pin == dPin || joystick[Direction::LEFT].pin == lPin ||
joystick[Direction::RIGHT].pin == rPin) {
LOG_WARN("Attempted reuse of Joystick GPIO. Ignoring assignment");
return;
}
joystick[Direction::UP].pin = uPin;
joystick[Direction::DOWN].pin = dPin;
joystick[Direction::LEFT].pin = lPin;
joystick[Direction::RIGHT].pin = rPin;
joystickActiveLogic = LOW;
joystick[Direction::UP].pin = uPin;
joystick[Direction::DOWN].pin = dPin;
joystick[Direction::LEFT].pin = lPin;
joystick[Direction::RIGHT].pin = rPin;
joystickActiveLogic = LOW;
pinMode(joystick[Direction::UP].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(joystick[Direction::DOWN].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(joystick[Direction::LEFT].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(joystick[Direction::RIGHT].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(joystick[Direction::UP].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(joystick[Direction::DOWN].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(joystick[Direction::LEFT].pin, internalPullup ? INPUT_PULLUP : INPUT);
pinMode(joystick[Direction::RIGHT].pin, internalPullup ? INPUT_PULLUP : INPUT);
}
void TwoButtonExtended::setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs)
{
assert(whichButton < 2);
buttons[whichButton].debounceLength = debounceMs;
buttons[whichButton].longpressLength = longpressMs;
void TwoButtonExtended::setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs) {
assert(whichButton < 2);
buttons[whichButton].debounceLength = debounceMs;
buttons[whichButton].longpressLength = longpressMs;
}
void TwoButtonExtended::setJoystickDebounce(uint32_t debounceMs)
{
joystickDebounceLength = debounceMs;
}
void TwoButtonExtended::setJoystickDebounce(uint32_t debounceMs) { joystickDebounceLength = debounceMs; }
// Set what should happen when a button becomes pressed
// Use this to implement a "while held" behavior
void TwoButtonExtended::setHandlerDown(uint8_t whichButton, Callback onDown)
{
assert(whichButton < 2);
buttons[whichButton].onDown = onDown;
void TwoButtonExtended::setHandlerDown(uint8_t whichButton, Callback onDown) {
assert(whichButton < 2);
buttons[whichButton].onDown = onDown;
}
// Set what should happen when a button becomes unpressed
// Use this to implement a "While held" behavior
void TwoButtonExtended::setHandlerUp(uint8_t whichButton, Callback onUp)
{
assert(whichButton < 2);
buttons[whichButton].onUp = onUp;
void TwoButtonExtended::setHandlerUp(uint8_t whichButton, Callback onUp) {
assert(whichButton < 2);
buttons[whichButton].onUp = onUp;
}
// Set what should happen when a "short press" event has occurred
void TwoButtonExtended::setHandlerShortPress(uint8_t whichButton, Callback onPress)
{
assert(whichButton < 2);
buttons[whichButton].onPress = onPress;
void TwoButtonExtended::setHandlerShortPress(uint8_t whichButton, Callback onPress) {
assert(whichButton < 2);
buttons[whichButton].onPress = onPress;
}
// Set what should happen when a "long press" event has fired
// Note: this will occur while the button is still held
void TwoButtonExtended::setHandlerLongPress(uint8_t whichButton, Callback onLongPress)
{
assert(whichButton < 2);
buttons[whichButton].onLongPress = onLongPress;
void TwoButtonExtended::setHandlerLongPress(uint8_t whichButton, Callback onLongPress) {
assert(whichButton < 2);
buttons[whichButton].onLongPress = onLongPress;
}
// Set what should happen when a joystick button becomes pressed
// Use this to implement a "while held" behavior
void TwoButtonExtended::setJoystickDownHandlers(Callback uDown, Callback dDown, Callback lDown, Callback rDown)
{
joystick[Direction::UP].onDown = uDown;
joystick[Direction::DOWN].onDown = dDown;
joystick[Direction::LEFT].onDown = lDown;
joystick[Direction::RIGHT].onDown = rDown;
void TwoButtonExtended::setJoystickDownHandlers(Callback uDown, Callback dDown, Callback lDown, Callback rDown) {
joystick[Direction::UP].onDown = uDown;
joystick[Direction::DOWN].onDown = dDown;
joystick[Direction::LEFT].onDown = lDown;
joystick[Direction::RIGHT].onDown = rDown;
}
// Set what should happen when a joystick button becomes unpressed
// Use this to implement a "while held" behavior
void TwoButtonExtended::setJoystickUpHandlers(Callback uUp, Callback dUp, Callback lUp, Callback rUp)
{
joystick[Direction::UP].onUp = uUp;
joystick[Direction::DOWN].onUp = dUp;
joystick[Direction::LEFT].onUp = lUp;
joystick[Direction::RIGHT].onUp = rUp;
void TwoButtonExtended::setJoystickUpHandlers(Callback uUp, Callback dUp, Callback lUp, Callback rUp) {
joystick[Direction::UP].onUp = uUp;
joystick[Direction::DOWN].onUp = dUp;
joystick[Direction::LEFT].onUp = lUp;
joystick[Direction::RIGHT].onUp = rUp;
}
// Set what should happen when a "press" event has fired
// Note: this will occur while the joystick button is still held
void TwoButtonExtended::setJoystickPressHandlers(Callback uPress, Callback dPress, Callback lPress, Callback rPress)
{
joystick[Direction::UP].onPress = uPress;
joystick[Direction::DOWN].onPress = dPress;
joystick[Direction::LEFT].onPress = lPress;
joystick[Direction::RIGHT].onPress = rPress;
void TwoButtonExtended::setJoystickPressHandlers(Callback uPress, Callback dPress, Callback lPress, Callback rPress) {
joystick[Direction::UP].onPress = uPress;
joystick[Direction::DOWN].onPress = dPress;
joystick[Direction::LEFT].onPress = lPress;
joystick[Direction::RIGHT].onPress = rPress;
}
// Handle the start of a press to the primary button
// Wakes our button thread
void TwoButtonExtended::isrPrimary()
{
static volatile bool isrRunning = false;
void TwoButtonExtended::isrPrimary() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->buttons[0].state == State::REST) {
b->buttons[0].state = State::IRQ;
b->buttons[0].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->buttons[0].state == State::REST) {
b->buttons[0].state = State::IRQ;
b->buttons[0].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
// Handle the start of a press to the secondary button
// Wakes our button thread
void TwoButtonExtended::isrSecondary()
{
static volatile bool isrRunning = false;
void TwoButtonExtended::isrSecondary() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->buttons[1].state == State::REST) {
b->buttons[1].state = State::IRQ;
b->buttons[1].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->buttons[1].state == State::REST) {
b->buttons[1].state = State::IRQ;
b->buttons[1].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
// Handle the start of a press to the joystick buttons
// Also wakes our button thread
void TwoButtonExtended::isrJoystickUp()
{
static volatile bool isrRunning = false;
void TwoButtonExtended::isrJoystickUp() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::UP].state == State::REST) {
b->joystick[Direction::UP].state = State::IRQ;
b->joystick[Direction::UP].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::UP].state == State::REST) {
b->joystick[Direction::UP].state = State::IRQ;
b->joystick[Direction::UP].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
void TwoButtonExtended::isrJoystickDown()
{
static volatile bool isrRunning = false;
void TwoButtonExtended::isrJoystickDown() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::DOWN].state == State::REST) {
b->joystick[Direction::DOWN].state = State::IRQ;
b->joystick[Direction::DOWN].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::DOWN].state == State::REST) {
b->joystick[Direction::DOWN].state = State::IRQ;
b->joystick[Direction::DOWN].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
void TwoButtonExtended::isrJoystickLeft()
{
static volatile bool isrRunning = false;
void TwoButtonExtended::isrJoystickLeft() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::LEFT].state == State::REST) {
b->joystick[Direction::LEFT].state = State::IRQ;
b->joystick[Direction::LEFT].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::LEFT].state == State::REST) {
b->joystick[Direction::LEFT].state = State::IRQ;
b->joystick[Direction::LEFT].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
void TwoButtonExtended::isrJoystickRight()
{
static volatile bool isrRunning = false;
void TwoButtonExtended::isrJoystickRight() {
static volatile bool isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::RIGHT].state == State::REST) {
b->joystick[Direction::RIGHT].state = State::IRQ;
b->joystick[Direction::RIGHT].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
if (!isrRunning) {
isrRunning = true;
TwoButtonExtended *b = TwoButtonExtended::getInstance();
if (b->joystick[Direction::RIGHT].state == State::REST) {
b->joystick[Direction::RIGHT].state = State::IRQ;
b->joystick[Direction::RIGHT].irqAtMillis = millis();
b->startThread();
}
isrRunning = false;
}
}
// Concise method to start our button thread
// Follows an ISR, listening for button release
void TwoButtonExtended::startThread()
{
if (!OSThread::enabled) {
OSThread::setInterval(10);
OSThread::enabled = true;
}
void TwoButtonExtended::startThread() {
if (!OSThread::enabled) {
OSThread::setInterval(10);
OSThread::enabled = true;
}
}
// Concise method to stop our button thread
// Called when we no longer need to poll for button release
void TwoButtonExtended::stopThread()
{
if (OSThread::enabled) {
OSThread::disable();
}
void TwoButtonExtended::stopThread() {
if (OSThread::enabled) {
OSThread::disable();
}
// Reset both buttons manually
// Just in case an IRQ fires during the process of resetting the system
// Can occur with super rapid presses?
buttons[0].state = REST;
buttons[1].state = REST;
joystick[Direction::UP].state = REST;
joystick[Direction::DOWN].state = REST;
joystick[Direction::LEFT].state = REST;
joystick[Direction::RIGHT].state = REST;
// Reset both buttons manually
// Just in case an IRQ fires during the process of resetting the system
// Can occur with super rapid presses?
buttons[0].state = REST;
buttons[1].state = REST;
joystick[Direction::UP].state = REST;
joystick[Direction::DOWN].state = REST;
joystick[Direction::LEFT].state = REST;
joystick[Direction::RIGHT].state = REST;
}
// Our button thread
// Started by an IRQ, on either button
// Polls for button releases
// Stops when both buttons released
int32_t TwoButtonExtended::runOnce()
{
constexpr uint8_t BUTTON_COUNT = sizeof(buttons) / sizeof(Button);
constexpr uint8_t JOYSTICK_COUNT = sizeof(joystick) / sizeof(SimpleButton);
int32_t TwoButtonExtended::runOnce() {
constexpr uint8_t BUTTON_COUNT = sizeof(buttons) / sizeof(Button);
constexpr uint8_t JOYSTICK_COUNT = sizeof(joystick) / sizeof(SimpleButton);
// Allow either button to request that our thread should continue polling
bool awaitingRelease = false;
// Allow either button to request that our thread should continue polling
bool awaitingRelease = false;
// Check both primary and secondary buttons
for (uint8_t i = 0; i < BUTTON_COUNT; i++) {
switch (buttons[i].state) {
// No action: button has not been pressed
case REST:
break;
// Check both primary and secondary buttons
for (uint8_t i = 0; i < BUTTON_COUNT; i++) {
switch (buttons[i].state) {
// No action: button has not been pressed
case REST:
break;
// New press detected by interrupt
case IRQ:
powerFSM.trigger(EVENT_PRESS); // Tell PowerFSM that press occurred (resets sleep timer)
buttons[i].onDown(); // Run callback: press has begun (possible hold behavior)
buttons[i].state = State::POLLING_UNFIRED; // Mark that button-down has been handled
awaitingRelease = true; // Mark that polling-for-release should continue
break;
// New press detected by interrupt
case IRQ:
powerFSM.trigger(EVENT_PRESS); // Tell PowerFSM that press occurred (resets sleep timer)
buttons[i].onDown(); // Run callback: press has begun (possible hold behavior)
buttons[i].state = State::POLLING_UNFIRED; // Mark that button-down has been handled
awaitingRelease = true; // Mark that polling-for-release should continue
break;
// An existing press continues
// Not held long enough to register as longpress
case POLLING_UNFIRED: {
uint32_t length = millis() - buttons[i].irqAtMillis;
// An existing press continues
// Not held long enough to register as longpress
case POLLING_UNFIRED: {
uint32_t length = millis() - buttons[i].irqAtMillis;
// If button released since last thread tick,
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].onUp(); // Run callback: press has ended (possible release of a hold)
buttons[i].state = State::REST; // Mark that the button has reset
if (length > buttons[i].debounceLength && length < buttons[i].longpressLength) // If too short for longpress,
buttons[i].onPress(); // Run callback: press
}
// If button not yet released
else {
awaitingRelease = true; // Mark that polling-for-release should continue
if (length >= buttons[i].longpressLength) {
// Run callback: long press (once)
// Then continue waiting for release, to rearm
buttons[i].state = State::POLLING_FIRED;
buttons[i].onLongPress();
}
}
break;
}
// Button still held, but duration long enough that longpress event already fired
// Just waiting for release
case POLLING_FIRED:
// Release detected
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].state = State::REST;
buttons[i].onUp(); // Callback: release of hold (in this case: *after* longpress has fired)
}
// Not yet released, keep polling
else
awaitingRelease = true;
break;
// If button released since last thread tick,
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].onUp(); // Run callback: press has ended (possible release of a hold)
buttons[i].state = State::REST; // Mark that the button has reset
if (length > buttons[i].debounceLength && length < buttons[i].longpressLength) // If too short for longpress,
buttons[i].onPress(); // Run callback: press
}
// If button not yet released
else {
awaitingRelease = true; // Mark that polling-for-release should continue
if (length >= buttons[i].longpressLength) {
// Run callback: long press (once)
// Then continue waiting for release, to rearm
buttons[i].state = State::POLLING_FIRED;
buttons[i].onLongPress();
}
}
break;
}
// Check all the joystick directions
for (uint8_t i = 0; i < JOYSTICK_COUNT; i++) {
switch (joystick[i].state) {
// No action: button has not been pressed
case REST:
break;
// Button still held, but duration long enough that longpress event already fired
// Just waiting for release
case POLLING_FIRED:
// Release detected
if (digitalRead(buttons[i].pin) != buttons[i].activeLogic) {
buttons[i].state = State::REST;
buttons[i].onUp(); // Callback: release of hold (in this case: *after* longpress has fired)
}
// Not yet released, keep polling
else
awaitingRelease = true;
break;
}
}
// New press detected by interrupt
case IRQ:
powerFSM.trigger(EVENT_PRESS); // Tell PowerFSM that press occurred (resets sleep timer)
joystick[i].onDown(); // Run callback: press has begun (possible hold behavior)
joystick[i].state = State::POLLING_UNFIRED; // Mark that button-down has been handled
awaitingRelease = true; // Mark that polling-for-release should continue
break;
// Check all the joystick directions
for (uint8_t i = 0; i < JOYSTICK_COUNT; i++) {
switch (joystick[i].state) {
// No action: button has not been pressed
case REST:
break;
// An existing press continues
// Not held long enough to register as press
case POLLING_UNFIRED: {
uint32_t length = millis() - joystick[i].irqAtMillis;
// New press detected by interrupt
case IRQ:
powerFSM.trigger(EVENT_PRESS); // Tell PowerFSM that press occurred (resets sleep timer)
joystick[i].onDown(); // Run callback: press has begun (possible hold behavior)
joystick[i].state = State::POLLING_UNFIRED; // Mark that button-down has been handled
awaitingRelease = true; // Mark that polling-for-release should continue
break;
// If button released since last thread tick,
if (digitalRead(joystick[i].pin) != joystickActiveLogic) {
joystick[i].onUp(); // Run callback: press has ended (possible release of a hold)
joystick[i].state = State::REST; // Mark that the button has reset
}
// If button not yet released
else {
awaitingRelease = true; // Mark that polling-for-release should continue
if (length >= joystickDebounceLength) {
// Run callback: long press (once)
// Then continue waiting for release, to rearm
joystick[i].state = State::POLLING_FIRED;
joystick[i].onPress();
}
}
break;
}
// Button still held after press
// Just waiting for release
case POLLING_FIRED:
// Release detected
if (digitalRead(joystick[i].pin) != joystickActiveLogic) {
joystick[i].state = State::REST;
joystick[i].onUp(); // Callback: release of hold
}
// Not yet released, keep polling
else
awaitingRelease = true;
break;
// An existing press continues
// Not held long enough to register as press
case POLLING_UNFIRED: {
uint32_t length = millis() - joystick[i].irqAtMillis;
// If button released since last thread tick,
if (digitalRead(joystick[i].pin) != joystickActiveLogic) {
joystick[i].onUp(); // Run callback: press has ended (possible release of a hold)
joystick[i].state = State::REST; // Mark that the button has reset
}
// If button not yet released
else {
awaitingRelease = true; // Mark that polling-for-release should continue
if (length >= joystickDebounceLength) {
// Run callback: long press (once)
// Then continue waiting for release, to rearm
joystick[i].state = State::POLLING_FIRED;
joystick[i].onPress();
}
}
break;
}
// If all buttons are now released
// we don't need to waste cpu resources polling
// IRQ will restart this thread when we next need it
if (!awaitingRelease)
stopThread();
// Button still held after press
// Just waiting for release
case POLLING_FIRED:
// Release detected
if (digitalRead(joystick[i].pin) != joystickActiveLogic) {
joystick[i].state = State::REST;
joystick[i].onUp(); // Callback: release of hold
}
// Not yet released, keep polling
else
awaitingRelease = true;
break;
}
}
// Run this method again, or don't..
// Use whatever behavior was previously set by stopThread() or startThread()
return OSThread::interval;
// If all buttons are now released
// we don't need to waste cpu resources polling
// IRQ will restart this thread when we next need it
if (!awaitingRelease)
stopThread();
// Run this method again, or don't..
// Use whatever behavior was previously set by stopThread() or startThread()
return OSThread::interval;
}
#ifdef ARCH_ESP32
// Detach our class' interrupts before lightsleep
// Allows sleep.cpp to configure its own interrupts, which wake the device on user-button press
int TwoButtonExtended::beforeLightSleep(void *unused)
{
stop();
return 0; // Indicates success
int TwoButtonExtended::beforeLightSleep(void *unused) {
stop();
return 0; // Indicates success
}
// Reconfigure our interrupts
// Our class' interrupts were disconnected during sleep, to allow the user button to wake the device from sleep
int TwoButtonExtended::afterLightSleep(esp_sleep_wakeup_cause_t cause)
{
start();
int TwoButtonExtended::afterLightSleep(esp_sleep_wakeup_cause_t cause) {
start();
// Manually trigger the button-down ISR
// - during light sleep, our ISR is disabled
// - if light sleep ends by button press, pretend our own ISR caught it
// - need to manually confirm by reading pin ourselves, to avoid occasional false positives
// (false positive only when using internal pullup resistors?)
if (cause == ESP_SLEEP_WAKEUP_GPIO && digitalRead(buttons[0].pin) == buttons[0].activeLogic)
isrPrimary();
// Manually trigger the button-down ISR
// - during light sleep, our ISR is disabled
// - if light sleep ends by button press, pretend our own ISR caught it
// - need to manually confirm by reading pin ourselves, to avoid occasional false positives
// (false positive only when using internal pullup resistors?)
if (cause == ESP_SLEEP_WAKEUP_GPIO && digitalRead(buttons[0].pin) == buttons[0].activeLogic)
isrPrimary();
return 0; // Indicates success
return 0; // Indicates success
}
#endif

View File

@@ -30,105 +30,100 @@ Interrupt driven
#include "Observer.h"
namespace NicheGraphics::Inputs
{
namespace NicheGraphics::Inputs {
class TwoButtonExtended : protected concurrency::OSThread
{
class TwoButtonExtended : protected concurrency::OSThread {
public:
typedef std::function<void()> Callback;
static uint8_t getUserButtonPin(); // Resolve the GPIO, considering the various possible source of definition
static TwoButtonExtended *getInstance(); // Create or get the singleton instance
void start(); // Start handling button input
void stop(); // Stop handling button input (disconnect ISRs for sleep)
void setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup = false);
void setJoystickWiring(uint8_t uPin, uint8_t dPin, uint8_t lPin, uint8_t rPin, bool internalPullup = false);
void setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs);
void setJoystickDebounce(uint32_t debounceMs);
void setHandlerDown(uint8_t whichButton, Callback onDown);
void setHandlerUp(uint8_t whichButton, Callback onUp);
void setHandlerShortPress(uint8_t whichButton, Callback onShortPress);
void setHandlerLongPress(uint8_t whichButton, Callback onLongPress);
void setJoystickDownHandlers(Callback uDown, Callback dDown, Callback ldown, Callback rDown);
void setJoystickUpHandlers(Callback uUp, Callback dUp, Callback lUp, Callback rUp);
void setJoystickPressHandlers(Callback uPress, Callback dPress, Callback lPress, Callback rPress);
// Disconnect and reconnect interrupts for light sleep
#ifdef ARCH_ESP32
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
#endif
private:
// Internal state of a specific button
enum State {
REST, // Up, no activity
IRQ, // Down detected, not yet handled
POLLING_UNFIRED, // Down handled, polling for release
POLLING_FIRED, // Longpress fired, button still held
};
// Joystick Directions
enum Direction { UP = 0, DOWN, LEFT, RIGHT };
// Data used for direction (single-action) buttons
class SimpleButton {
public:
typedef std::function<void()> Callback;
// Per-button config
uint8_t pin = 0xFF; // 0xFF: unset
volatile State state = State::REST; // Internal state
volatile uint32_t irqAtMillis; // millis() when button went down
static uint8_t getUserButtonPin(); // Resolve the GPIO, considering the various possible source of definition
// Per-button event callbacks
static void noop(){};
std::function<void()> onDown = noop;
std::function<void()> onUp = noop;
std::function<void()> onPress = noop;
};
static TwoButtonExtended *getInstance(); // Create or get the singleton instance
void start(); // Start handling button input
void stop(); // Stop handling button input (disconnect ISRs for sleep)
void setWiring(uint8_t whichButton, uint8_t pin, bool internalPullup = false);
void setJoystickWiring(uint8_t uPin, uint8_t dPin, uint8_t lPin, uint8_t rPin, bool internalPullup = false);
void setTiming(uint8_t whichButton, uint32_t debounceMs, uint32_t longpressMs);
void setJoystickDebounce(uint32_t debounceMs);
void setHandlerDown(uint8_t whichButton, Callback onDown);
void setHandlerUp(uint8_t whichButton, Callback onUp);
void setHandlerShortPress(uint8_t whichButton, Callback onShortPress);
void setHandlerLongPress(uint8_t whichButton, Callback onLongPress);
void setJoystickDownHandlers(Callback uDown, Callback dDown, Callback ldown, Callback rDown);
void setJoystickUpHandlers(Callback uUp, Callback dUp, Callback lUp, Callback rUp);
void setJoystickPressHandlers(Callback uPress, Callback dPress, Callback lPress, Callback rPress);
// Data used for double-action buttons
class Button : public SimpleButton {
public:
// Per-button extended config
bool activeLogic = LOW; // Active LOW by default.
uint32_t debounceLength = 50; // Minimum length for shortpress in ms
uint32_t longpressLength = 500; // Time until longpress in ms
// Disconnect and reconnect interrupts for light sleep
#ifdef ARCH_ESP32
int beforeLightSleep(void *unused);
int afterLightSleep(esp_sleep_wakeup_cause_t cause);
#endif
private:
// Internal state of a specific button
enum State {
REST, // Up, no activity
IRQ, // Down detected, not yet handled
POLLING_UNFIRED, // Down handled, polling for release
POLLING_FIRED, // Longpress fired, button still held
};
// Joystick Directions
enum Direction { UP = 0, DOWN, LEFT, RIGHT };
// Data used for direction (single-action) buttons
class SimpleButton
{
public:
// Per-button config
uint8_t pin = 0xFF; // 0xFF: unset
volatile State state = State::REST; // Internal state
volatile uint32_t irqAtMillis; // millis() when button went down
// Per-button event callbacks
static void noop(){};
std::function<void()> onDown = noop;
std::function<void()> onUp = noop;
std::function<void()> onPress = noop;
};
// Data used for double-action buttons
class Button : public SimpleButton
{
public:
// Per-button extended config
bool activeLogic = LOW; // Active LOW by default.
uint32_t debounceLength = 50; // Minimum length for shortpress in ms
uint32_t longpressLength = 500; // Time until longpress in ms
// Per-button event callbacks
std::function<void()> onLongPress = noop;
};
// Per-button event callbacks
std::function<void()> onLongPress = noop;
};
#ifdef ARCH_ESP32
// Get notified when lightsleep begins and ends
CallbackObserver<TwoButtonExtended, void *> lsObserver =
CallbackObserver<TwoButtonExtended, void *>(this, &TwoButtonExtended::beforeLightSleep);
CallbackObserver<TwoButtonExtended, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<TwoButtonExtended, esp_sleep_wakeup_cause_t>(this, &TwoButtonExtended::afterLightSleep);
// Get notified when lightsleep begins and ends
CallbackObserver<TwoButtonExtended, void *> lsObserver = CallbackObserver<TwoButtonExtended, void *>(this, &TwoButtonExtended::beforeLightSleep);
CallbackObserver<TwoButtonExtended, esp_sleep_wakeup_cause_t> lsEndObserver =
CallbackObserver<TwoButtonExtended, esp_sleep_wakeup_cause_t>(this, &TwoButtonExtended::afterLightSleep);
#endif
int32_t runOnce() override; // Timer method. Polls for button release
int32_t runOnce() override; // Timer method. Polls for button release
void startThread(); // Start polling for release
void stopThread(); // Stop polling for release
void startThread(); // Start polling for release
void stopThread(); // Stop polling for release
static void isrPrimary(); // User Button ISR
static void isrSecondary(); // optional aux button or joystick center
static void isrJoystickUp();
static void isrJoystickDown();
static void isrJoystickLeft();
static void isrJoystickRight();
static void isrPrimary(); // User Button ISR
static void isrSecondary(); // optional aux button or joystick center
static void isrJoystickUp();
static void isrJoystickDown();
static void isrJoystickLeft();
static void isrJoystickRight();
TwoButtonExtended(); // Constructor made private: force use of Button::instance()
TwoButtonExtended(); // Constructor made private: force use of Button::instance()
// Info about both buttons
Button buttons[2];
bool joystickActiveLogic = LOW; // Active LOW by default
uint32_t joystickDebounceLength = 50; // time until press in ms
SimpleButton joystick[4];
// Info about both buttons
Button buttons[2];
bool joystickActiveLogic = LOW; // Active LOW by default
uint32_t joystickDebounceLength = 50; // time until press in ms
SimpleButton joystick[4];
};
}; // namespace NicheGraphics::Inputs