mirror of
https://github.com/meshtastic/firmware.git
synced 2026-01-24 02:37:50 +00:00
add a .clang-format file (#9154)
This commit is contained in:
2983
src/gps/GPS.cpp
2983
src/gps/GPS.cpp
File diff suppressed because it is too large
Load Diff
317
src/gps/GPS.h
317
src/gps/GPS.h
@@ -20,235 +20,234 @@ static constexpr uint32_t GPS_UPDATE_ALWAYS_ON_THRESHOLD_MS = 10 * 1000UL;
|
||||
static constexpr uint32_t GPS_FIX_HOLD_MAX_MS = 20000;
|
||||
|
||||
typedef enum {
|
||||
GNSS_MODEL_ATGM336H,
|
||||
GNSS_MODEL_MTK,
|
||||
GNSS_MODEL_UBLOX6,
|
||||
GNSS_MODEL_UBLOX7,
|
||||
GNSS_MODEL_UBLOX8,
|
||||
GNSS_MODEL_UBLOX9,
|
||||
GNSS_MODEL_UBLOX10,
|
||||
GNSS_MODEL_UC6580,
|
||||
GNSS_MODEL_UNKNOWN,
|
||||
GNSS_MODEL_MTK_L76B,
|
||||
GNSS_MODEL_MTK_PA1010D,
|
||||
GNSS_MODEL_MTK_PA1616S,
|
||||
GNSS_MODEL_AG3335,
|
||||
GNSS_MODEL_AG3352,
|
||||
GNSS_MODEL_LS20031,
|
||||
GNSS_MODEL_CM121
|
||||
GNSS_MODEL_ATGM336H,
|
||||
GNSS_MODEL_MTK,
|
||||
GNSS_MODEL_UBLOX6,
|
||||
GNSS_MODEL_UBLOX7,
|
||||
GNSS_MODEL_UBLOX8,
|
||||
GNSS_MODEL_UBLOX9,
|
||||
GNSS_MODEL_UBLOX10,
|
||||
GNSS_MODEL_UC6580,
|
||||
GNSS_MODEL_UNKNOWN,
|
||||
GNSS_MODEL_MTK_L76B,
|
||||
GNSS_MODEL_MTK_PA1010D,
|
||||
GNSS_MODEL_MTK_PA1616S,
|
||||
GNSS_MODEL_AG3335,
|
||||
GNSS_MODEL_AG3352,
|
||||
GNSS_MODEL_LS20031,
|
||||
GNSS_MODEL_CM121
|
||||
} GnssModel_t;
|
||||
|
||||
typedef enum {
|
||||
GNSS_RESPONSE_NONE,
|
||||
GNSS_RESPONSE_NAK,
|
||||
GNSS_RESPONSE_FRAME_ERRORS,
|
||||
GNSS_RESPONSE_OK,
|
||||
GNSS_RESPONSE_NONE,
|
||||
GNSS_RESPONSE_NAK,
|
||||
GNSS_RESPONSE_FRAME_ERRORS,
|
||||
GNSS_RESPONSE_OK,
|
||||
} GPS_RESPONSE;
|
||||
|
||||
enum GPSPowerState : uint8_t {
|
||||
GPS_ACTIVE, // Awake and want a position
|
||||
GPS_IDLE, // Awake, but not wanting another position yet
|
||||
GPS_SOFTSLEEP, // Physically powered on, but soft-sleeping
|
||||
GPS_HARDSLEEP, // Physically powered off, but scheduled to wake
|
||||
GPS_OFF // Powered off indefinitely
|
||||
GPS_ACTIVE, // Awake and want a position
|
||||
GPS_IDLE, // Awake, but not wanting another position yet
|
||||
GPS_SOFTSLEEP, // Physically powered on, but soft-sleeping
|
||||
GPS_HARDSLEEP, // Physically powered off, but scheduled to wake
|
||||
GPS_OFF // Powered off indefinitely
|
||||
};
|
||||
|
||||
struct ChipInfo {
|
||||
String chipName; // The name of the chip (for logging)
|
||||
String detectionString; // The string to match in the response
|
||||
GnssModel_t driver; // The driver to use
|
||||
String chipName; // The name of the chip (for logging)
|
||||
String detectionString; // The string to match in the response
|
||||
GnssModel_t driver; // The driver to use
|
||||
};
|
||||
/**
|
||||
* A gps class that only reads from the GPS periodically and keeps the gps powered down except when reading
|
||||
*
|
||||
* When new data is available it will notify observers.
|
||||
*/
|
||||
class GPS : private concurrency::OSThread
|
||||
{
|
||||
public:
|
||||
meshtastic_Position p = meshtastic_Position_init_default;
|
||||
class GPS : private concurrency::OSThread {
|
||||
public:
|
||||
meshtastic_Position p = meshtastic_Position_init_default;
|
||||
|
||||
/** This is normally bound to config.position.gps_en_gpio but some rare boards (like heltec tracker) need more advanced
|
||||
* implementations. Those boards will set this public variable to a custom implementation.
|
||||
*
|
||||
* Normally set by GPS::createGPS()
|
||||
*/
|
||||
GpioVirtPin *enablePin = NULL;
|
||||
/** This is normally bound to config.position.gps_en_gpio but some rare boards (like heltec tracker) need more
|
||||
* advanced implementations. Those boards will set this public variable to a custom implementation.
|
||||
*
|
||||
* Normally set by GPS::createGPS()
|
||||
*/
|
||||
GpioVirtPin *enablePin = NULL;
|
||||
|
||||
virtual ~GPS();
|
||||
virtual ~GPS();
|
||||
|
||||
/** We will notify this observable anytime GPS state has changed meaningfully */
|
||||
Observable<const meshtastic::GPSStatus *> newStatus;
|
||||
/** We will notify this observable anytime GPS state has changed meaningfully */
|
||||
Observable<const meshtastic::GPSStatus *> newStatus;
|
||||
|
||||
/**
|
||||
* Returns true if we succeeded
|
||||
*/
|
||||
virtual bool setup();
|
||||
/**
|
||||
* Returns true if we succeeded
|
||||
*/
|
||||
virtual bool setup();
|
||||
|
||||
// re-enable the thread
|
||||
void enable();
|
||||
// re-enable the thread
|
||||
void enable();
|
||||
|
||||
// Disable the thread
|
||||
int32_t disable() override;
|
||||
// Disable the thread
|
||||
int32_t disable() override;
|
||||
|
||||
// toggle between enabled/disabled
|
||||
void toggleGpsMode();
|
||||
// toggle between enabled/disabled
|
||||
void toggleGpsMode();
|
||||
|
||||
// Change the power state of the GPS - for power saving / shutdown
|
||||
void setPowerState(GPSPowerState newState, uint32_t sleepMs = 0);
|
||||
// Change the power state of the GPS - for power saving / shutdown
|
||||
void setPowerState(GPSPowerState newState, uint32_t sleepMs = 0);
|
||||
|
||||
/// Returns true if we have acquired GPS lock.
|
||||
virtual bool hasLock();
|
||||
/// Returns true if we have acquired GPS lock.
|
||||
virtual bool hasLock();
|
||||
|
||||
/// Returns true if there's valid data flow with the chip.
|
||||
virtual bool hasFlow();
|
||||
/// Returns true if there's valid data flow with the chip.
|
||||
virtual bool hasFlow();
|
||||
|
||||
/// Return true if we are connected to a GPS
|
||||
bool isConnected() const { return hasGPS; }
|
||||
/// Return true if we are connected to a GPS
|
||||
bool isConnected() const { return hasGPS; }
|
||||
|
||||
bool isPowerSaving() const { return config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED; }
|
||||
bool isPowerSaving() const { return config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED; }
|
||||
|
||||
// Empty the input buffer as quickly as possible
|
||||
void clearBuffer();
|
||||
// Empty the input buffer as quickly as possible
|
||||
void clearBuffer();
|
||||
|
||||
// Creates an instance of the GPS class.
|
||||
// Returns the new instance or null if the GPS is not present.
|
||||
static GPS *createGps();
|
||||
// Creates an instance of the GPS class.
|
||||
// Returns the new instance or null if the GPS is not present.
|
||||
static GPS *createGps();
|
||||
|
||||
// Wake the GPS hardware - ready for an update
|
||||
void up();
|
||||
// Wake the GPS hardware - ready for an update
|
||||
void up();
|
||||
|
||||
// Let the GPS hardware save power between updates
|
||||
void down();
|
||||
// Let the GPS hardware save power between updates
|
||||
void down();
|
||||
|
||||
private:
|
||||
GPS() : concurrency::OSThread("GPS") {}
|
||||
private:
|
||||
GPS() : concurrency::OSThread("GPS") {}
|
||||
|
||||
/// Record that we have a GPS
|
||||
void setConnected();
|
||||
/// Record that we have a GPS
|
||||
void setConnected();
|
||||
|
||||
/** Subclasses should look for serial rx characters here and feed it to their GPS parser
|
||||
*
|
||||
* Return true if we received a valid message from the GPS
|
||||
*/
|
||||
virtual bool whileActive();
|
||||
/** Subclasses should look for serial rx characters here and feed it to their GPS parser
|
||||
*
|
||||
* Return true if we received a valid message from the GPS
|
||||
*/
|
||||
virtual bool whileActive();
|
||||
|
||||
/**
|
||||
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
|
||||
* Override this method to check for new locations
|
||||
*
|
||||
* @return true if we've acquired a time
|
||||
*/
|
||||
virtual bool lookForTime();
|
||||
/**
|
||||
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
|
||||
* Override this method to check for new locations
|
||||
*
|
||||
* @return true if we've acquired a time
|
||||
*/
|
||||
virtual bool lookForTime();
|
||||
|
||||
/**
|
||||
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
|
||||
* Override this method to check for new locations
|
||||
*
|
||||
* @return true if we've acquired a new location
|
||||
*/
|
||||
virtual bool lookForLocation();
|
||||
/**
|
||||
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
|
||||
* Override this method to check for new locations
|
||||
*
|
||||
* @return true if we've acquired a new location
|
||||
*/
|
||||
virtual bool lookForLocation();
|
||||
|
||||
GnssModel_t gnssModel = GNSS_MODEL_UNKNOWN;
|
||||
GnssModel_t gnssModel = GNSS_MODEL_UNKNOWN;
|
||||
|
||||
TinyGPSPlus reader;
|
||||
uint8_t fixQual = 0; // fix quality from GPGGA
|
||||
uint32_t lastChecksumFailCount = 0;
|
||||
uint8_t currentStep = 0;
|
||||
int32_t currentDelay = 2000;
|
||||
TinyGPSPlus reader;
|
||||
uint8_t fixQual = 0; // fix quality from GPGGA
|
||||
uint32_t lastChecksumFailCount = 0;
|
||||
uint8_t currentStep = 0;
|
||||
int32_t currentDelay = 2000;
|
||||
|
||||
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
|
||||
// (20210908) TinyGps++ can only read the GPGSA "FIX TYPE" field
|
||||
// via optional feature "custom fields", currently disabled (bug #525)
|
||||
TinyGPSCustom gsafixtype; // custom extract fix type from GPGSA
|
||||
TinyGPSCustom gsapdop; // custom extract PDOP from GPGSA
|
||||
uint8_t fixType = 0; // fix type from GPGSA
|
||||
// (20210908) TinyGps++ can only read the GPGSA "FIX TYPE" field
|
||||
// via optional feature "custom fields", currently disabled (bug #525)
|
||||
TinyGPSCustom gsafixtype; // custom extract fix type from GPGSA
|
||||
TinyGPSCustom gsapdop; // custom extract PDOP from GPGSA
|
||||
uint8_t fixType = 0; // fix type from GPGSA
|
||||
#endif
|
||||
|
||||
uint32_t fixHoldEnds = 0;
|
||||
uint32_t rx_gpio = 0;
|
||||
uint32_t tx_gpio = 0;
|
||||
uint32_t fixHoldEnds = 0;
|
||||
uint32_t rx_gpio = 0;
|
||||
uint32_t tx_gpio = 0;
|
||||
|
||||
uint8_t speedSelect = 0;
|
||||
uint8_t probeTries = 0;
|
||||
uint8_t speedSelect = 0;
|
||||
uint8_t probeTries = 0;
|
||||
|
||||
/**
|
||||
* hasValidLocation - indicates that the position variables contain a complete
|
||||
* GPS location, valid and fresh (< gps_update_interval + position_broadcast_secs)
|
||||
*/
|
||||
bool hasValidLocation = false; // default to false, until we complete our first read
|
||||
/**
|
||||
* hasValidLocation - indicates that the position variables contain a complete
|
||||
* GPS location, valid and fresh (< gps_update_interval + position_broadcast_secs)
|
||||
*/
|
||||
bool hasValidLocation = false; // default to false, until we complete our first read
|
||||
|
||||
bool shouldPublish = false; // If we've changed GPS state, this will force a publish the next loop()
|
||||
bool shouldPublish = false; // If we've changed GPS state, this will force a publish the next loop()
|
||||
|
||||
bool hasGPS = false; // Do we have a GPS we are talking to
|
||||
bool hasGPS = false; // Do we have a GPS we are talking to
|
||||
|
||||
bool GPSInitFinished = false; // Init thread finished?
|
||||
bool GPSInitStarted = false; // Init thread finished?
|
||||
bool GPSInitFinished = false; // Init thread finished?
|
||||
bool GPSInitStarted = false; // Init thread finished?
|
||||
|
||||
GPSPowerState powerState = GPS_OFF; // GPS_ACTIVE if we want a location right now
|
||||
GPSPowerState powerState = GPS_OFF; // GPS_ACTIVE if we want a location right now
|
||||
|
||||
uint8_t numSatellites = 0;
|
||||
uint8_t numSatellites = 0;
|
||||
|
||||
CallbackObserver<GPS, void *> notifyDeepSleepObserver = CallbackObserver<GPS, void *>(this, &GPS::prepareDeepSleep);
|
||||
CallbackObserver<GPS, void *> notifyDeepSleepObserver = CallbackObserver<GPS, void *>(this, &GPS::prepareDeepSleep);
|
||||
|
||||
/** If !NULL we will use this serial port to construct our GPS */
|
||||
/** If !NULL we will use this serial port to construct our GPS */
|
||||
#if defined(ARCH_RP2040)
|
||||
static SerialUART *_serial_gps;
|
||||
static SerialUART *_serial_gps;
|
||||
#elif defined(ARCH_NRF52)
|
||||
static Uart *_serial_gps;
|
||||
static Uart *_serial_gps;
|
||||
#else
|
||||
static HardwareSerial *_serial_gps;
|
||||
static HardwareSerial *_serial_gps;
|
||||
#endif
|
||||
|
||||
// Create a ublox packet for editing in memory
|
||||
uint8_t makeUBXPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
|
||||
uint8_t makeCASPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
|
||||
// Create a ublox packet for editing in memory
|
||||
uint8_t makeUBXPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
|
||||
uint8_t makeCASPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
|
||||
|
||||
// scratch space for creating ublox packets
|
||||
uint8_t UBXscratch[250] = {0};
|
||||
// scratch space for creating ublox packets
|
||||
uint8_t UBXscratch[250] = {0};
|
||||
|
||||
int rebootsSeen = 0;
|
||||
int rebootsSeen = 0;
|
||||
|
||||
int getACK(uint8_t *buffer, uint16_t size, uint8_t requestedClass, uint8_t requestedID, uint32_t waitMillis);
|
||||
GPS_RESPONSE getACK(uint8_t c, uint8_t i, uint32_t waitMillis);
|
||||
GPS_RESPONSE getACK(const char *message, uint32_t waitMillis);
|
||||
int getACK(uint8_t *buffer, uint16_t size, uint8_t requestedClass, uint8_t requestedID, uint32_t waitMillis);
|
||||
GPS_RESPONSE getACK(uint8_t c, uint8_t i, uint32_t waitMillis);
|
||||
GPS_RESPONSE getACK(const char *message, uint32_t waitMillis);
|
||||
|
||||
GPS_RESPONSE getACKCas(uint8_t class_id, uint8_t msg_id, uint32_t waitMillis);
|
||||
GPS_RESPONSE getACKCas(uint8_t class_id, uint8_t msg_id, uint32_t waitMillis);
|
||||
|
||||
/// Prepare the GPS for the cpu entering deep sleep, expect to be gone for at least 100s of msecs
|
||||
/// always returns 0 to indicate okay to sleep
|
||||
int prepareDeepSleep(void *unused);
|
||||
/// Prepare the GPS for the cpu entering deep sleep, expect to be gone for at least 100s of msecs
|
||||
/// always returns 0 to indicate okay to sleep
|
||||
int prepareDeepSleep(void *unused);
|
||||
|
||||
/** Set power with EN pin, if relevant
|
||||
*/
|
||||
void writePinEN(bool on);
|
||||
/** Set power with EN pin, if relevant
|
||||
*/
|
||||
void writePinEN(bool on);
|
||||
|
||||
/** Set the value of the STANDBY pin, if relevant
|
||||
*/
|
||||
void writePinStandby(bool standby);
|
||||
/** Set the value of the STANDBY pin, if relevant
|
||||
*/
|
||||
void writePinStandby(bool standby);
|
||||
|
||||
/** Set GPS power with PMU, if relevant
|
||||
*/
|
||||
void setPowerPMU(bool on);
|
||||
/** Set GPS power with PMU, if relevant
|
||||
*/
|
||||
void setPowerPMU(bool on);
|
||||
|
||||
/** Set UBLOX power, if relevant
|
||||
*/
|
||||
void setPowerUBLOX(bool on, uint32_t sleepMs = 0);
|
||||
/** Set UBLOX power, if relevant
|
||||
*/
|
||||
void setPowerUBLOX(bool on, uint32_t sleepMs = 0);
|
||||
|
||||
/**
|
||||
* Tell users we have new GPS readings
|
||||
*/
|
||||
void publishUpdate();
|
||||
/**
|
||||
* Tell users we have new GPS readings
|
||||
*/
|
||||
void publishUpdate();
|
||||
|
||||
virtual int32_t runOnce() override;
|
||||
virtual int32_t runOnce() override;
|
||||
|
||||
GnssModel_t getProbeResponse(unsigned long timeout, const std::vector<ChipInfo> &responseMap, int serialSpeed);
|
||||
GnssModel_t getProbeResponse(unsigned long timeout, const std::vector<ChipInfo> &responseMap, int serialSpeed);
|
||||
|
||||
// Get GNSS model
|
||||
GnssModel_t probe(int serialSpeed);
|
||||
// Get GNSS model
|
||||
GnssModel_t probe(int serialSpeed);
|
||||
|
||||
// delay counter to allow more sats before fixed position stops GPS thread
|
||||
uint8_t fixeddelayCtr = 0;
|
||||
// delay counter to allow more sats before fixed position stops GPS thread
|
||||
uint8_t fixeddelayCtr = 0;
|
||||
};
|
||||
|
||||
extern GPS *gps;
|
||||
|
||||
@@ -3,116 +3,100 @@
|
||||
#include "Default.h"
|
||||
|
||||
// Mark the time when searching for GPS position begins
|
||||
void GPSUpdateScheduling::informSearching()
|
||||
{
|
||||
searchStartedMs = millis();
|
||||
}
|
||||
void GPSUpdateScheduling::informSearching() { searchStartedMs = millis(); }
|
||||
|
||||
// Mark the time when searching for GPS is complete,
|
||||
// then update the predicted lock-time
|
||||
void GPSUpdateScheduling::informGotLock()
|
||||
{
|
||||
searchEndedMs = millis();
|
||||
LOG_DEBUG("Took %us to get lock", (searchEndedMs - searchStartedMs) / 1000);
|
||||
updateLockTimePrediction();
|
||||
void GPSUpdateScheduling::informGotLock() {
|
||||
searchEndedMs = millis();
|
||||
LOG_DEBUG("Took %us to get lock", (searchEndedMs - searchStartedMs) / 1000);
|
||||
updateLockTimePrediction();
|
||||
}
|
||||
|
||||
// Clear old lock-time prediction data.
|
||||
// When re-enabling GPS with user button.
|
||||
void GPSUpdateScheduling::reset()
|
||||
{
|
||||
searchStartedMs = 0;
|
||||
searchEndedMs = 0;
|
||||
searchCount = 0;
|
||||
predictedMsToGetLock = 0;
|
||||
void GPSUpdateScheduling::reset() {
|
||||
searchStartedMs = 0;
|
||||
searchEndedMs = 0;
|
||||
searchCount = 0;
|
||||
predictedMsToGetLock = 0;
|
||||
}
|
||||
|
||||
// How many milliseconds before we should next search for GPS position
|
||||
// Used by GPS hardware directly, to enter timed hardware sleep
|
||||
uint32_t GPSUpdateScheduling::msUntilNextSearch()
|
||||
{
|
||||
uint32_t now = millis();
|
||||
uint32_t GPSUpdateScheduling::msUntilNextSearch() {
|
||||
uint32_t now = millis();
|
||||
|
||||
// Target interval (seconds), between GPS updates
|
||||
uint32_t updateInterval = Default::getConfiguredOrDefaultMs(config.position.gps_update_interval, default_gps_update_interval);
|
||||
// Target interval (seconds), between GPS updates
|
||||
uint32_t updateInterval = Default::getConfiguredOrDefaultMs(config.position.gps_update_interval, default_gps_update_interval);
|
||||
|
||||
// Check how long until we should start searching, to hopefully hit our target interval
|
||||
uint32_t dueAtMs = searchEndedMs + updateInterval;
|
||||
uint32_t compensatedStart = dueAtMs - predictedMsToGetLock;
|
||||
int32_t remainingMs = compensatedStart - now;
|
||||
// Check how long until we should start searching, to hopefully hit our target interval
|
||||
uint32_t dueAtMs = searchEndedMs + updateInterval;
|
||||
uint32_t compensatedStart = dueAtMs - predictedMsToGetLock;
|
||||
int32_t remainingMs = compensatedStart - now;
|
||||
|
||||
// If we should have already started (negative value), start ASAP
|
||||
if (remainingMs < 0)
|
||||
remainingMs = 0;
|
||||
// If we should have already started (negative value), start ASAP
|
||||
if (remainingMs < 0)
|
||||
remainingMs = 0;
|
||||
|
||||
return (uint32_t)remainingMs;
|
||||
return (uint32_t)remainingMs;
|
||||
}
|
||||
|
||||
// How long have we already been searching?
|
||||
// Used to abort a search in progress, if it runs unacceptably long
|
||||
uint32_t GPSUpdateScheduling::elapsedSearchMs()
|
||||
{
|
||||
// If searching
|
||||
if (searchStartedMs > searchEndedMs)
|
||||
return millis() - searchStartedMs;
|
||||
uint32_t GPSUpdateScheduling::elapsedSearchMs() {
|
||||
// If searching
|
||||
if (searchStartedMs > searchEndedMs)
|
||||
return millis() - searchStartedMs;
|
||||
|
||||
// If not searching - 0ms. We shouldn't really consume this value
|
||||
else
|
||||
return 0;
|
||||
// If not searching - 0ms. We shouldn't really consume this value
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Is it now time to begin searching for a GPS position?
|
||||
bool GPSUpdateScheduling::isUpdateDue()
|
||||
{
|
||||
return (msUntilNextSearch() == 0);
|
||||
}
|
||||
bool GPSUpdateScheduling::isUpdateDue() { return (msUntilNextSearch() == 0); }
|
||||
|
||||
// Have we been searching for a GPS position for too long?
|
||||
bool GPSUpdateScheduling::searchedTooLong()
|
||||
{
|
||||
uint32_t minimumOrConfiguredSecs =
|
||||
Default::getConfiguredOrMinimumValue(config.position.position_broadcast_secs, default_broadcast_interval_secs);
|
||||
uint32_t maxSearchMs = Default::getConfiguredOrDefaultMs(minimumOrConfiguredSecs, default_broadcast_interval_secs);
|
||||
// If broadcast interval set to max, no such thing as "too long"
|
||||
if (maxSearchMs == UINT32_MAX)
|
||||
return false;
|
||||
bool GPSUpdateScheduling::searchedTooLong() {
|
||||
uint32_t minimumOrConfiguredSecs = Default::getConfiguredOrMinimumValue(config.position.position_broadcast_secs, default_broadcast_interval_secs);
|
||||
uint32_t maxSearchMs = Default::getConfiguredOrDefaultMs(minimumOrConfiguredSecs, default_broadcast_interval_secs);
|
||||
// If broadcast interval set to max, no such thing as "too long"
|
||||
if (maxSearchMs == UINT32_MAX)
|
||||
return false;
|
||||
|
||||
// If we've been searching longer than our position broadcast interval: that's too long
|
||||
else if (elapsedSearchMs() > maxSearchMs)
|
||||
return true;
|
||||
// If we've been searching longer than our position broadcast interval: that's too long
|
||||
else if (elapsedSearchMs() > maxSearchMs)
|
||||
return true;
|
||||
|
||||
// Otherwise, not too long yet!
|
||||
else
|
||||
return false;
|
||||
// Otherwise, not too long yet!
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
// Updates the predicted time-to-get-lock, by exponentially smoothing the latest observation
|
||||
void GPSUpdateScheduling::updateLockTimePrediction()
|
||||
{
|
||||
void GPSUpdateScheduling::updateLockTimePrediction() {
|
||||
|
||||
// How long did it take to get GPS lock this time?
|
||||
// Duration between down() calls
|
||||
int32_t lockTime = searchEndedMs - searchStartedMs;
|
||||
if (lockTime < 0)
|
||||
lockTime = 0;
|
||||
// How long did it take to get GPS lock this time?
|
||||
// Duration between down() calls
|
||||
int32_t lockTime = searchEndedMs - searchStartedMs;
|
||||
if (lockTime < 0)
|
||||
lockTime = 0;
|
||||
|
||||
// Ignore the first lock-time: likely to be long, will skew data
|
||||
// Ignore the first lock-time: likely to be long, will skew data
|
||||
|
||||
// Second locktime: likely stable. Use to initialize the smoothing filter
|
||||
if (searchCount == 1)
|
||||
predictedMsToGetLock = lockTime;
|
||||
// Second locktime: likely stable. Use to initialize the smoothing filter
|
||||
if (searchCount == 1)
|
||||
predictedMsToGetLock = lockTime;
|
||||
|
||||
// Third locktime and after: predict using exponential smoothing. Respond slowly to changes
|
||||
else if (searchCount > 1)
|
||||
predictedMsToGetLock = (lockTime * weighting) + (predictedMsToGetLock * (1 - weighting));
|
||||
// Third locktime and after: predict using exponential smoothing. Respond slowly to changes
|
||||
else if (searchCount > 1)
|
||||
predictedMsToGetLock = (lockTime * weighting) + (predictedMsToGetLock * (1 - weighting));
|
||||
|
||||
searchCount++; // Only tracked so we can disregard initial lock-times
|
||||
searchCount++; // Only tracked so we can disregard initial lock-times
|
||||
|
||||
LOG_DEBUG("Predict %us to get next lock", predictedMsToGetLock / 1000);
|
||||
LOG_DEBUG("Predict %us to get next lock", predictedMsToGetLock / 1000);
|
||||
}
|
||||
|
||||
// How long do we expect to spend searching for a lock?
|
||||
uint32_t GPSUpdateScheduling::predictedSearchDurationMs()
|
||||
{
|
||||
return GPSUpdateScheduling::predictedMsToGetLock;
|
||||
}
|
||||
uint32_t GPSUpdateScheduling::predictedSearchDurationMs() { return GPSUpdateScheduling::predictedMsToGetLock; }
|
||||
|
||||
@@ -3,27 +3,26 @@
|
||||
#include "configuration.h"
|
||||
|
||||
// Encapsulates code responsible for the timing of GPS updates
|
||||
class GPSUpdateScheduling
|
||||
{
|
||||
public:
|
||||
// Marks the time of these events, for calculation use
|
||||
void informSearching();
|
||||
void informGotLock(); // Predicted lock-time is recalculated here
|
||||
class GPSUpdateScheduling {
|
||||
public:
|
||||
// Marks the time of these events, for calculation use
|
||||
void informSearching();
|
||||
void informGotLock(); // Predicted lock-time is recalculated here
|
||||
|
||||
void reset(); // Reset the prediction - after GPS::disable() / GPS::enable()
|
||||
bool isUpdateDue(); // Is it time to begin searching for a GPS position?
|
||||
bool searchedTooLong(); // Have we been searching for too long?
|
||||
void reset(); // Reset the prediction - after GPS::disable() / GPS::enable()
|
||||
bool isUpdateDue(); // Is it time to begin searching for a GPS position?
|
||||
bool searchedTooLong(); // Have we been searching for too long?
|
||||
|
||||
uint32_t msUntilNextSearch(); // How long until we need to begin searching for a GPS? Info provided to GPS hardware for sleep
|
||||
uint32_t elapsedSearchMs(); // How long have we been searching so far?
|
||||
uint32_t predictedSearchDurationMs(); // How long do we expect to spend searching for a lock?
|
||||
uint32_t msUntilNextSearch(); // How long until we need to begin searching for a GPS? Info provided to GPS hardware for sleep
|
||||
uint32_t elapsedSearchMs(); // How long have we been searching so far?
|
||||
uint32_t predictedSearchDurationMs(); // How long do we expect to spend searching for a lock?
|
||||
|
||||
private:
|
||||
void updateLockTimePrediction(); // Called from informGotLock
|
||||
uint32_t searchStartedMs = 0;
|
||||
uint32_t searchEndedMs = 0;
|
||||
uint32_t searchCount = 0;
|
||||
uint32_t predictedMsToGetLock = 0;
|
||||
private:
|
||||
void updateLockTimePrediction(); // Called from informGotLock
|
||||
uint32_t searchStartedMs = 0;
|
||||
uint32_t searchEndedMs = 0;
|
||||
uint32_t searchCount = 0;
|
||||
uint32_t predictedMsToGetLock = 0;
|
||||
|
||||
const float weighting = 0.2; // Controls exponential smoothing of lock-times prediction. 20% weighting of "latest lock-time".
|
||||
const float weighting = 0.2; // Controls exponential smoothing of lock-times prediction. 20% weighting of "latest lock-time".
|
||||
};
|
||||
@@ -1,402 +1,378 @@
|
||||
#include "GeoCoord.h"
|
||||
|
||||
GeoCoord::GeoCoord()
|
||||
{
|
||||
_dirty = true;
|
||||
GeoCoord::GeoCoord() { _dirty = true; }
|
||||
|
||||
GeoCoord::GeoCoord(int32_t lat, int32_t lon, int32_t alt) : _latitude(lat), _longitude(lon), _altitude(alt) { GeoCoord::setCoords(); }
|
||||
|
||||
GeoCoord::GeoCoord(float lat, float lon, int32_t alt) : _altitude(alt) {
|
||||
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
|
||||
_latitude = int32_t(lat * 1e+7);
|
||||
_longitude = int32_t(lon * 1e+7);
|
||||
GeoCoord::setCoords();
|
||||
}
|
||||
|
||||
GeoCoord::GeoCoord(int32_t lat, int32_t lon, int32_t alt) : _latitude(lat), _longitude(lon), _altitude(alt)
|
||||
{
|
||||
GeoCoord::setCoords();
|
||||
}
|
||||
|
||||
GeoCoord::GeoCoord(float lat, float lon, int32_t alt) : _altitude(alt)
|
||||
{
|
||||
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
|
||||
_latitude = int32_t(lat * 1e+7);
|
||||
_longitude = int32_t(lon * 1e+7);
|
||||
GeoCoord::setCoords();
|
||||
}
|
||||
|
||||
GeoCoord::GeoCoord(double lat, double lon, int32_t alt) : _altitude(alt)
|
||||
{
|
||||
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
|
||||
_latitude = int32_t(lat * 1e+7);
|
||||
_longitude = int32_t(lon * 1e+7);
|
||||
GeoCoord::setCoords();
|
||||
GeoCoord::GeoCoord(double lat, double lon, int32_t alt) : _altitude(alt) {
|
||||
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
|
||||
_latitude = int32_t(lat * 1e+7);
|
||||
_longitude = int32_t(lon * 1e+7);
|
||||
GeoCoord::setCoords();
|
||||
}
|
||||
|
||||
// Initialize all the coordinate systems
|
||||
void GeoCoord::setCoords()
|
||||
{
|
||||
double lat = _latitude * 1e-7;
|
||||
double lon = _longitude * 1e-7;
|
||||
GeoCoord::latLongToDMS(lat, lon, _dms);
|
||||
GeoCoord::latLongToUTM(lat, lon, _utm);
|
||||
GeoCoord::latLongToMGRS(lat, lon, _mgrs);
|
||||
GeoCoord::latLongToOSGR(lat, lon, _osgr);
|
||||
GeoCoord::latLongToOLC(lat, lon, _olc);
|
||||
_dirty = false;
|
||||
void GeoCoord::setCoords() {
|
||||
double lat = _latitude * 1e-7;
|
||||
double lon = _longitude * 1e-7;
|
||||
GeoCoord::latLongToDMS(lat, lon, _dms);
|
||||
GeoCoord::latLongToUTM(lat, lon, _utm);
|
||||
GeoCoord::latLongToMGRS(lat, lon, _mgrs);
|
||||
GeoCoord::latLongToOSGR(lat, lon, _osgr);
|
||||
GeoCoord::latLongToOLC(lat, lon, _olc);
|
||||
_dirty = false;
|
||||
}
|
||||
|
||||
void GeoCoord::updateCoords(int32_t lat, int32_t lon, int32_t alt)
|
||||
{
|
||||
// If marked dirty or new coordinates
|
||||
if (_dirty || _latitude != lat || _longitude != lon || _altitude != alt) {
|
||||
_dirty = true;
|
||||
_latitude = lat;
|
||||
_longitude = lon;
|
||||
_altitude = alt;
|
||||
setCoords();
|
||||
}
|
||||
void GeoCoord::updateCoords(int32_t lat, int32_t lon, int32_t alt) {
|
||||
// If marked dirty or new coordinates
|
||||
if (_dirty || _latitude != lat || _longitude != lon || _altitude != alt) {
|
||||
_dirty = true;
|
||||
_latitude = lat;
|
||||
_longitude = lon;
|
||||
_altitude = alt;
|
||||
setCoords();
|
||||
}
|
||||
}
|
||||
|
||||
void GeoCoord::updateCoords(const double lat, const double lon, const int32_t alt)
|
||||
{
|
||||
int32_t iLat = lat * 1e+7;
|
||||
int32_t iLon = lon * 1e+7;
|
||||
// If marked dirty or new coordinates
|
||||
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
|
||||
_dirty = true;
|
||||
_latitude = iLat;
|
||||
_longitude = iLon;
|
||||
_altitude = alt;
|
||||
setCoords();
|
||||
}
|
||||
void GeoCoord::updateCoords(const double lat, const double lon, const int32_t alt) {
|
||||
int32_t iLat = lat * 1e+7;
|
||||
int32_t iLon = lon * 1e+7;
|
||||
// If marked dirty or new coordinates
|
||||
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
|
||||
_dirty = true;
|
||||
_latitude = iLat;
|
||||
_longitude = iLon;
|
||||
_altitude = alt;
|
||||
setCoords();
|
||||
}
|
||||
}
|
||||
|
||||
void GeoCoord::updateCoords(const float lat, const float lon, const int32_t alt)
|
||||
{
|
||||
int32_t iLat = lat * 1e+7;
|
||||
int32_t iLon = lon * 1e+7;
|
||||
// If marked dirty or new coordinates
|
||||
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
|
||||
_dirty = true;
|
||||
_latitude = iLat;
|
||||
_longitude = iLon;
|
||||
_altitude = alt;
|
||||
setCoords();
|
||||
}
|
||||
void GeoCoord::updateCoords(const float lat, const float lon, const int32_t alt) {
|
||||
int32_t iLat = lat * 1e+7;
|
||||
int32_t iLon = lon * 1e+7;
|
||||
// If marked dirty or new coordinates
|
||||
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
|
||||
_dirty = true;
|
||||
_latitude = iLat;
|
||||
_longitude = iLon;
|
||||
_altitude = alt;
|
||||
setCoords();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts lat long coordinates from decimal degrees to degrees minutes seconds format.
|
||||
* DD°MM'SS"C DDD°MM'SS"C
|
||||
*/
|
||||
void GeoCoord::latLongToDMS(const double lat, const double lon, DMS &dms)
|
||||
{
|
||||
if (lat < 0)
|
||||
dms.latCP = 'S';
|
||||
else
|
||||
dms.latCP = 'N';
|
||||
void GeoCoord::latLongToDMS(const double lat, const double lon, DMS &dms) {
|
||||
if (lat < 0)
|
||||
dms.latCP = 'S';
|
||||
else
|
||||
dms.latCP = 'N';
|
||||
|
||||
double latDeg = lat;
|
||||
double latDeg = lat;
|
||||
|
||||
if (lat < 0)
|
||||
latDeg = latDeg * -1;
|
||||
if (lat < 0)
|
||||
latDeg = latDeg * -1;
|
||||
|
||||
dms.latDeg = floor(latDeg);
|
||||
double latMin = (latDeg - dms.latDeg) * 60;
|
||||
dms.latMin = floor(latMin);
|
||||
dms.latSec = (latMin - dms.latMin) * 60;
|
||||
dms.latDeg = floor(latDeg);
|
||||
double latMin = (latDeg - dms.latDeg) * 60;
|
||||
dms.latMin = floor(latMin);
|
||||
dms.latSec = (latMin - dms.latMin) * 60;
|
||||
|
||||
if (lon < 0)
|
||||
dms.lonCP = 'W';
|
||||
else
|
||||
dms.lonCP = 'E';
|
||||
if (lon < 0)
|
||||
dms.lonCP = 'W';
|
||||
else
|
||||
dms.lonCP = 'E';
|
||||
|
||||
double lonDeg = lon;
|
||||
double lonDeg = lon;
|
||||
|
||||
if (lon < 0)
|
||||
lonDeg = lonDeg * -1;
|
||||
if (lon < 0)
|
||||
lonDeg = lonDeg * -1;
|
||||
|
||||
dms.lonDeg = floor(lonDeg);
|
||||
double lonMin = (lonDeg - dms.lonDeg) * 60;
|
||||
dms.lonMin = floor(lonMin);
|
||||
dms.lonSec = (lonMin - dms.lonMin) * 60;
|
||||
dms.lonDeg = floor(lonDeg);
|
||||
double lonMin = (lonDeg - dms.lonDeg) * 60;
|
||||
dms.lonMin = floor(lonMin);
|
||||
dms.lonSec = (lonMin - dms.lonMin) * 60;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts lat long coordinates to UTM.
|
||||
* based on this: https://github.com/walvok/LatLonToUTM/blob/master/latlon_utm.ino
|
||||
*/
|
||||
void GeoCoord::latLongToUTM(const double lat, const double lon, UTM &utm)
|
||||
{
|
||||
void GeoCoord::latLongToUTM(const double lat, const double lon, UTM &utm) {
|
||||
|
||||
const std::string latBands = "CDEFGHJKLMNPQRSTUVWXX";
|
||||
utm.zone = int((lon + 180) / 6 + 1);
|
||||
utm.band = latBands[int(lat / 8 + 10)];
|
||||
double a = 6378137; // WGS84 - equatorial radius
|
||||
double k0 = 0.9996; // UTM point scale on the central meridian
|
||||
double eccSquared = 0.00669438; // eccentricity squared
|
||||
double lonTemp = (lon + 180) - int((lon + 180) / 360) * 360 - 180; // Make sure the longitude is between -180.00 .. 179.9
|
||||
double latRad = toRadians(lat);
|
||||
double lonRad = toRadians(lonTemp);
|
||||
const std::string latBands = "CDEFGHJKLMNPQRSTUVWXX";
|
||||
utm.zone = int((lon + 180) / 6 + 1);
|
||||
utm.band = latBands[int(lat / 8 + 10)];
|
||||
double a = 6378137; // WGS84 - equatorial radius
|
||||
double k0 = 0.9996; // UTM point scale on the central meridian
|
||||
double eccSquared = 0.00669438; // eccentricity squared
|
||||
double lonTemp = (lon + 180) - int((lon + 180) / 360) * 360 - 180; // Make sure the longitude is between -180.00 .. 179.9
|
||||
double latRad = toRadians(lat);
|
||||
double lonRad = toRadians(lonTemp);
|
||||
|
||||
// Special Zones for Norway and Svalbard
|
||||
if (lat >= 56.0 && lat < 64.0 && lonTemp >= 3.0 && lonTemp < 12.0) // Norway
|
||||
utm.zone = 32;
|
||||
if (lat >= 72.0 && lat < 84.0) { // Svalbard
|
||||
if (lonTemp >= 0.0 && lonTemp < 9.0)
|
||||
utm.zone = 31;
|
||||
else if (lonTemp >= 9.0 && lonTemp < 21.0)
|
||||
utm.zone = 33;
|
||||
else if (lonTemp >= 21.0 && lonTemp < 33.0)
|
||||
utm.zone = 35;
|
||||
else if (lonTemp >= 33.0 && lonTemp < 42.0)
|
||||
utm.zone = 37;
|
||||
}
|
||||
// Special Zones for Norway and Svalbard
|
||||
if (lat >= 56.0 && lat < 64.0 && lonTemp >= 3.0 && lonTemp < 12.0) // Norway
|
||||
utm.zone = 32;
|
||||
if (lat >= 72.0 && lat < 84.0) { // Svalbard
|
||||
if (lonTemp >= 0.0 && lonTemp < 9.0)
|
||||
utm.zone = 31;
|
||||
else if (lonTemp >= 9.0 && lonTemp < 21.0)
|
||||
utm.zone = 33;
|
||||
else if (lonTemp >= 21.0 && lonTemp < 33.0)
|
||||
utm.zone = 35;
|
||||
else if (lonTemp >= 33.0 && lonTemp < 42.0)
|
||||
utm.zone = 37;
|
||||
}
|
||||
|
||||
double lonOrigin = (utm.zone - 1) * 6 - 180 + 3; // puts origin in middle of zone
|
||||
double lonOriginRad = toRadians(lonOrigin);
|
||||
double eccPrimeSquared = (eccSquared) / (1 - eccSquared);
|
||||
double N = a / sqrt(1 - eccSquared * sin(latRad) * sin(latRad));
|
||||
double T = tan(latRad) * tan(latRad);
|
||||
double C = eccPrimeSquared * cos(latRad) * cos(latRad);
|
||||
double A = cos(latRad) * (lonRad - lonOriginRad);
|
||||
double M =
|
||||
a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * latRad -
|
||||
(3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) *
|
||||
sin(2 * latRad) +
|
||||
(15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(4 * latRad) -
|
||||
(35 * eccSquared * eccSquared * eccSquared / 3072) * sin(6 * latRad));
|
||||
utm.easting = (double)(k0 * N *
|
||||
(A + (1 - T + C) * pow(A, 3) / 6 +
|
||||
(5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120) +
|
||||
500000.0);
|
||||
utm.northing =
|
||||
(double)(k0 * (M + N * tan(latRad) *
|
||||
(A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24 +
|
||||
(61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720)));
|
||||
double lonOrigin = (utm.zone - 1) * 6 - 180 + 3; // puts origin in middle of zone
|
||||
double lonOriginRad = toRadians(lonOrigin);
|
||||
double eccPrimeSquared = (eccSquared) / (1 - eccSquared);
|
||||
double N = a / sqrt(1 - eccSquared * sin(latRad) * sin(latRad));
|
||||
double T = tan(latRad) * tan(latRad);
|
||||
double C = eccPrimeSquared * cos(latRad) * cos(latRad);
|
||||
double A = cos(latRad) * (lonRad - lonOriginRad);
|
||||
double M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * latRad -
|
||||
(3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(2 * latRad) +
|
||||
(15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(4 * latRad) -
|
||||
(35 * eccSquared * eccSquared * eccSquared / 3072) * sin(6 * latRad));
|
||||
utm.easting = (double)(k0 * N * (A + (1 - T + C) * pow(A, 3) / 6 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120) +
|
||||
500000.0);
|
||||
utm.northing = (double)(k0 * (M + N * tan(latRad) *
|
||||
(A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24 +
|
||||
(61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720)));
|
||||
|
||||
if (lat < 0)
|
||||
utm.northing += 10000000.0; // 10000000 meter offset for southern hemisphere
|
||||
if (lat < 0)
|
||||
utm.northing += 10000000.0; // 10000000 meter offset for southern hemisphere
|
||||
}
|
||||
|
||||
// Converts lat long coordinates to an MGRS.
|
||||
void GeoCoord::latLongToMGRS(const double lat, const double lon, MGRS &mgrs)
|
||||
{
|
||||
const std::string e100kLetters[3] = {"ABCDEFGH", "JKLMNPQR", "STUVWXYZ"};
|
||||
const std::string n100kLetters[2] = {"ABCDEFGHJKLMNPQRSTUV", "FGHJKLMNPQRSTUVABCDE"};
|
||||
UTM utm;
|
||||
latLongToUTM(lat, lon, utm);
|
||||
mgrs.zone = utm.zone;
|
||||
mgrs.band = utm.band;
|
||||
double col = floor(utm.easting / 100000);
|
||||
mgrs.east100k = e100kLetters[(mgrs.zone - 1) % 3][col - 1];
|
||||
double row = (int32_t)floor(utm.northing / 100000.0) % 20;
|
||||
mgrs.north100k = n100kLetters[(mgrs.zone - 1) % 2][row];
|
||||
mgrs.easting = (int32_t)utm.easting % 100000;
|
||||
mgrs.northing = (int32_t)utm.northing % 100000;
|
||||
void GeoCoord::latLongToMGRS(const double lat, const double lon, MGRS &mgrs) {
|
||||
const std::string e100kLetters[3] = {"ABCDEFGH", "JKLMNPQR", "STUVWXYZ"};
|
||||
const std::string n100kLetters[2] = {"ABCDEFGHJKLMNPQRSTUV", "FGHJKLMNPQRSTUVABCDE"};
|
||||
UTM utm;
|
||||
latLongToUTM(lat, lon, utm);
|
||||
mgrs.zone = utm.zone;
|
||||
mgrs.band = utm.band;
|
||||
double col = floor(utm.easting / 100000);
|
||||
mgrs.east100k = e100kLetters[(mgrs.zone - 1) % 3][col - 1];
|
||||
double row = (int32_t)floor(utm.northing / 100000.0) % 20;
|
||||
mgrs.north100k = n100kLetters[(mgrs.zone - 1) % 2][row];
|
||||
mgrs.easting = (int32_t)utm.easting % 100000;
|
||||
mgrs.northing = (int32_t)utm.northing % 100000;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts lat long coordinates to Ordnance Survey Grid Reference (UK National Grid Ref).
|
||||
* Based on: https://www.movable-type.co.uk/scripts/latlong-os-gridref.html
|
||||
*/
|
||||
void GeoCoord::latLongToOSGR(const double lat, const double lon, OSGR &osgr)
|
||||
{
|
||||
const char letter[] = "ABCDEFGHJKLMNOPQRSTUVWXYZ"; // No 'I' in OSGR
|
||||
double a = 6377563.396; // Airy 1830 semi-major axis
|
||||
double b = 6356256.909; // Airy 1830 semi-minor axis
|
||||
double f0 = 0.9996012717; // National Grid point scale factor on the central meridian
|
||||
double phi0 = toRadians(49);
|
||||
double lambda0 = toRadians(-2);
|
||||
double n0 = -100000;
|
||||
double e0 = 400000;
|
||||
double e2 = 1 - (b * b) / (a * a); // eccentricity squared
|
||||
double n = (a - b) / (a + b);
|
||||
void GeoCoord::latLongToOSGR(const double lat, const double lon, OSGR &osgr) {
|
||||
const char letter[] = "ABCDEFGHJKLMNOPQRSTUVWXYZ"; // No 'I' in OSGR
|
||||
double a = 6377563.396; // Airy 1830 semi-major axis
|
||||
double b = 6356256.909; // Airy 1830 semi-minor axis
|
||||
double f0 = 0.9996012717; // National Grid point scale factor on the central meridian
|
||||
double phi0 = toRadians(49);
|
||||
double lambda0 = toRadians(-2);
|
||||
double n0 = -100000;
|
||||
double e0 = 400000;
|
||||
double e2 = 1 - (b * b) / (a * a); // eccentricity squared
|
||||
double n = (a - b) / (a + b);
|
||||
|
||||
double osgb_Latitude;
|
||||
double osgb_Longitude;
|
||||
convertWGS84ToOSGB36(lat, lon, osgb_Latitude, osgb_Longitude);
|
||||
double phi = osgb_Latitude; // already in radians
|
||||
double lambda = osgb_Longitude; // already in radians
|
||||
double v = a * f0 / sqrt(1 - e2 * sin(phi) * sin(phi));
|
||||
double rho = a * f0 * (1 - e2) / pow(1 - e2 * sin(phi) * sin(phi), 1.5);
|
||||
double eta2 = v / rho - 1;
|
||||
double mA = (1 + n + (5 / 4) * n * n + (5 / 4) * n * n * n) * (phi - phi0);
|
||||
double mB = (3 * n + 3 * n * n + (21 / 8) * n * n * n) * sin(phi - phi0) * cos(phi + phi0);
|
||||
// loss of precision in mC & mD due to floating point rounding can cause inaccuracy of northing by a few meters
|
||||
double mC = (15 / 8 * n * n + 15 / 8 * n * n * n) * sin(2 * (phi - phi0)) * cos(2 * (phi + phi0));
|
||||
double mD = (35 / 24) * n * n * n * sin(3 * (phi - phi0)) * cos(3 * (phi + phi0));
|
||||
double m = b * f0 * (mA - mB + mC - mD);
|
||||
double osgb_Latitude;
|
||||
double osgb_Longitude;
|
||||
convertWGS84ToOSGB36(lat, lon, osgb_Latitude, osgb_Longitude);
|
||||
double phi = osgb_Latitude; // already in radians
|
||||
double lambda = osgb_Longitude; // already in radians
|
||||
double v = a * f0 / sqrt(1 - e2 * sin(phi) * sin(phi));
|
||||
double rho = a * f0 * (1 - e2) / pow(1 - e2 * sin(phi) * sin(phi), 1.5);
|
||||
double eta2 = v / rho - 1;
|
||||
double mA = (1 + n + (5 / 4) * n * n + (5 / 4) * n * n * n) * (phi - phi0);
|
||||
double mB = (3 * n + 3 * n * n + (21 / 8) * n * n * n) * sin(phi - phi0) * cos(phi + phi0);
|
||||
// loss of precision in mC & mD due to floating point rounding can cause inaccuracy of northing by a few meters
|
||||
double mC = (15 / 8 * n * n + 15 / 8 * n * n * n) * sin(2 * (phi - phi0)) * cos(2 * (phi + phi0));
|
||||
double mD = (35 / 24) * n * n * n * sin(3 * (phi - phi0)) * cos(3 * (phi + phi0));
|
||||
double m = b * f0 * (mA - mB + mC - mD);
|
||||
|
||||
double cos3Phi = cos(phi) * cos(phi) * cos(phi);
|
||||
double cos5Phi = cos3Phi * cos(phi) * cos(phi);
|
||||
double tan2Phi = tan(phi) * tan(phi);
|
||||
double tan4Phi = tan2Phi * tan2Phi;
|
||||
double I = m + n0;
|
||||
double II = (v / 2) * sin(phi) * cos(phi);
|
||||
double III = (v / 24) * sin(phi) * cos3Phi * (5 - tan2Phi + 9 * eta2);
|
||||
double IIIA = (v / 720) * sin(phi) * cos5Phi * (61 - 58 * tan2Phi + tan4Phi);
|
||||
double IV = v * cos(phi);
|
||||
double V = (v / 6) * cos3Phi * (v / rho - tan2Phi);
|
||||
double VI = (v / 120) * cos5Phi * (5 - 18 * tan2Phi + tan4Phi + 14 * eta2 - 58 * tan2Phi * eta2);
|
||||
double cos3Phi = cos(phi) * cos(phi) * cos(phi);
|
||||
double cos5Phi = cos3Phi * cos(phi) * cos(phi);
|
||||
double tan2Phi = tan(phi) * tan(phi);
|
||||
double tan4Phi = tan2Phi * tan2Phi;
|
||||
double I = m + n0;
|
||||
double II = (v / 2) * sin(phi) * cos(phi);
|
||||
double III = (v / 24) * sin(phi) * cos3Phi * (5 - tan2Phi + 9 * eta2);
|
||||
double IIIA = (v / 720) * sin(phi) * cos5Phi * (61 - 58 * tan2Phi + tan4Phi);
|
||||
double IV = v * cos(phi);
|
||||
double V = (v / 6) * cos3Phi * (v / rho - tan2Phi);
|
||||
double VI = (v / 120) * cos5Phi * (5 - 18 * tan2Phi + tan4Phi + 14 * eta2 - 58 * tan2Phi * eta2);
|
||||
|
||||
double deltaLambda = lambda - lambda0;
|
||||
double deltaLambda2 = deltaLambda * deltaLambda;
|
||||
double northing =
|
||||
I + II * deltaLambda2 + III * deltaLambda2 * deltaLambda2 + IIIA * deltaLambda2 * deltaLambda2 * deltaLambda2;
|
||||
double easting = e0 + IV * deltaLambda + V * deltaLambda2 * deltaLambda + VI * deltaLambda2 * deltaLambda2 * deltaLambda;
|
||||
double deltaLambda = lambda - lambda0;
|
||||
double deltaLambda2 = deltaLambda * deltaLambda;
|
||||
double northing = I + II * deltaLambda2 + III * deltaLambda2 * deltaLambda2 + IIIA * deltaLambda2 * deltaLambda2 * deltaLambda2;
|
||||
double easting = e0 + IV * deltaLambda + V * deltaLambda2 * deltaLambda + VI * deltaLambda2 * deltaLambda2 * deltaLambda;
|
||||
|
||||
if (easting < 0 || easting > 700000 || northing < 0 || northing > 1300000) // Check if out of boundaries
|
||||
osgr = {'I', 'I', 0, 0};
|
||||
else {
|
||||
uint32_t e100k = floor(easting / 100000);
|
||||
uint32_t n100k = floor(northing / 100000);
|
||||
int8_t l1 = (19 - n100k) - (19 - n100k) % 5 + floor((e100k + 10) / 5);
|
||||
int8_t l2 = (19 - n100k) * 5 % 25 + e100k % 5;
|
||||
osgr.e100k = letter[l1];
|
||||
osgr.n100k = letter[l2];
|
||||
osgr.easting = floor((int)easting % 100000);
|
||||
osgr.northing = floor((int)northing % 100000);
|
||||
}
|
||||
if (easting < 0 || easting > 700000 || northing < 0 || northing > 1300000) // Check if out of boundaries
|
||||
osgr = {'I', 'I', 0, 0};
|
||||
else {
|
||||
uint32_t e100k = floor(easting / 100000);
|
||||
uint32_t n100k = floor(northing / 100000);
|
||||
int8_t l1 = (19 - n100k) - (19 - n100k) % 5 + floor((e100k + 10) / 5);
|
||||
int8_t l2 = (19 - n100k) * 5 % 25 + e100k % 5;
|
||||
osgr.e100k = letter[l1];
|
||||
osgr.n100k = letter[l2];
|
||||
osgr.easting = floor((int)easting % 100000);
|
||||
osgr.northing = floor((int)northing % 100000);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts lat long coordinates to Open Location Code.
|
||||
* Based on: https://github.com/google/open-location-code/blob/main/c/src/olc.c
|
||||
*/
|
||||
void GeoCoord::latLongToOLC(double lat, double lon, OLC &olc)
|
||||
{
|
||||
char tempCode[] = "1234567890abc";
|
||||
const char kAlphabet[] = "23456789CFGHJMPQRVWX";
|
||||
double latitude;
|
||||
double longitude = lon;
|
||||
double latitude_degrees = std::min(90.0, std::max(-90.0, lat));
|
||||
void GeoCoord::latLongToOLC(double lat, double lon, OLC &olc) {
|
||||
char tempCode[] = "1234567890abc";
|
||||
const char kAlphabet[] = "23456789CFGHJMPQRVWX";
|
||||
double latitude;
|
||||
double longitude = lon;
|
||||
double latitude_degrees = std::min(90.0, std::max(-90.0, lat));
|
||||
|
||||
if (latitude_degrees < 90) // Check latitude less than lat max
|
||||
latitude = latitude_degrees;
|
||||
else {
|
||||
double precision;
|
||||
if (OLC_CODE_LEN <= 10)
|
||||
precision = pow_neg(20, floor((OLC_CODE_LEN / -2) + 2));
|
||||
else
|
||||
precision = pow_neg(20, -3) / pow(5, OLC_CODE_LEN - 10);
|
||||
latitude = latitude_degrees - precision / 2;
|
||||
if (latitude_degrees < 90) // Check latitude less than lat max
|
||||
latitude = latitude_degrees;
|
||||
else {
|
||||
double precision;
|
||||
if (OLC_CODE_LEN <= 10)
|
||||
precision = pow_neg(20, floor((OLC_CODE_LEN / -2) + 2));
|
||||
else
|
||||
precision = pow_neg(20, -3) / pow(5, OLC_CODE_LEN - 10);
|
||||
latitude = latitude_degrees - precision / 2;
|
||||
}
|
||||
while (longitude < -180) // Normalize longitude
|
||||
longitude += 360;
|
||||
while (longitude >= 180)
|
||||
longitude -= 360;
|
||||
int64_t lat_val = 90 * 2.5e7;
|
||||
int64_t lng_val = 180 * 8.192e6;
|
||||
lat_val += latitude * 2.5e7;
|
||||
lng_val += longitude * 8.192e6;
|
||||
size_t pos = OLC_CODE_LEN;
|
||||
|
||||
if (OLC_CODE_LEN > 10) { // Compute grid part of code if needed
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
int lat_digit = lat_val % 5;
|
||||
int lng_digit = lng_val % 4;
|
||||
int ndx = lat_digit * 4 + lng_digit;
|
||||
tempCode[pos--] = kAlphabet[ndx];
|
||||
lat_val /= 5;
|
||||
lng_val /= 4;
|
||||
}
|
||||
while (longitude < -180) // Normalize longitude
|
||||
longitude += 360;
|
||||
while (longitude >= 180)
|
||||
longitude -= 360;
|
||||
int64_t lat_val = 90 * 2.5e7;
|
||||
int64_t lng_val = 180 * 8.192e6;
|
||||
lat_val += latitude * 2.5e7;
|
||||
lng_val += longitude * 8.192e6;
|
||||
size_t pos = OLC_CODE_LEN;
|
||||
} else {
|
||||
lat_val /= pow(5, 5);
|
||||
lng_val /= pow(4, 5);
|
||||
}
|
||||
|
||||
if (OLC_CODE_LEN > 10) { // Compute grid part of code if needed
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
int lat_digit = lat_val % 5;
|
||||
int lng_digit = lng_val % 4;
|
||||
int ndx = lat_digit * 4 + lng_digit;
|
||||
tempCode[pos--] = kAlphabet[ndx];
|
||||
lat_val /= 5;
|
||||
lng_val /= 4;
|
||||
}
|
||||
} else {
|
||||
lat_val /= pow(5, 5);
|
||||
lng_val /= pow(4, 5);
|
||||
}
|
||||
pos = 10;
|
||||
|
||||
pos = 10;
|
||||
for (size_t i = 0; i < 5; i++) { // Compute pair section of code
|
||||
int lat_ndx = lat_val % 20;
|
||||
int lng_ndx = lng_val % 20;
|
||||
tempCode[pos--] = kAlphabet[lng_ndx];
|
||||
tempCode[pos--] = kAlphabet[lat_ndx];
|
||||
lat_val /= 20;
|
||||
lng_val /= 20;
|
||||
|
||||
for (size_t i = 0; i < 5; i++) { // Compute pair section of code
|
||||
int lat_ndx = lat_val % 20;
|
||||
int lng_ndx = lng_val % 20;
|
||||
tempCode[pos--] = kAlphabet[lng_ndx];
|
||||
tempCode[pos--] = kAlphabet[lat_ndx];
|
||||
lat_val /= 20;
|
||||
lng_val /= 20;
|
||||
if (i == 0)
|
||||
tempCode[pos--] = '+';
|
||||
}
|
||||
|
||||
if (i == 0)
|
||||
tempCode[pos--] = '+';
|
||||
}
|
||||
if (OLC_CODE_LEN < 9) { // Add padding if needed
|
||||
for (size_t i = OLC_CODE_LEN; i < 9; i++)
|
||||
tempCode[i] = '0';
|
||||
tempCode[9] = '+';
|
||||
}
|
||||
|
||||
if (OLC_CODE_LEN < 9) { // Add padding if needed
|
||||
for (size_t i = OLC_CODE_LEN; i < 9; i++)
|
||||
tempCode[i] = '0';
|
||||
tempCode[9] = '+';
|
||||
}
|
||||
|
||||
size_t char_count = OLC_CODE_LEN;
|
||||
if (10 > char_count) {
|
||||
char_count = 10;
|
||||
}
|
||||
for (size_t i = 0; i < char_count; i++) {
|
||||
olc.code[i] = tempCode[i];
|
||||
}
|
||||
olc.code[char_count] = '\0';
|
||||
size_t char_count = OLC_CODE_LEN;
|
||||
if (10 > char_count) {
|
||||
char_count = 10;
|
||||
}
|
||||
for (size_t i = 0; i < char_count; i++) {
|
||||
olc.code[i] = tempCode[i];
|
||||
}
|
||||
olc.code[char_count] = '\0';
|
||||
}
|
||||
|
||||
// Converts the coordinate in WGS84 datum to the OSGB36 datum.
|
||||
void GeoCoord::convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude)
|
||||
{
|
||||
// Convert lat long to cartesian
|
||||
double phi = toRadians(lat);
|
||||
double lambda = toRadians(lon);
|
||||
double h = 0.0; // No OSTN height data used, some loss of accuracy (up to 5m)
|
||||
double wgsA = 6378137; // WGS84 datum semi major axis
|
||||
double wgsF = 1 / 298.257223563; // WGS84 datum flattening
|
||||
double ecc = 2 * wgsF - wgsF * wgsF;
|
||||
double vee = wgsA / sqrt(1 - ecc * pow(sin(phi), 2));
|
||||
double wgsX = (vee + h) * cos(phi) * cos(lambda);
|
||||
double wgsY = (vee + h) * cos(phi) * sin(lambda);
|
||||
double wgsZ = ((1 - ecc) * vee + h) * sin(phi);
|
||||
void GeoCoord::convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude) {
|
||||
// Convert lat long to cartesian
|
||||
double phi = toRadians(lat);
|
||||
double lambda = toRadians(lon);
|
||||
double h = 0.0; // No OSTN height data used, some loss of accuracy (up to 5m)
|
||||
double wgsA = 6378137; // WGS84 datum semi major axis
|
||||
double wgsF = 1 / 298.257223563; // WGS84 datum flattening
|
||||
double ecc = 2 * wgsF - wgsF * wgsF;
|
||||
double vee = wgsA / sqrt(1 - ecc * pow(sin(phi), 2));
|
||||
double wgsX = (vee + h) * cos(phi) * cos(lambda);
|
||||
double wgsY = (vee + h) * cos(phi) * sin(lambda);
|
||||
double wgsZ = ((1 - ecc) * vee + h) * sin(phi);
|
||||
|
||||
// 7-parameter Helmert transform
|
||||
double tx = -446.448; // x shift in meters
|
||||
double ty = 125.157; // y shift in meters
|
||||
double tz = -542.060; // z shift in meters
|
||||
double s = 20.4894 / 1e6 + 1; // scale normalized parts per million to (s + 1)
|
||||
double rx = toRadians(-0.1502 / 3600); // x rotation normalize arcseconds to radians
|
||||
double ry = toRadians(-0.2470 / 3600); // y rotation normalize arcseconds to radians
|
||||
double rz = toRadians(-0.8421 / 3600); // z rotation normalize arcseconds to radians
|
||||
double osgbX = tx + wgsX * s - wgsY * rz + wgsZ * ry;
|
||||
double osgbY = ty + wgsX * rz + wgsY * s - wgsZ * rx;
|
||||
double osgbZ = tz - wgsX * ry + wgsY * rx + wgsZ * s;
|
||||
// 7-parameter Helmert transform
|
||||
double tx = -446.448; // x shift in meters
|
||||
double ty = 125.157; // y shift in meters
|
||||
double tz = -542.060; // z shift in meters
|
||||
double s = 20.4894 / 1e6 + 1; // scale normalized parts per million to (s + 1)
|
||||
double rx = toRadians(-0.1502 / 3600); // x rotation normalize arcseconds to radians
|
||||
double ry = toRadians(-0.2470 / 3600); // y rotation normalize arcseconds to radians
|
||||
double rz = toRadians(-0.8421 / 3600); // z rotation normalize arcseconds to radians
|
||||
double osgbX = tx + wgsX * s - wgsY * rz + wgsZ * ry;
|
||||
double osgbY = ty + wgsX * rz + wgsY * s - wgsZ * rx;
|
||||
double osgbZ = tz - wgsX * ry + wgsY * rx + wgsZ * s;
|
||||
|
||||
// Convert cartesian to lat long
|
||||
double airyA = 6377563.396; // Airy1830 datum semi major axis
|
||||
double airyB = 6356256.909; // Airy1830 datum semi minor axis
|
||||
double airyF = 1 / 299.3249646; // Airy1830 datum flattening
|
||||
double airyEcc = 2 * airyF - airyF * airyF;
|
||||
double airyEcc2 = airyEcc / (1 - airyEcc);
|
||||
double p = sqrt(osgbX * osgbX + osgbY * osgbY);
|
||||
double R = sqrt(p * p + osgbZ * osgbZ);
|
||||
double tanBeta = (airyB * osgbZ) / (airyA * p) * (1 + airyEcc2 * airyB / R);
|
||||
double sinBeta = tanBeta / sqrt(1 + tanBeta * tanBeta);
|
||||
double cosBeta = sinBeta / tanBeta;
|
||||
osgb_Latitude = atan2(osgbZ + airyEcc2 * airyB * sinBeta * sinBeta * sinBeta,
|
||||
p - airyEcc * airyA * cosBeta * cosBeta * cosBeta); // leave in radians
|
||||
osgb_Longitude = atan2(osgbY, osgbX); // leave in radians
|
||||
// osgb height = p*cos(osgb.latitude) + osgbZ*sin(osgb.latitude) -
|
||||
//(airyA*airyA/(airyA / sqrt(1 - airyEcc*sin(osgb.latitude)*sin(osgb.latitude)))); // Not used, no OSTN data
|
||||
// Convert cartesian to lat long
|
||||
double airyA = 6377563.396; // Airy1830 datum semi major axis
|
||||
double airyB = 6356256.909; // Airy1830 datum semi minor axis
|
||||
double airyF = 1 / 299.3249646; // Airy1830 datum flattening
|
||||
double airyEcc = 2 * airyF - airyF * airyF;
|
||||
double airyEcc2 = airyEcc / (1 - airyEcc);
|
||||
double p = sqrt(osgbX * osgbX + osgbY * osgbY);
|
||||
double R = sqrt(p * p + osgbZ * osgbZ);
|
||||
double tanBeta = (airyB * osgbZ) / (airyA * p) * (1 + airyEcc2 * airyB / R);
|
||||
double sinBeta = tanBeta / sqrt(1 + tanBeta * tanBeta);
|
||||
double cosBeta = sinBeta / tanBeta;
|
||||
osgb_Latitude = atan2(osgbZ + airyEcc2 * airyB * sinBeta * sinBeta * sinBeta,
|
||||
p - airyEcc * airyA * cosBeta * cosBeta * cosBeta); // leave in radians
|
||||
osgb_Longitude = atan2(osgbY, osgbX); // leave in radians
|
||||
// osgb height = p*cos(osgb.latitude) + osgbZ*sin(osgb.latitude) -
|
||||
//(airyA*airyA/(airyA / sqrt(1 -
|
||||
// airyEcc*sin(osgb.latitude)*sin(osgb.latitude)))); // Not used, no OSTN data
|
||||
}
|
||||
|
||||
/// Ported from my old java code, returns distance in meters along the globe
|
||||
/// surface (by Haversine formula)
|
||||
float GeoCoord::latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b)
|
||||
{
|
||||
// Don't do math if the points are the same
|
||||
if (lat_a == lat_b && lng_a == lng_b)
|
||||
return 0.0;
|
||||
float GeoCoord::latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b) {
|
||||
// Don't do math if the points are the same
|
||||
if (lat_a == lat_b && lng_a == lng_b)
|
||||
return 0.0;
|
||||
|
||||
double a1 = lat_a / DEG_CONVERT;
|
||||
double a2 = lng_a / DEG_CONVERT;
|
||||
double b1 = lat_b / DEG_CONVERT;
|
||||
double b2 = lng_b / DEG_CONVERT;
|
||||
double cos_b1 = cos(b1);
|
||||
double cos_a1 = cos(a1);
|
||||
double t1 = cos_a1 * cos(a2) * cos_b1 * cos(b2);
|
||||
double t2 = cos_a1 * sin(a2) * cos_b1 * sin(b2);
|
||||
double t3 = sin(a1) * sin(b1);
|
||||
double tt = acos(t1 + t2 + t3);
|
||||
if (std::isnan(tt))
|
||||
tt = 0.0; // Must have been the same point?
|
||||
double a1 = lat_a / DEG_CONVERT;
|
||||
double a2 = lng_a / DEG_CONVERT;
|
||||
double b1 = lat_b / DEG_CONVERT;
|
||||
double b2 = lng_b / DEG_CONVERT;
|
||||
double cos_b1 = cos(b1);
|
||||
double cos_a1 = cos(a1);
|
||||
double t1 = cos_a1 * cos(a2) * cos_b1 * cos(b2);
|
||||
double t2 = cos_a1 * sin(a2) * cos_b1 * sin(b2);
|
||||
double t3 = sin(a1) * sin(b1);
|
||||
double tt = acos(t1 + t2 + t3);
|
||||
if (std::isnan(tt))
|
||||
tt = 0.0; // Must have been the same point?
|
||||
|
||||
return (float)(6366000 * tt);
|
||||
return (float)(6366000 * tt);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -414,14 +390,13 @@ float GeoCoord::latLongToMeter(double lat_a, double lng_a, double lat_b, double
|
||||
* @return Bearing from point 1 to point 2 in radians. A value of 0 means due
|
||||
* north.
|
||||
*/
|
||||
float GeoCoord::bearing(double lat1, double lon1, double lat2, double lon2)
|
||||
{
|
||||
double lat1Rad = toRadians(lat1);
|
||||
double lat2Rad = toRadians(lat2);
|
||||
double deltaLonRad = toRadians(lon2 - lon1);
|
||||
double y = sin(deltaLonRad) * cos(lat2Rad);
|
||||
double x = cos(lat1Rad) * sin(lat2Rad) - (sin(lat1Rad) * cos(lat2Rad) * cos(deltaLonRad));
|
||||
return atan2(y, x);
|
||||
float GeoCoord::bearing(double lat1, double lon1, double lat2, double lon2) {
|
||||
double lat1Rad = toRadians(lat1);
|
||||
double lat2Rad = toRadians(lat2);
|
||||
double deltaLonRad = toRadians(lon2 - lon1);
|
||||
double y = sin(deltaLonRad) * cos(lat2Rad);
|
||||
double x = cos(lat1Rad) * sin(lat2Rad) - (sin(lat1Rad) * cos(lat2Rad) * cos(deltaLonRad));
|
||||
return atan2(y, x);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -431,11 +406,10 @@ float GeoCoord::bearing(double lat1, double lon1, double lat2, double lon2)
|
||||
* The range in meters
|
||||
* @return range in radians on a great circle
|
||||
*/
|
||||
float GeoCoord::rangeMetersToRadians(double range_meters)
|
||||
{
|
||||
// 1 nm is 1852 meters
|
||||
double distance_nm = range_meters * 1852;
|
||||
return (PI / (180 * 60)) * distance_nm;
|
||||
float GeoCoord::rangeMetersToRadians(double range_meters) {
|
||||
// 1 nm is 1852 meters
|
||||
double distance_nm = range_meters * 1852;
|
||||
return (PI / (180 * 60)) * distance_nm;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -445,25 +419,20 @@ float GeoCoord::rangeMetersToRadians(double range_meters)
|
||||
* The range in radians
|
||||
* @return Range in meters on a great circle
|
||||
*/
|
||||
float GeoCoord::rangeRadiansToMeters(double range_radians)
|
||||
{
|
||||
double distance_nm = ((180 * 60) / PI) * range_radians;
|
||||
// 1 meter is 0.000539957 nm
|
||||
return distance_nm * 0.000539957;
|
||||
float GeoCoord::rangeRadiansToMeters(double range_radians) {
|
||||
double distance_nm = ((180 * 60) / PI) * range_radians;
|
||||
// 1 meter is 0.000539957 nm
|
||||
return distance_nm * 0.000539957;
|
||||
}
|
||||
|
||||
// Find distance from point to passed in point
|
||||
int32_t GeoCoord::distanceTo(const GeoCoord &pointB)
|
||||
{
|
||||
return latLongToMeter(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7,
|
||||
pointB.getLongitude() * 1e-7);
|
||||
int32_t GeoCoord::distanceTo(const GeoCoord &pointB) {
|
||||
return latLongToMeter(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7, pointB.getLongitude() * 1e-7);
|
||||
}
|
||||
|
||||
// Find bearing from point to passed in point
|
||||
int32_t GeoCoord::bearingTo(const GeoCoord &pointB)
|
||||
{
|
||||
return bearing(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7,
|
||||
pointB.getLongitude() * 1e-7);
|
||||
int32_t GeoCoord::bearingTo(const GeoCoord &pointB) {
|
||||
return bearing(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7, pointB.getLongitude() * 1e-7);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -475,16 +444,15 @@ int32_t GeoCoord::bearingTo(const GeoCoord &pointB)
|
||||
* range in meters
|
||||
* @return GeoCoord object of point at bearing and range from initial point
|
||||
*/
|
||||
std::shared_ptr<GeoCoord> GeoCoord::pointAtDistance(double bearing, double range_meters)
|
||||
{
|
||||
double range_radians = rangeMetersToRadians(range_meters);
|
||||
double lat1 = this->getLatitude() * 1e-7;
|
||||
double lon1 = this->getLongitude() * 1e-7;
|
||||
double lat = asin(sin(lat1) * cos(range_radians) + cos(lat1) * sin(range_radians) * cos(bearing));
|
||||
double dlon = atan2(sin(bearing) * sin(range_radians) * cos(lat1), cos(range_radians) - sin(lat1) * sin(lat));
|
||||
double lon = fmod(lon1 - dlon + PI, 2 * PI) - PI;
|
||||
std::shared_ptr<GeoCoord> GeoCoord::pointAtDistance(double bearing, double range_meters) {
|
||||
double range_radians = rangeMetersToRadians(range_meters);
|
||||
double lat1 = this->getLatitude() * 1e-7;
|
||||
double lon1 = this->getLongitude() * 1e-7;
|
||||
double lat = asin(sin(lat1) * cos(range_radians) + cos(lat1) * sin(range_radians) * cos(bearing));
|
||||
double dlon = atan2(sin(bearing) * sin(range_radians) * cos(lat1), cos(range_radians) - sin(lat1) * sin(lat));
|
||||
double lon = fmod(lon1 - dlon + PI, 2 * PI) - PI;
|
||||
|
||||
return std::make_shared<GeoCoord>(double(lat), double(lon), this->getAltitude());
|
||||
return std::make_shared<GeoCoord>(double(lat), double(lon), this->getAltitude());
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -493,42 +461,41 @@ std::shared_ptr<GeoCoord> GeoCoord::pointAtDistance(double bearing, double range
|
||||
* The bearing in string format
|
||||
* @return Bearing in degrees
|
||||
*/
|
||||
unsigned int GeoCoord::bearingToDegrees(const char *bearing)
|
||||
{
|
||||
if (strcmp(bearing, "N") == 0)
|
||||
return 0;
|
||||
else if (strcmp(bearing, "NNE") == 0)
|
||||
return 22;
|
||||
else if (strcmp(bearing, "NE") == 0)
|
||||
return 45;
|
||||
else if (strcmp(bearing, "ENE") == 0)
|
||||
return 67;
|
||||
else if (strcmp(bearing, "E") == 0)
|
||||
return 90;
|
||||
else if (strcmp(bearing, "ESE") == 0)
|
||||
return 112;
|
||||
else if (strcmp(bearing, "SE") == 0)
|
||||
return 135;
|
||||
else if (strcmp(bearing, "SSE") == 0)
|
||||
return 157;
|
||||
else if (strcmp(bearing, "S") == 0)
|
||||
return 180;
|
||||
else if (strcmp(bearing, "SSW") == 0)
|
||||
return 202;
|
||||
else if (strcmp(bearing, "SW") == 0)
|
||||
return 225;
|
||||
else if (strcmp(bearing, "WSW") == 0)
|
||||
return 247;
|
||||
else if (strcmp(bearing, "W") == 0)
|
||||
return 270;
|
||||
else if (strcmp(bearing, "WNW") == 0)
|
||||
return 292;
|
||||
else if (strcmp(bearing, "NW") == 0)
|
||||
return 315;
|
||||
else if (strcmp(bearing, "NNW") == 0)
|
||||
return 337;
|
||||
else
|
||||
return 0;
|
||||
unsigned int GeoCoord::bearingToDegrees(const char *bearing) {
|
||||
if (strcmp(bearing, "N") == 0)
|
||||
return 0;
|
||||
else if (strcmp(bearing, "NNE") == 0)
|
||||
return 22;
|
||||
else if (strcmp(bearing, "NE") == 0)
|
||||
return 45;
|
||||
else if (strcmp(bearing, "ENE") == 0)
|
||||
return 67;
|
||||
else if (strcmp(bearing, "E") == 0)
|
||||
return 90;
|
||||
else if (strcmp(bearing, "ESE") == 0)
|
||||
return 112;
|
||||
else if (strcmp(bearing, "SE") == 0)
|
||||
return 135;
|
||||
else if (strcmp(bearing, "SSE") == 0)
|
||||
return 157;
|
||||
else if (strcmp(bearing, "S") == 0)
|
||||
return 180;
|
||||
else if (strcmp(bearing, "SSW") == 0)
|
||||
return 202;
|
||||
else if (strcmp(bearing, "SW") == 0)
|
||||
return 225;
|
||||
else if (strcmp(bearing, "WSW") == 0)
|
||||
return 247;
|
||||
else if (strcmp(bearing, "W") == 0)
|
||||
return 270;
|
||||
else if (strcmp(bearing, "WNW") == 0)
|
||||
return 292;
|
||||
else if (strcmp(bearing, "NW") == 0)
|
||||
return 315;
|
||||
else if (strcmp(bearing, "NNW") == 0)
|
||||
return 337;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -537,60 +504,52 @@ unsigned int GeoCoord::bearingToDegrees(const char *bearing)
|
||||
* The bearing in degrees
|
||||
* @return Bearing in string format
|
||||
*/
|
||||
const char *GeoCoord::degreesToBearing(unsigned int degrees)
|
||||
{
|
||||
if (degrees >= 348 || degrees < 11)
|
||||
return "N";
|
||||
else if (degrees >= 11 && degrees < 34)
|
||||
return "NNE";
|
||||
else if (degrees >= 34 && degrees < 56)
|
||||
return "NE";
|
||||
else if (degrees >= 56 && degrees < 79)
|
||||
return "ENE";
|
||||
else if (degrees >= 79 && degrees < 101)
|
||||
return "E";
|
||||
else if (degrees >= 101 && degrees < 124)
|
||||
return "ESE";
|
||||
else if (degrees >= 124 && degrees < 146)
|
||||
return "SE";
|
||||
else if (degrees >= 146 && degrees < 169)
|
||||
return "SSE";
|
||||
else if (degrees >= 169 && degrees < 191)
|
||||
return "S";
|
||||
else if (degrees >= 191 && degrees < 214)
|
||||
return "SSW";
|
||||
else if (degrees >= 214 && degrees < 236)
|
||||
return "SW";
|
||||
else if (degrees >= 236 && degrees < 259)
|
||||
return "WSW";
|
||||
else if (degrees >= 259 && degrees < 281)
|
||||
return "W";
|
||||
else if (degrees >= 281 && degrees < 304)
|
||||
return "WNW";
|
||||
else if (degrees >= 304 && degrees < 326)
|
||||
return "NW";
|
||||
else if (degrees >= 326 && degrees < 348)
|
||||
return "NNW";
|
||||
else
|
||||
return "N";
|
||||
const char *GeoCoord::degreesToBearing(unsigned int degrees) {
|
||||
if (degrees >= 348 || degrees < 11)
|
||||
return "N";
|
||||
else if (degrees >= 11 && degrees < 34)
|
||||
return "NNE";
|
||||
else if (degrees >= 34 && degrees < 56)
|
||||
return "NE";
|
||||
else if (degrees >= 56 && degrees < 79)
|
||||
return "ENE";
|
||||
else if (degrees >= 79 && degrees < 101)
|
||||
return "E";
|
||||
else if (degrees >= 101 && degrees < 124)
|
||||
return "ESE";
|
||||
else if (degrees >= 124 && degrees < 146)
|
||||
return "SE";
|
||||
else if (degrees >= 146 && degrees < 169)
|
||||
return "SSE";
|
||||
else if (degrees >= 169 && degrees < 191)
|
||||
return "S";
|
||||
else if (degrees >= 191 && degrees < 214)
|
||||
return "SSW";
|
||||
else if (degrees >= 214 && degrees < 236)
|
||||
return "SW";
|
||||
else if (degrees >= 236 && degrees < 259)
|
||||
return "WSW";
|
||||
else if (degrees >= 259 && degrees < 281)
|
||||
return "W";
|
||||
else if (degrees >= 281 && degrees < 304)
|
||||
return "WNW";
|
||||
else if (degrees >= 304 && degrees < 326)
|
||||
return "NW";
|
||||
else if (degrees >= 326 && degrees < 348)
|
||||
return "NNW";
|
||||
else
|
||||
return "N";
|
||||
}
|
||||
|
||||
double GeoCoord::pow_neg(double base, double exponent)
|
||||
{
|
||||
if (exponent == 0) {
|
||||
return 1;
|
||||
} else if (exponent > 0) {
|
||||
return pow(base, exponent);
|
||||
}
|
||||
return 1 / pow(base, -exponent);
|
||||
double GeoCoord::pow_neg(double base, double exponent) {
|
||||
if (exponent == 0) {
|
||||
return 1;
|
||||
} else if (exponent > 0) {
|
||||
return pow(base, exponent);
|
||||
}
|
||||
return 1 / pow(base, -exponent);
|
||||
}
|
||||
|
||||
double GeoCoord::toRadians(double deg)
|
||||
{
|
||||
return deg * PI / 180;
|
||||
}
|
||||
double GeoCoord::toRadians(double deg) { return deg * PI / 180; }
|
||||
|
||||
double GeoCoord::toDegrees(double r)
|
||||
{
|
||||
return r * 180 / PI;
|
||||
}
|
||||
double GeoCoord::toDegrees(double r) { return r * 180 / PI; }
|
||||
@@ -16,133 +16,132 @@
|
||||
// GeoCoord structs/classes
|
||||
// A struct to hold the data for a DMS coordinate.
|
||||
struct DMS {
|
||||
uint8_t latDeg;
|
||||
uint8_t latMin;
|
||||
uint32_t latSec;
|
||||
char latCP;
|
||||
uint8_t lonDeg;
|
||||
uint8_t lonMin;
|
||||
uint32_t lonSec;
|
||||
char lonCP;
|
||||
uint8_t latDeg;
|
||||
uint8_t latMin;
|
||||
uint32_t latSec;
|
||||
char latCP;
|
||||
uint8_t lonDeg;
|
||||
uint8_t lonMin;
|
||||
uint32_t lonSec;
|
||||
char lonCP;
|
||||
};
|
||||
|
||||
// A struct to hold the data for a UTM coordinate, this is also used when creating an MGRS coordinate.
|
||||
struct UTM {
|
||||
uint8_t zone;
|
||||
char band;
|
||||
uint32_t easting;
|
||||
uint32_t northing;
|
||||
uint8_t zone;
|
||||
char band;
|
||||
uint32_t easting;
|
||||
uint32_t northing;
|
||||
};
|
||||
|
||||
// A struct to hold the data for a MGRS coordinate.
|
||||
struct MGRS {
|
||||
uint8_t zone;
|
||||
char band;
|
||||
char east100k;
|
||||
char north100k;
|
||||
uint32_t easting;
|
||||
uint32_t northing;
|
||||
uint8_t zone;
|
||||
char band;
|
||||
char east100k;
|
||||
char north100k;
|
||||
uint32_t easting;
|
||||
uint32_t northing;
|
||||
};
|
||||
|
||||
// A struct to hold the data for a OSGR coordinate
|
||||
struct OSGR {
|
||||
char e100k;
|
||||
char n100k;
|
||||
uint32_t easting;
|
||||
uint32_t northing;
|
||||
char e100k;
|
||||
char n100k;
|
||||
uint32_t easting;
|
||||
uint32_t northing;
|
||||
};
|
||||
|
||||
// A struct to hold the data for a OLC coordinate
|
||||
struct OLC {
|
||||
char code[OLC_CODE_LEN + 1]; // +1 for null termination
|
||||
char code[OLC_CODE_LEN + 1]; // +1 for null termination
|
||||
};
|
||||
|
||||
class GeoCoord
|
||||
{
|
||||
private:
|
||||
int32_t _latitude = 0;
|
||||
int32_t _longitude = 0;
|
||||
int32_t _altitude = 0;
|
||||
class GeoCoord {
|
||||
private:
|
||||
int32_t _latitude = 0;
|
||||
int32_t _longitude = 0;
|
||||
int32_t _altitude = 0;
|
||||
|
||||
DMS _dms = {};
|
||||
UTM _utm = {};
|
||||
MGRS _mgrs = {};
|
||||
OSGR _osgr = {};
|
||||
OLC _olc = {};
|
||||
DMS _dms = {};
|
||||
UTM _utm = {};
|
||||
MGRS _mgrs = {};
|
||||
OSGR _osgr = {};
|
||||
OLC _olc = {};
|
||||
|
||||
bool _dirty = true;
|
||||
bool _dirty = true;
|
||||
|
||||
void setCoords();
|
||||
void setCoords();
|
||||
|
||||
public:
|
||||
GeoCoord();
|
||||
GeoCoord(int32_t lat, int32_t lon, int32_t alt);
|
||||
GeoCoord(double lat, double lon, int32_t alt);
|
||||
GeoCoord(float lat, float lon, int32_t alt);
|
||||
public:
|
||||
GeoCoord();
|
||||
GeoCoord(int32_t lat, int32_t lon, int32_t alt);
|
||||
GeoCoord(double lat, double lon, int32_t alt);
|
||||
GeoCoord(float lat, float lon, int32_t alt);
|
||||
|
||||
void updateCoords(const int32_t lat, const int32_t lon, const int32_t alt);
|
||||
void updateCoords(const double lat, const double lon, const int32_t alt);
|
||||
void updateCoords(const float lat, const float lon, const int32_t alt);
|
||||
void updateCoords(const int32_t lat, const int32_t lon, const int32_t alt);
|
||||
void updateCoords(const double lat, const double lon, const int32_t alt);
|
||||
void updateCoords(const float lat, const float lon, const int32_t alt);
|
||||
|
||||
// Conversions
|
||||
static void latLongToDMS(const double lat, const double lon, DMS &dms);
|
||||
static void latLongToUTM(const double lat, const double lon, UTM &utm);
|
||||
static void latLongToMGRS(const double lat, const double lon, MGRS &mgrs);
|
||||
static void latLongToOSGR(const double lat, const double lon, OSGR &osgr);
|
||||
static void latLongToOLC(const double lat, const double lon, OLC &olc);
|
||||
static void convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude);
|
||||
static float latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b);
|
||||
static float bearing(double lat1, double lon1, double lat2, double lon2);
|
||||
static float rangeRadiansToMeters(double range_radians);
|
||||
static float rangeMetersToRadians(double range_meters);
|
||||
static unsigned int bearingToDegrees(const char *bearing);
|
||||
static const char *degreesToBearing(unsigned int degrees);
|
||||
// Conversions
|
||||
static void latLongToDMS(const double lat, const double lon, DMS &dms);
|
||||
static void latLongToUTM(const double lat, const double lon, UTM &utm);
|
||||
static void latLongToMGRS(const double lat, const double lon, MGRS &mgrs);
|
||||
static void latLongToOSGR(const double lat, const double lon, OSGR &osgr);
|
||||
static void latLongToOLC(const double lat, const double lon, OLC &olc);
|
||||
static void convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude);
|
||||
static float latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b);
|
||||
static float bearing(double lat1, double lon1, double lat2, double lon2);
|
||||
static float rangeRadiansToMeters(double range_radians);
|
||||
static float rangeMetersToRadians(double range_meters);
|
||||
static unsigned int bearingToDegrees(const char *bearing);
|
||||
static const char *degreesToBearing(unsigned int degrees);
|
||||
|
||||
// Raises a number to an exponent, handling negative exponents.
|
||||
static double pow_neg(double base, double exponent);
|
||||
static double toRadians(double deg);
|
||||
static double toDegrees(double r);
|
||||
// Raises a number to an exponent, handling negative exponents.
|
||||
static double pow_neg(double base, double exponent);
|
||||
static double toRadians(double deg);
|
||||
static double toDegrees(double r);
|
||||
|
||||
// Point to point conversions
|
||||
int32_t distanceTo(const GeoCoord &pointB);
|
||||
int32_t bearingTo(const GeoCoord &pointB);
|
||||
std::shared_ptr<GeoCoord> pointAtDistance(double bearing, double range);
|
||||
// Point to point conversions
|
||||
int32_t distanceTo(const GeoCoord &pointB);
|
||||
int32_t bearingTo(const GeoCoord &pointB);
|
||||
std::shared_ptr<GeoCoord> pointAtDistance(double bearing, double range);
|
||||
|
||||
// Lat lon alt getters
|
||||
int32_t getLatitude() const { return _latitude; }
|
||||
int32_t getLongitude() const { return _longitude; }
|
||||
int32_t getAltitude() const { return _altitude; }
|
||||
// Lat lon alt getters
|
||||
int32_t getLatitude() const { return _latitude; }
|
||||
int32_t getLongitude() const { return _longitude; }
|
||||
int32_t getAltitude() const { return _altitude; }
|
||||
|
||||
// DMS getters
|
||||
uint8_t getDMSLatDeg() const { return _dms.latDeg; }
|
||||
uint8_t getDMSLatMin() const { return _dms.latMin; }
|
||||
uint32_t getDMSLatSec() const { return _dms.latSec; }
|
||||
char getDMSLatCP() const { return _dms.latCP; }
|
||||
uint8_t getDMSLonDeg() const { return _dms.lonDeg; }
|
||||
uint8_t getDMSLonMin() const { return _dms.lonMin; }
|
||||
uint32_t getDMSLonSec() const { return _dms.lonSec; }
|
||||
char getDMSLonCP() const { return _dms.lonCP; }
|
||||
// DMS getters
|
||||
uint8_t getDMSLatDeg() const { return _dms.latDeg; }
|
||||
uint8_t getDMSLatMin() const { return _dms.latMin; }
|
||||
uint32_t getDMSLatSec() const { return _dms.latSec; }
|
||||
char getDMSLatCP() const { return _dms.latCP; }
|
||||
uint8_t getDMSLonDeg() const { return _dms.lonDeg; }
|
||||
uint8_t getDMSLonMin() const { return _dms.lonMin; }
|
||||
uint32_t getDMSLonSec() const { return _dms.lonSec; }
|
||||
char getDMSLonCP() const { return _dms.lonCP; }
|
||||
|
||||
// UTM getters
|
||||
uint8_t getUTMZone() const { return _utm.zone; }
|
||||
char getUTMBand() const { return _utm.band; }
|
||||
uint32_t getUTMEasting() const { return _utm.easting; }
|
||||
uint32_t getUTMNorthing() const { return _utm.northing; }
|
||||
// UTM getters
|
||||
uint8_t getUTMZone() const { return _utm.zone; }
|
||||
char getUTMBand() const { return _utm.band; }
|
||||
uint32_t getUTMEasting() const { return _utm.easting; }
|
||||
uint32_t getUTMNorthing() const { return _utm.northing; }
|
||||
|
||||
// MGRS getters
|
||||
uint8_t getMGRSZone() const { return _mgrs.zone; }
|
||||
char getMGRSBand() const { return _mgrs.band; }
|
||||
char getMGRSEast100k() const { return _mgrs.east100k; }
|
||||
char getMGRSNorth100k() const { return _mgrs.north100k; }
|
||||
uint32_t getMGRSEasting() const { return _mgrs.easting; }
|
||||
uint32_t getMGRSNorthing() const { return _mgrs.northing; }
|
||||
// MGRS getters
|
||||
uint8_t getMGRSZone() const { return _mgrs.zone; }
|
||||
char getMGRSBand() const { return _mgrs.band; }
|
||||
char getMGRSEast100k() const { return _mgrs.east100k; }
|
||||
char getMGRSNorth100k() const { return _mgrs.north100k; }
|
||||
uint32_t getMGRSEasting() const { return _mgrs.easting; }
|
||||
uint32_t getMGRSNorthing() const { return _mgrs.northing; }
|
||||
|
||||
// OSGR getters
|
||||
char getOSGRE100k() const { return _osgr.e100k; }
|
||||
char getOSGRN100k() const { return _osgr.n100k; }
|
||||
uint32_t getOSGREasting() const { return _osgr.easting; }
|
||||
uint32_t getOSGRNorthing() const { return _osgr.northing; }
|
||||
// OSGR getters
|
||||
char getOSGRE100k() const { return _osgr.e100k; }
|
||||
char getOSGRN100k() const { return _osgr.n100k; }
|
||||
uint32_t getOSGREasting() const { return _osgr.easting; }
|
||||
uint32_t getOSGRNorthing() const { return _osgr.northing; }
|
||||
|
||||
// OLC getter
|
||||
void getOLCCode(char *code) { strncpy(code, _olc.code, OLC_CODE_LEN + 1); } // +1 for null termination
|
||||
// OLC getter
|
||||
void getOLCCode(char *code) { strncpy(code, _olc.code, OLC_CODE_LEN + 1); } // +1 for null termination
|
||||
};
|
||||
@@ -19,36 +19,32 @@
|
||||
* -------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_PositionLite &pos, const char *name, bool isCaltopoMode)
|
||||
{
|
||||
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
|
||||
char type = isCaltopoMode ? 'P' : 'N';
|
||||
uint32_t len = snprintf(buf, bufsz, "\r\n$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
|
||||
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(),
|
||||
geoCoord.getDMSLonDeg(), (abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6,
|
||||
geoCoord.getDMSLonCP(), name);
|
||||
uint32_t chk = 0;
|
||||
for (uint32_t i = 1; i < len; i++) {
|
||||
chk ^= buf[i];
|
||||
}
|
||||
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
|
||||
return len;
|
||||
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_PositionLite &pos, const char *name, bool isCaltopoMode) {
|
||||
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
|
||||
char type = isCaltopoMode ? 'P' : 'N';
|
||||
uint32_t len = snprintf(buf, bufsz, "\r\n$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
|
||||
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
|
||||
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), name);
|
||||
uint32_t chk = 0;
|
||||
for (uint32_t i = 1; i < len; i++) {
|
||||
chk ^= buf[i];
|
||||
}
|
||||
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
|
||||
return len;
|
||||
}
|
||||
|
||||
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_Position &pos, const char *name, bool isCaltopoMode)
|
||||
{
|
||||
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
|
||||
char type = isCaltopoMode ? 'P' : 'N';
|
||||
uint32_t len = snprintf(buf, bufsz, "$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
|
||||
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(),
|
||||
geoCoord.getDMSLonDeg(), (abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6,
|
||||
geoCoord.getDMSLonCP(), name);
|
||||
uint32_t chk = 0;
|
||||
for (uint32_t i = 1; i < len; i++) {
|
||||
chk ^= buf[i];
|
||||
}
|
||||
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
|
||||
return len;
|
||||
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_Position &pos, const char *name, bool isCaltopoMode) {
|
||||
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
|
||||
char type = isCaltopoMode ? 'P' : 'N';
|
||||
uint32_t len = snprintf(buf, bufsz, "$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
|
||||
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
|
||||
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), name);
|
||||
uint32_t chk = 0;
|
||||
for (uint32_t i = 1; i < len; i++) {
|
||||
chk ^= buf[i];
|
||||
}
|
||||
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
|
||||
return len;
|
||||
}
|
||||
/* -------------------------------------------
|
||||
* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
||||
@@ -66,37 +62,36 @@ uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_Position &pos, const
|
||||
* 8 Horizontal Dilution of precision (meters)
|
||||
* 9 Antenna Altitude above/below mean-sea-level (geoid) (in meters)
|
||||
* 10 Units of antenna altitude, meters
|
||||
* 11 Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid), "-" means mean-sea-level
|
||||
* below ellipsoid 12 Units of geoidal separation, meters 13 Age of differential GPS data, time in seconds since last SC104 type 1
|
||||
* or 9 update, null field when DGPS is not used 14 Differential reference station ID, 0000-1023 15 Checksum
|
||||
* 11 Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid), "-" means
|
||||
* mean-sea-level below ellipsoid 12 Units of geoidal separation, meters 13 Age of differential GPS data, time in
|
||||
* seconds since last SC104 type 1 or 9 update, null field when DGPS is not used 14 Differential reference station ID,
|
||||
* 0000-1023 15 Checksum
|
||||
* -------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t printGGA(char *buf, size_t bufsz, const meshtastic_Position &pos)
|
||||
{
|
||||
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
|
||||
time_t timestamp = pos.timestamp;
|
||||
uint32_t printGGA(char *buf, size_t bufsz, const meshtastic_Position &pos) {
|
||||
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
|
||||
time_t timestamp = pos.timestamp;
|
||||
|
||||
tm *t = gmtime(×tamp);
|
||||
if (getRTCQuality() > 0) { // use the device clock if we got time from somewhere. If not, use the GPS timestamp.
|
||||
uint32_t rtc_sec = getValidTime(RTCQuality::RTCQualityDevice);
|
||||
timestamp = rtc_sec;
|
||||
t = gmtime(×tamp);
|
||||
}
|
||||
tm *t = gmtime(×tamp);
|
||||
if (getRTCQuality() > 0) { // use the device clock if we got time from somewhere. If not, use the GPS timestamp.
|
||||
uint32_t rtc_sec = getValidTime(RTCQuality::RTCQualityDevice);
|
||||
timestamp = rtc_sec;
|
||||
t = gmtime(×tamp);
|
||||
}
|
||||
|
||||
uint32_t len = snprintf(
|
||||
buf, bufsz, "$GNGGA,%02d%02d%02d.%02d,%02d%07.4f,%c,%03d%07.4f,%c,%u,%02u,%04u,%04d,%c,%04d,%c,%d,%04d", t->tm_hour,
|
||||
t->tm_min, t->tm_sec, pos.timestamp_millis_adjust, geoCoord.getDMSLatDeg(),
|
||||
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
|
||||
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), pos.fix_quality,
|
||||
pos.sats_in_view, pos.HDOP, geoCoord.getAltitude(), 'M', pos.altitude_geoidal_separation, 'M', 0, 0);
|
||||
uint32_t len = snprintf(buf, bufsz, "$GNGGA,%02d%02d%02d.%02d,%02d%07.4f,%c,%03d%07.4f,%c,%u,%02u,%04u,%04d,%c,%04d,%c,%d,%04d", t->tm_hour,
|
||||
t->tm_min, t->tm_sec, pos.timestamp_millis_adjust, geoCoord.getDMSLatDeg(),
|
||||
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
|
||||
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), pos.fix_quality,
|
||||
pos.sats_in_view, pos.HDOP, geoCoord.getAltitude(), 'M', pos.altitude_geoidal_separation, 'M', 0, 0);
|
||||
|
||||
uint32_t chk = 0;
|
||||
for (uint32_t i = 1; i < len; i++) {
|
||||
chk ^= buf[i];
|
||||
}
|
||||
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
|
||||
return len;
|
||||
uint32_t chk = 0;
|
||||
for (uint32_t i = 1; i < len; i++) {
|
||||
chk ^= buf[i];
|
||||
}
|
||||
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
|
||||
return len;
|
||||
}
|
||||
|
||||
#endif
|
||||
588
src/gps/RTC.cpp
588
src/gps/RTC.cpp
@@ -12,149 +12,145 @@ uint32_t lastSetFromPhoneNtpOrGps = 0;
|
||||
static uint32_t lastTimeValidationWarning = 0;
|
||||
static const uint32_t TIME_VALIDATION_WARNING_INTERVAL_MS = 15000; // 15 seconds
|
||||
|
||||
RTCQuality getRTCQuality()
|
||||
{
|
||||
return currentQuality;
|
||||
}
|
||||
RTCQuality getRTCQuality() { return currentQuality; }
|
||||
|
||||
// stuff that really should be in in the instance instead...
|
||||
static uint32_t
|
||||
timeStartMsec; // Once we have a GPS lock, this is where we hold the initial msec clock that corresponds to that time
|
||||
static uint32_t timeStartMsec; // Once we have a GPS lock, this is where we hold the initial msec clock that corresponds
|
||||
// to that time
|
||||
static uint64_t zeroOffsetSecs; // GPS based time in secs since 1970 - only updated once on initial lock
|
||||
|
||||
/**
|
||||
* Reads the current date and time from the RTC module and updates the system time.
|
||||
* @return True if the RTC was successfully read and the system time was updated, false otherwise.
|
||||
*/
|
||||
RTCSetResult readFromRTC()
|
||||
{
|
||||
struct timeval tv; /* btw settimeofday() is helpful here too*/
|
||||
RTCSetResult readFromRTC() {
|
||||
struct timeval tv; /* btw settimeofday() is helpful here too*/
|
||||
#ifdef RV3028_RTC
|
||||
if (rtc_found.address == RV3028_RTC) {
|
||||
uint32_t now = millis();
|
||||
Melopero_RV3028 rtc;
|
||||
if (rtc_found.address == RV3028_RTC) {
|
||||
uint32_t now = millis();
|
||||
Melopero_RV3028 rtc;
|
||||
#if WIRE_INTERFACES_COUNT == 2
|
||||
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
#else
|
||||
rtc.initI2C();
|
||||
rtc.initI2C();
|
||||
#endif
|
||||
tm t;
|
||||
t.tm_year = rtc.getYear() - 1900;
|
||||
t.tm_mon = rtc.getMonth() - 1;
|
||||
t.tm_mday = rtc.getDate();
|
||||
t.tm_hour = rtc.getHour();
|
||||
t.tm_min = rtc.getMinute();
|
||||
t.tm_sec = rtc.getSecond();
|
||||
tv.tv_sec = gm_mktime(&t);
|
||||
tv.tv_usec = 0;
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
tm t;
|
||||
t.tm_year = rtc.getYear() - 1900;
|
||||
t.tm_mon = rtc.getMonth() - 1;
|
||||
t.tm_mday = rtc.getDate();
|
||||
t.tm_hour = rtc.getHour();
|
||||
t.tm_min = rtc.getMinute();
|
||||
t.tm_sec = rtc.getSecond();
|
||||
tv.tv_sec = gm_mktime(&t);
|
||||
tv.tv_usec = 0;
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
|
||||
#ifdef BUILD_EPOCH
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
#endif
|
||||
|
||||
LOG_DEBUG("Read RTC time from RV3028 getTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1,
|
||||
t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
|
||||
if (currentQuality == RTCQualityNone) {
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv.tv_sec;
|
||||
currentQuality = RTCQualityDevice;
|
||||
}
|
||||
return RTCSetResultSuccess;
|
||||
} else {
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
LOG_DEBUG("Read RTC time from RV3028 getTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour,
|
||||
t.tm_min, t.tm_sec, printableEpoch);
|
||||
if (currentQuality == RTCQualityNone) {
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv.tv_sec;
|
||||
currentQuality = RTCQualityDevice;
|
||||
}
|
||||
return RTCSetResultSuccess;
|
||||
} else {
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
}
|
||||
#elif defined(PCF8563_RTC) || defined(PCF85063_RTC)
|
||||
#if defined(PCF8563_RTC)
|
||||
if (rtc_found.address == PCF8563_RTC) {
|
||||
if (rtc_found.address == PCF8563_RTC) {
|
||||
#elif defined(PCF85063_RTC)
|
||||
if (rtc_found.address == PCF85063_RTC) {
|
||||
if (rtc_found.address == PCF85063_RTC) {
|
||||
#endif
|
||||
uint32_t now = millis();
|
||||
SensorRtcHelper rtc;
|
||||
uint32_t now = millis();
|
||||
SensorRtcHelper rtc;
|
||||
|
||||
#if WIRE_INTERFACES_COUNT == 2
|
||||
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
#else
|
||||
rtc.begin(Wire);
|
||||
rtc.begin(Wire);
|
||||
#endif
|
||||
|
||||
RTC_DateTime datetime = rtc.getDateTime();
|
||||
tm t = datetime.toUnixTime();
|
||||
tv.tv_sec = gm_mktime(&t);
|
||||
tv.tv_usec = 0;
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
RTC_DateTime datetime = rtc.getDateTime();
|
||||
tm t = datetime.toUnixTime();
|
||||
tv.tv_sec = gm_mktime(&t);
|
||||
tv.tv_usec = 0;
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
|
||||
#ifdef BUILD_EPOCH
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
#endif
|
||||
|
||||
LOG_DEBUG("Read RTC time from %s getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t.tm_year + 1900,
|
||||
t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
|
||||
if (currentQuality == RTCQualityNone) {
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv.tv_sec;
|
||||
currentQuality = RTCQualityDevice;
|
||||
}
|
||||
return RTCSetResultSuccess;
|
||||
} else {
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
LOG_DEBUG("Read RTC time from %s getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t.tm_year + 1900, t.tm_mon + 1,
|
||||
t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
|
||||
if (currentQuality == RTCQualityNone) {
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv.tv_sec;
|
||||
currentQuality = RTCQualityDevice;
|
||||
}
|
||||
return RTCSetResultSuccess;
|
||||
} else {
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
}
|
||||
#elif defined(RX8130CE_RTC)
|
||||
if (rtc_found.address == RX8130CE_RTC) {
|
||||
uint32_t now = millis();
|
||||
if (rtc_found.address == RX8130CE_RTC) {
|
||||
uint32_t now = millis();
|
||||
#ifdef MUZI_BASE
|
||||
ArtronShop_RX8130CE rtc(&Wire1);
|
||||
ArtronShop_RX8130CE rtc(&Wire1);
|
||||
#else
|
||||
ArtronShop_RX8130CE rtc(&Wire);
|
||||
ArtronShop_RX8130CE rtc(&Wire);
|
||||
#endif
|
||||
tm t;
|
||||
if (rtc.getTime(&t)) {
|
||||
tv.tv_sec = gm_mktime(&t);
|
||||
tv.tv_usec = 0;
|
||||
tm t;
|
||||
if (rtc.getTime(&t)) {
|
||||
tv.tv_sec = gm_mktime(&t);
|
||||
tv.tv_usec = 0;
|
||||
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
LOG_DEBUG("Read RTC time from RX8130CE getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900,
|
||||
t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
LOG_DEBUG("Read RTC time from RX8130CE getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
|
||||
t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
|
||||
#ifdef BUILD_EPOCH
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
#endif
|
||||
if (currentQuality == RTCQualityNone) {
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv.tv_sec;
|
||||
currentQuality = RTCQualityDevice;
|
||||
}
|
||||
return RTCSetResultSuccess;
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (!gettimeofday(&tv, NULL)) {
|
||||
uint32_t now = millis();
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
LOG_DEBUG("Read RTC time as %ld", printableEpoch);
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
#endif
|
||||
if (currentQuality == RTCQualityNone) {
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv.tv_sec;
|
||||
return RTCSetResultSuccess;
|
||||
currentQuality = RTCQualityDevice;
|
||||
}
|
||||
return RTCSetResultSuccess;
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (!gettimeofday(&tv, NULL)) {
|
||||
uint32_t now = millis();
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
LOG_DEBUG("Read RTC time as %ld", printableEpoch);
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv.tv_sec;
|
||||
return RTCSetResultSuccess;
|
||||
}
|
||||
#endif
|
||||
return RTCSetResultNotSet;
|
||||
return RTCSetResultNotSet;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -166,143 +162,140 @@ RTCSetResult readFromRTC()
|
||||
*
|
||||
* If we haven't yet set our RTC this boot, set it from a GPS derived time
|
||||
*/
|
||||
RTCSetResult perhapsSetRTC(RTCQuality q, const struct timeval *tv, bool forceUpdate)
|
||||
{
|
||||
static uint32_t lastSetMsec = 0;
|
||||
uint32_t now = millis();
|
||||
uint32_t printableEpoch = tv->tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
RTCSetResult perhapsSetRTC(RTCQuality q, const struct timeval *tv, bool forceUpdate) {
|
||||
static uint32_t lastSetMsec = 0;
|
||||
uint32_t now = millis();
|
||||
uint32_t printableEpoch = tv->tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
#ifdef BUILD_EPOCH
|
||||
if (tv->tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
} else if ((uint64_t)tv->tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
// Calculate max allowed time safely to avoid overflow in logging
|
||||
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
|
||||
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
|
||||
LOG_WARN("Ignore time (%ld) too far in the future (build epoch: %ld, max allowed: %ld)!", printableEpoch,
|
||||
(uint32_t)BUILD_EPOCH, maxAllowedPrintable);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
if (tv->tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
} else if ((uint64_t)tv->tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
// Calculate max allowed time safely to avoid overflow in logging
|
||||
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
|
||||
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
|
||||
LOG_WARN("Ignore time (%ld) too far in the future (build epoch: %ld, max allowed: %ld)!", printableEpoch, (uint32_t)BUILD_EPOCH,
|
||||
maxAllowedPrintable);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
#endif
|
||||
|
||||
bool shouldSet;
|
||||
if (forceUpdate) {
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Override current RTC quality (%s) with incoming time of RTC quality of %s", RtcName(currentQuality),
|
||||
RtcName(q));
|
||||
} else if (q > currentQuality) {
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Upgrade time to quality %s", RtcName(q));
|
||||
} else if (q == RTCQualityGPS) {
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Reapply GPS time: %ld secs", printableEpoch);
|
||||
} else if (q == RTCQualityNTP && !Throttle::isWithinTimespanMs(lastSetMsec, (12 * 60 * 60 * 1000UL))) {
|
||||
// Every 12 hrs we will slam in a new NTP or Phone GPS / NTP time, to correct for local RTC clock drift
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Reapply external time to correct clock drift %ld secs", printableEpoch);
|
||||
} else {
|
||||
shouldSet = false;
|
||||
LOG_DEBUG("Current RTC quality: %s. Ignore time of RTC quality of %s", RtcName(currentQuality), RtcName(q));
|
||||
bool shouldSet;
|
||||
if (forceUpdate) {
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Override current RTC quality (%s) with incoming time of RTC quality of %s", RtcName(currentQuality), RtcName(q));
|
||||
} else if (q > currentQuality) {
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Upgrade time to quality %s", RtcName(q));
|
||||
} else if (q == RTCQualityGPS) {
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Reapply GPS time: %ld secs", printableEpoch);
|
||||
} else if (q == RTCQualityNTP && !Throttle::isWithinTimespanMs(lastSetMsec, (12 * 60 * 60 * 1000UL))) {
|
||||
// Every 12 hrs we will slam in a new NTP or Phone GPS / NTP time, to correct for local RTC clock drift
|
||||
shouldSet = true;
|
||||
LOG_DEBUG("Reapply external time to correct clock drift %ld secs", printableEpoch);
|
||||
} else {
|
||||
shouldSet = false;
|
||||
LOG_DEBUG("Current RTC quality: %s. Ignore time of RTC quality of %s", RtcName(currentQuality), RtcName(q));
|
||||
}
|
||||
|
||||
if (shouldSet) {
|
||||
currentQuality = q;
|
||||
lastSetMsec = now;
|
||||
if (currentQuality >= RTCQualityNTP) {
|
||||
lastSetFromPhoneNtpOrGps = now;
|
||||
}
|
||||
|
||||
if (shouldSet) {
|
||||
currentQuality = q;
|
||||
lastSetMsec = now;
|
||||
if (currentQuality >= RTCQualityNTP) {
|
||||
lastSetFromPhoneNtpOrGps = now;
|
||||
}
|
||||
|
||||
// This delta value works on all platforms
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv->tv_sec;
|
||||
// If this platform has a setable RTC, set it
|
||||
// This delta value works on all platforms
|
||||
timeStartMsec = now;
|
||||
zeroOffsetSecs = tv->tv_sec;
|
||||
// If this platform has a setable RTC, set it
|
||||
#ifdef RV3028_RTC
|
||||
if (rtc_found.address == RV3028_RTC) {
|
||||
Melopero_RV3028 rtc;
|
||||
if (rtc_found.address == RV3028_RTC) {
|
||||
Melopero_RV3028 rtc;
|
||||
#if WIRE_INTERFACES_COUNT == 2
|
||||
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
#else
|
||||
rtc.initI2C();
|
||||
rtc.initI2C();
|
||||
#endif
|
||||
tm *t = gmtime(&tv->tv_sec);
|
||||
rtc.setTime(t->tm_year + 1900, t->tm_mon + 1, t->tm_wday, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
|
||||
LOG_DEBUG("RV3028_RTC setTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
|
||||
t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
|
||||
} else {
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
}
|
||||
tm *t = gmtime(&tv->tv_sec);
|
||||
rtc.setTime(t->tm_year + 1900, t->tm_mon + 1, t->tm_wday, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
|
||||
LOG_DEBUG("RV3028_RTC setTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min,
|
||||
t->tm_sec, printableEpoch);
|
||||
} else {
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
}
|
||||
#elif defined(PCF8563_RTC) || defined(PCF85063_RTC)
|
||||
#if defined(PCF8563_RTC)
|
||||
if (rtc_found.address == PCF8563_RTC) {
|
||||
if (rtc_found.address == PCF8563_RTC) {
|
||||
#elif defined(PCF85063_RTC)
|
||||
if (rtc_found.address == PCF85063_RTC) {
|
||||
if (rtc_found.address == PCF85063_RTC) {
|
||||
#endif
|
||||
SensorRtcHelper rtc;
|
||||
SensorRtcHelper rtc;
|
||||
|
||||
#if WIRE_INTERFACES_COUNT == 2
|
||||
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
|
||||
#else
|
||||
rtc.begin(Wire);
|
||||
rtc.begin(Wire);
|
||||
#endif
|
||||
tm *t = gmtime(&tv->tv_sec);
|
||||
rtc.setDateTime(*t);
|
||||
LOG_DEBUG("%s setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t->tm_year + 1900, t->tm_mon + 1,
|
||||
t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
|
||||
} else {
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
}
|
||||
#elif defined(RX8130CE_RTC)
|
||||
if (rtc_found.address == RX8130CE_RTC) {
|
||||
#ifdef MUZI_BASE
|
||||
ArtronShop_RX8130CE rtc(&Wire1);
|
||||
#else
|
||||
ArtronShop_RX8130CE rtc(&Wire);
|
||||
#endif
|
||||
tm *t = gmtime(&tv->tv_sec);
|
||||
if (rtc.setTime(*t)) {
|
||||
LOG_DEBUG("RX8130CE setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1,
|
||||
t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
|
||||
} else {
|
||||
LOG_WARN("Failed to set time for RX8130CE");
|
||||
}
|
||||
}
|
||||
#elif defined(ARCH_ESP32)
|
||||
settimeofday(tv, NULL);
|
||||
#endif
|
||||
|
||||
// nrf52 doesn't have a readable RTC (yet - software not written)
|
||||
#if HAS_RTC
|
||||
readFromRTC();
|
||||
#endif
|
||||
|
||||
return RTCSetResultSuccess;
|
||||
tm *t = gmtime(&tv->tv_sec);
|
||||
rtc.setDateTime(*t);
|
||||
LOG_DEBUG("%s setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
|
||||
t->tm_min, t->tm_sec, printableEpoch);
|
||||
} else {
|
||||
return RTCSetResultNotSet; // RTC was already set with a higher quality time
|
||||
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
|
||||
}
|
||||
#elif defined(RX8130CE_RTC)
|
||||
if (rtc_found.address == RX8130CE_RTC) {
|
||||
#ifdef MUZI_BASE
|
||||
ArtronShop_RX8130CE rtc(&Wire1);
|
||||
#else
|
||||
ArtronShop_RX8130CE rtc(&Wire);
|
||||
#endif
|
||||
tm *t = gmtime(&tv->tv_sec);
|
||||
if (rtc.setTime(*t)) {
|
||||
LOG_DEBUG("RX8130CE setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min,
|
||||
t->tm_sec, printableEpoch);
|
||||
} else {
|
||||
LOG_WARN("Failed to set time for RX8130CE");
|
||||
}
|
||||
}
|
||||
#elif defined(ARCH_ESP32)
|
||||
settimeofday(tv, NULL);
|
||||
#endif
|
||||
|
||||
// nrf52 doesn't have a readable RTC (yet - software not written)
|
||||
#if HAS_RTC
|
||||
readFromRTC();
|
||||
#endif
|
||||
|
||||
return RTCSetResultSuccess;
|
||||
} else {
|
||||
return RTCSetResultNotSet; // RTC was already set with a higher quality time
|
||||
}
|
||||
}
|
||||
|
||||
const char *RtcName(RTCQuality quality)
|
||||
{
|
||||
switch (quality) {
|
||||
case RTCQualityNone:
|
||||
return "None";
|
||||
case RTCQualityDevice:
|
||||
return "Device";
|
||||
case RTCQualityFromNet:
|
||||
return "Net";
|
||||
case RTCQualityNTP:
|
||||
return "NTP";
|
||||
case RTCQualityGPS:
|
||||
return "GPS";
|
||||
default:
|
||||
return "Unknown";
|
||||
}
|
||||
const char *RtcName(RTCQuality quality) {
|
||||
switch (quality) {
|
||||
case RTCQualityNone:
|
||||
return "None";
|
||||
case RTCQualityDevice:
|
||||
return "Device";
|
||||
case RTCQualityFromNet:
|
||||
return "Net";
|
||||
case RTCQualityNTP:
|
||||
return "NTP";
|
||||
case RTCQualityGPS:
|
||||
return "GPS";
|
||||
default:
|
||||
return "Unknown";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -312,46 +305,45 @@ const char *RtcName(RTCQuality quality)
|
||||
* @param t The time to potentially set the RTC to.
|
||||
* @return True if the RTC was set to the provided time, false otherwise.
|
||||
*/
|
||||
RTCSetResult perhapsSetRTC(RTCQuality q, struct tm &t)
|
||||
{
|
||||
/* Convert to unix time
|
||||
The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that have elapsed since January 1, 1970
|
||||
(midnight UTC/GMT), not counting leap seconds (in ISO 8601: 1970-01-01T00:00:00Z).
|
||||
*/
|
||||
// horrible hack to make mktime TZ agnostic - best practise according to
|
||||
// https://www.gnu.org/software/libc/manual/html_node/Broken_002ddown-Time.html
|
||||
time_t res = gm_mktime(&t);
|
||||
struct timeval tv;
|
||||
tv.tv_sec = res;
|
||||
tv.tv_usec = 0; // time.centisecond() * (10 / 1000);
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
RTCSetResult perhapsSetRTC(RTCQuality q, struct tm &t) {
|
||||
/* Convert to unix time
|
||||
The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that have elapsed since January
|
||||
1, 1970 (midnight UTC/GMT), not counting leap seconds (in ISO 8601: 1970-01-01T00:00:00Z).
|
||||
*/
|
||||
// horrible hack to make mktime TZ agnostic - best practise according to
|
||||
// https://www.gnu.org/software/libc/manual/html_node/Broken_002ddown-Time.html
|
||||
time_t res = gm_mktime(&t);
|
||||
struct timeval tv;
|
||||
tv.tv_sec = res;
|
||||
tv.tv_usec = 0; // time.centisecond() * (10 / 1000);
|
||||
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
|
||||
#ifdef BUILD_EPOCH
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%lu) before build epoch (%lu)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
} else if ((uint64_t)tv.tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
// Calculate max allowed time safely to avoid overflow in logging
|
||||
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
|
||||
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
|
||||
LOG_WARN("Ignore time (%lu) too far in the future (build epoch: %lu, max allowed: %lu)!", printableEpoch,
|
||||
(uint32_t)BUILD_EPOCH, maxAllowedPrintable);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
if (tv.tv_sec < BUILD_EPOCH) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
LOG_WARN("Ignore time (%lu) before build epoch (%lu)!", printableEpoch, BUILD_EPOCH);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
} else if ((uint64_t)tv.tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
|
||||
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
|
||||
// Calculate max allowed time safely to avoid overflow in logging
|
||||
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
|
||||
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
|
||||
LOG_WARN("Ignore time (%lu) too far in the future (build epoch: %lu, max allowed: %lu)!", printableEpoch, (uint32_t)BUILD_EPOCH,
|
||||
maxAllowedPrintable);
|
||||
lastTimeValidationWarning = millis();
|
||||
}
|
||||
return RTCSetResultInvalidTime;
|
||||
}
|
||||
#endif
|
||||
|
||||
// LOG_DEBUG("Got time from GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
|
||||
if (t.tm_year < 0 || t.tm_year >= 300) {
|
||||
// LOG_DEBUG("Ignore invalid GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
|
||||
return RTCSetResultInvalidTime;
|
||||
} else {
|
||||
return perhapsSetRTC(q, &tv);
|
||||
}
|
||||
// LOG_DEBUG("Got time from GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
|
||||
if (t.tm_year < 0 || t.tm_year >= 300) {
|
||||
// LOG_DEBUG("Ignore invalid GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
|
||||
return RTCSetResultInvalidTime;
|
||||
} else {
|
||||
return perhapsSetRTC(q, &tv);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -359,16 +351,15 @@ RTCSetResult perhapsSetRTC(RTCQuality q, struct tm &t)
|
||||
*
|
||||
* @return The timezone offset in seconds.
|
||||
*/
|
||||
int32_t getTZOffset()
|
||||
{
|
||||
int32_t getTZOffset() {
|
||||
#if MESHTASTIC_EXCLUDE_TZ
|
||||
return 0;
|
||||
return 0;
|
||||
#else
|
||||
time_t now = getTime(false);
|
||||
struct tm *gmt;
|
||||
gmt = gmtime(&now);
|
||||
gmt->tm_isdst = -1;
|
||||
return (int32_t)difftime(now, mktime(gmt));
|
||||
time_t now = getTime(false);
|
||||
struct tm *gmt;
|
||||
gmt = gmtime(&now);
|
||||
gmt->tm_isdst = -1;
|
||||
return (int32_t)difftime(now, mktime(gmt));
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -377,13 +368,12 @@ int32_t getTZOffset()
|
||||
*
|
||||
* @return The current time in seconds since the Unix epoch.
|
||||
*/
|
||||
uint32_t getTime(bool local)
|
||||
{
|
||||
if (local) {
|
||||
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs + getTZOffset();
|
||||
} else {
|
||||
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs;
|
||||
}
|
||||
uint32_t getTime(bool local) {
|
||||
if (local) {
|
||||
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs + getTZOffset();
|
||||
} else {
|
||||
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -392,49 +382,45 @@ uint32_t getTime(bool local)
|
||||
* @param minQuality The minimum quality of the RTC time required for it to be considered valid.
|
||||
* @return The current time from the RTC if it meets the minimum quality requirement, or 0 if the time is not valid.
|
||||
*/
|
||||
uint32_t getValidTime(RTCQuality minQuality, bool local)
|
||||
{
|
||||
return (currentQuality >= minQuality) ? getTime(local) : 0;
|
||||
}
|
||||
uint32_t getValidTime(RTCQuality minQuality, bool local) { return (currentQuality >= minQuality) ? getTime(local) : 0; }
|
||||
|
||||
time_t gm_mktime(struct tm *tm)
|
||||
{
|
||||
time_t gm_mktime(struct tm *tm) {
|
||||
#if !MESHTASTIC_EXCLUDE_TZ
|
||||
time_t result = 0;
|
||||
time_t result = 0;
|
||||
|
||||
// First, get us to the start of tm->year, by calcuating the number of days since the Unix epoch.
|
||||
int year = 1900 + tm->tm_year; // tm_year is years since 1900
|
||||
int year_minus_one = year - 1;
|
||||
int days_before_this_year = 0;
|
||||
days_before_this_year += year_minus_one * 365;
|
||||
// leap days: every 4 years, except 100s, but including 400s.
|
||||
days_before_this_year += year_minus_one / 4 - year_minus_one / 100 + year_minus_one / 400;
|
||||
// subtract from 1970-01-01 to get days since epoch
|
||||
days_before_this_year -= 719162; // (1969 * 365 + 1969 / 4 - 1969 / 100 + 1969 / 400);
|
||||
// First, get us to the start of tm->year, by calcuating the number of days since the Unix epoch.
|
||||
int year = 1900 + tm->tm_year; // tm_year is years since 1900
|
||||
int year_minus_one = year - 1;
|
||||
int days_before_this_year = 0;
|
||||
days_before_this_year += year_minus_one * 365;
|
||||
// leap days: every 4 years, except 100s, but including 400s.
|
||||
days_before_this_year += year_minus_one / 4 - year_minus_one / 100 + year_minus_one / 400;
|
||||
// subtract from 1970-01-01 to get days since epoch
|
||||
days_before_this_year -= 719162; // (1969 * 365 + 1969 / 4 - 1969 / 100 + 1969 / 400);
|
||||
|
||||
// Now, within this tm->year, compute the days *before* this tm->month starts.
|
||||
int days_before_month[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; // non-leap year
|
||||
int days_this_year_before_this_month = days_before_month[tm->tm_mon]; // tm->tm_mon is 0..11
|
||||
// Now, within this tm->year, compute the days *before* this tm->month starts.
|
||||
int days_before_month[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; // non-leap year
|
||||
int days_this_year_before_this_month = days_before_month[tm->tm_mon]; // tm->tm_mon is 0..11
|
||||
|
||||
// If this is a leap year, and we're past February, add a day:
|
||||
if (tm->tm_mon >= 2 && (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) {
|
||||
days_this_year_before_this_month += 1;
|
||||
}
|
||||
// If this is a leap year, and we're past February, add a day:
|
||||
if (tm->tm_mon >= 2 && (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) {
|
||||
days_this_year_before_this_month += 1;
|
||||
}
|
||||
|
||||
// And within this month:
|
||||
int days_this_month_before_today = tm->tm_mday - 1; // tm->tm_mday is 1..31
|
||||
// And within this month:
|
||||
int days_this_month_before_today = tm->tm_mday - 1; // tm->tm_mday is 1..31
|
||||
|
||||
// Now combine them all together, and convert days to seconds:
|
||||
result += (days_before_this_year + days_this_year_before_this_month + days_this_month_before_today);
|
||||
result *= 86400L;
|
||||
// Now combine them all together, and convert days to seconds:
|
||||
result += (days_before_this_year + days_this_year_before_this_month + days_this_month_before_today);
|
||||
result *= 86400L;
|
||||
|
||||
// Finally, add in the hours, minutes, and seconds of today:
|
||||
result += tm->tm_hour * 3600;
|
||||
result += tm->tm_min * 60;
|
||||
result += tm->tm_sec;
|
||||
// Finally, add in the hours, minutes, and seconds of today:
|
||||
result += tm->tm_hour * 3600;
|
||||
result += tm->tm_min * 60;
|
||||
result += tm->tm_sec;
|
||||
|
||||
return result;
|
||||
return result;
|
||||
#else
|
||||
return mktime(tm);
|
||||
return mktime(tm);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -10,29 +10,29 @@
|
||||
|
||||
enum RTCQuality {
|
||||
|
||||
/// We haven't had our RTC set yet
|
||||
RTCQualityNone = 0,
|
||||
/// We haven't had our RTC set yet
|
||||
RTCQualityNone = 0,
|
||||
|
||||
/// We got time from an onboard peripheral after boot.
|
||||
RTCQualityDevice = 1,
|
||||
/// We got time from an onboard peripheral after boot.
|
||||
RTCQualityDevice = 1,
|
||||
|
||||
/// Some other node gave us a time we can use
|
||||
RTCQualityFromNet = 2,
|
||||
/// Some other node gave us a time we can use
|
||||
RTCQualityFromNet = 2,
|
||||
|
||||
/// Our time is based on NTP
|
||||
RTCQualityNTP = 3,
|
||||
/// Our time is based on NTP
|
||||
RTCQualityNTP = 3,
|
||||
|
||||
/// Our time is based on our own GPS
|
||||
RTCQualityGPS = 4
|
||||
/// Our time is based on our own GPS
|
||||
RTCQualityGPS = 4
|
||||
};
|
||||
|
||||
/// The RTC set result codes
|
||||
/// Used to indicate the result of an attempt to set the RTC.
|
||||
enum RTCSetResult {
|
||||
RTCSetResultNotSet = 0, ///< RTC was set successfully
|
||||
RTCSetResultSuccess = 1, ///< RTC was set successfully
|
||||
RTCSetResultInvalidTime = 3, ///< The provided time was invalid (e.g., before the build epoch)
|
||||
RTCSetResultError = 4 ///< An error occurred while setting the RTC
|
||||
RTCSetResultNotSet = 0, ///< RTC was set successfully
|
||||
RTCSetResultSuccess = 1, ///< RTC was set successfully
|
||||
RTCSetResultInvalidTime = 3, ///< The provided time was invalid (e.g., before the build epoch)
|
||||
RTCSetResultError = 4 ///< An error occurred while setting the RTC
|
||||
};
|
||||
|
||||
RTCQuality getRTCQuality();
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
static const char *failMessage = "Unable to %s";
|
||||
|
||||
#define SEND_UBX_PACKET(TYPE, ID, DATA, ERRMSG, TIMEOUT) \
|
||||
do { \
|
||||
msglen = makeUBXPacket(TYPE, ID, sizeof(DATA), DATA); \
|
||||
_serial_gps->write(UBXscratch, msglen); \
|
||||
if (getACK(TYPE, ID, TIMEOUT) != GNSS_RESPONSE_OK) { \
|
||||
LOG_WARN(failMessage, #ERRMSG); \
|
||||
} \
|
||||
} while (0)
|
||||
#define SEND_UBX_PACKET(TYPE, ID, DATA, ERRMSG, TIMEOUT) \
|
||||
do { \
|
||||
msglen = makeUBXPacket(TYPE, ID, sizeof(DATA), DATA); \
|
||||
_serial_gps->write(UBXscratch, msglen); \
|
||||
if (getACK(TYPE, ID, TIMEOUT) != GNSS_RESPONSE_OK) { \
|
||||
LOG_WARN(failMessage, #ERRMSG); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// Power Management
|
||||
|
||||
@@ -337,8 +337,8 @@ static const uint8_t _message_SAVE_10[] = {
|
||||
// As the M10 has no flash, the best we can do to preserve the config is to set it in RAM and BBR.
|
||||
// BBR will survive a restart, and power off for a while, but modules with small backup
|
||||
// batteries or super caps will not retain the config for a long power off time.
|
||||
// for all configurations using sleep / low power modes, V_BCKP needs to be hooked to permanent power for fast aquisition after
|
||||
// sleep
|
||||
// for all configurations using sleep / low power modes, V_BCKP needs to be hooked to permanent power for fast
|
||||
// aquisition after sleep
|
||||
|
||||
// VALSET Commands for M10
|
||||
// Please refer to the M10 Protocol Specification:
|
||||
@@ -370,11 +370,13 @@ EXTINTACTIVITY U4 0 no ext ints
|
||||
LIMITPEAKCURRENT L 1
|
||||
|
||||
// Ram layer config message:
|
||||
// b5 62 06 8a 26 00 00 01 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01 10 00 d0
|
||||
// b5 62 06 8a 26 00 00 01 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01
|
||||
10 00 d0
|
||||
// 10 01 8b de
|
||||
|
||||
// BBR layer config message:
|
||||
// b5 62 06 8a 26 00 00 02 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01 10 00 d0
|
||||
// b5 62 06 8a 26 00 00 02 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01
|
||||
10 00 d0
|
||||
// 10 01 8c 03
|
||||
*/
|
||||
static const uint8_t _message_VALSET_PM_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0xd0, 0x20, 0x02, 0x02, 0x00, 0xd0, 0x40,
|
||||
@@ -396,21 +398,21 @@ CFG-ITFM replaced by 5 valset messages which can be combined into one for RAM an
|
||||
|
||||
b5 62 06 8a 0e 00 00 01 00 00 0d 00 41 10 01 13 00 41 10 01 63 c6
|
||||
*/
|
||||
static const uint8_t _message_VALSET_ITFM_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x0d, 0x00, 0x41,
|
||||
0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
|
||||
static const uint8_t _message_VALSET_ITFM_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x0d, 0x00, 0x41,
|
||||
0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
|
||||
static const uint8_t _message_VALSET_ITFM_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x0d, 0x00, 0x41, 0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
|
||||
static const uint8_t _message_VALSET_ITFM_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x0d, 0x00, 0x41, 0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
|
||||
|
||||
// Turn off all NMEA messages:
|
||||
// Ram layer config message:
|
||||
// b5 62 06 8a 22 00 00 01 00 00 c0 00 91 20 00 ca 00 91 20 00 c5 00 91 20 00 ac 00 91 20 00 b1 00 91 20 00 bb 00 91 20 00 40 8f
|
||||
// b5 62 06 8a 22 00 00 01 00 00 c0 00 91 20 00 ca 00 91 20 00 c5 00 91 20 00 ac 00 91 20 00 b1 00 91 20 00 bb 00 91 20
|
||||
// 00 40 8f
|
||||
|
||||
// Disable GLL, GSV, VTG messages in BBR layer
|
||||
// BBR layer config message:
|
||||
// b5 62 06 8a 13 00 00 02 00 00 ca 00 91 20 00 c5 00 91 20 00 b1 00 91 20 00 f8 4e
|
||||
|
||||
static const uint8_t _message_VALSET_DISABLE_NMEA_RAM[] = {
|
||||
/*0x00, 0x01, 0x00, 0x00, 0xca, 0x00, 0x91, 0x20, 0x00, 0xc5, 0x00, 0x91, 0x20, 0x00, 0xb1, 0x00, 0x91, 0x20, 0x00 */
|
||||
/*0x00, 0x01, 0x00, 0x00, 0xca, 0x00, 0x91, 0x20, 0x00, 0xc5, 0x00, 0x91, 0x20, 0x00, 0xb1, 0x00, 0x91, 0x20, 0x00
|
||||
*/
|
||||
0x00, 0x01, 0x00, 0x00, 0xc0, 0x00, 0x91, 0x20, 0x00, 0xca, 0x00, 0x91, 0x20, 0x00, 0xc5, 0x00, 0x91,
|
||||
0x20, 0x00, 0xac, 0x00, 0x91, 0x20, 0x00, 0xb1, 0x00, 0x91, 0x20, 0x00, 0xbb, 0x00, 0x91, 0x20, 0x00};
|
||||
|
||||
@@ -437,14 +439,10 @@ static const uint8_t _message_VALSET_DISABLE_NMEA_BBR[] = {0x00, 0x02, 0x00, 0x0
|
||||
static const uint8_t _message_VALSET_DISABLE_TXT_INFO_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x07, 0x00, 0x92, 0x20, 0x03};
|
||||
static const uint8_t _message_VALSET_DISABLE_TXT_INFO_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x07, 0x00, 0x92, 0x20, 0x03};
|
||||
|
||||
static const uint8_t _message_VALSET_ENABLE_NMEA_RAM[] = {0x00, 0x01, 0x00, 0x00, 0xbb, 0x00, 0x91,
|
||||
0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
|
||||
static const uint8_t _message_VALSET_ENABLE_NMEA_BBR[] = {0x00, 0x02, 0x00, 0x00, 0xbb, 0x00, 0x91,
|
||||
0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
|
||||
static const uint8_t _message_VALSET_DISABLE_SBAS_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x20, 0x00, 0x31,
|
||||
0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
|
||||
static const uint8_t _message_VALSET_DISABLE_SBAS_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x20, 0x00, 0x31,
|
||||
0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
|
||||
static const uint8_t _message_VALSET_ENABLE_NMEA_RAM[] = {0x00, 0x01, 0x00, 0x00, 0xbb, 0x00, 0x91, 0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
|
||||
static const uint8_t _message_VALSET_ENABLE_NMEA_BBR[] = {0x00, 0x02, 0x00, 0x00, 0xbb, 0x00, 0x91, 0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
|
||||
static const uint8_t _message_VALSET_DISABLE_SBAS_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x20, 0x00, 0x31, 0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
|
||||
static const uint8_t _message_VALSET_DISABLE_SBAS_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x20, 0x00, 0x31, 0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
|
||||
|
||||
/*
|
||||
Operational issues with the M10:
|
||||
|
||||
Reference in New Issue
Block a user