add a .clang-format file (#9154)

This commit is contained in:
Jorropo
2026-01-03 21:19:24 +01:00
committed by GitHub
parent abab6ce815
commit 0d11331d18
771 changed files with 77752 additions and 83184 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -20,235 +20,234 @@ static constexpr uint32_t GPS_UPDATE_ALWAYS_ON_THRESHOLD_MS = 10 * 1000UL;
static constexpr uint32_t GPS_FIX_HOLD_MAX_MS = 20000;
typedef enum {
GNSS_MODEL_ATGM336H,
GNSS_MODEL_MTK,
GNSS_MODEL_UBLOX6,
GNSS_MODEL_UBLOX7,
GNSS_MODEL_UBLOX8,
GNSS_MODEL_UBLOX9,
GNSS_MODEL_UBLOX10,
GNSS_MODEL_UC6580,
GNSS_MODEL_UNKNOWN,
GNSS_MODEL_MTK_L76B,
GNSS_MODEL_MTK_PA1010D,
GNSS_MODEL_MTK_PA1616S,
GNSS_MODEL_AG3335,
GNSS_MODEL_AG3352,
GNSS_MODEL_LS20031,
GNSS_MODEL_CM121
GNSS_MODEL_ATGM336H,
GNSS_MODEL_MTK,
GNSS_MODEL_UBLOX6,
GNSS_MODEL_UBLOX7,
GNSS_MODEL_UBLOX8,
GNSS_MODEL_UBLOX9,
GNSS_MODEL_UBLOX10,
GNSS_MODEL_UC6580,
GNSS_MODEL_UNKNOWN,
GNSS_MODEL_MTK_L76B,
GNSS_MODEL_MTK_PA1010D,
GNSS_MODEL_MTK_PA1616S,
GNSS_MODEL_AG3335,
GNSS_MODEL_AG3352,
GNSS_MODEL_LS20031,
GNSS_MODEL_CM121
} GnssModel_t;
typedef enum {
GNSS_RESPONSE_NONE,
GNSS_RESPONSE_NAK,
GNSS_RESPONSE_FRAME_ERRORS,
GNSS_RESPONSE_OK,
GNSS_RESPONSE_NONE,
GNSS_RESPONSE_NAK,
GNSS_RESPONSE_FRAME_ERRORS,
GNSS_RESPONSE_OK,
} GPS_RESPONSE;
enum GPSPowerState : uint8_t {
GPS_ACTIVE, // Awake and want a position
GPS_IDLE, // Awake, but not wanting another position yet
GPS_SOFTSLEEP, // Physically powered on, but soft-sleeping
GPS_HARDSLEEP, // Physically powered off, but scheduled to wake
GPS_OFF // Powered off indefinitely
GPS_ACTIVE, // Awake and want a position
GPS_IDLE, // Awake, but not wanting another position yet
GPS_SOFTSLEEP, // Physically powered on, but soft-sleeping
GPS_HARDSLEEP, // Physically powered off, but scheduled to wake
GPS_OFF // Powered off indefinitely
};
struct ChipInfo {
String chipName; // The name of the chip (for logging)
String detectionString; // The string to match in the response
GnssModel_t driver; // The driver to use
String chipName; // The name of the chip (for logging)
String detectionString; // The string to match in the response
GnssModel_t driver; // The driver to use
};
/**
* A gps class that only reads from the GPS periodically and keeps the gps powered down except when reading
*
* When new data is available it will notify observers.
*/
class GPS : private concurrency::OSThread
{
public:
meshtastic_Position p = meshtastic_Position_init_default;
class GPS : private concurrency::OSThread {
public:
meshtastic_Position p = meshtastic_Position_init_default;
/** This is normally bound to config.position.gps_en_gpio but some rare boards (like heltec tracker) need more advanced
* implementations. Those boards will set this public variable to a custom implementation.
*
* Normally set by GPS::createGPS()
*/
GpioVirtPin *enablePin = NULL;
/** This is normally bound to config.position.gps_en_gpio but some rare boards (like heltec tracker) need more
* advanced implementations. Those boards will set this public variable to a custom implementation.
*
* Normally set by GPS::createGPS()
*/
GpioVirtPin *enablePin = NULL;
virtual ~GPS();
virtual ~GPS();
/** We will notify this observable anytime GPS state has changed meaningfully */
Observable<const meshtastic::GPSStatus *> newStatus;
/** We will notify this observable anytime GPS state has changed meaningfully */
Observable<const meshtastic::GPSStatus *> newStatus;
/**
* Returns true if we succeeded
*/
virtual bool setup();
/**
* Returns true if we succeeded
*/
virtual bool setup();
// re-enable the thread
void enable();
// re-enable the thread
void enable();
// Disable the thread
int32_t disable() override;
// Disable the thread
int32_t disable() override;
// toggle between enabled/disabled
void toggleGpsMode();
// toggle between enabled/disabled
void toggleGpsMode();
// Change the power state of the GPS - for power saving / shutdown
void setPowerState(GPSPowerState newState, uint32_t sleepMs = 0);
// Change the power state of the GPS - for power saving / shutdown
void setPowerState(GPSPowerState newState, uint32_t sleepMs = 0);
/// Returns true if we have acquired GPS lock.
virtual bool hasLock();
/// Returns true if we have acquired GPS lock.
virtual bool hasLock();
/// Returns true if there's valid data flow with the chip.
virtual bool hasFlow();
/// Returns true if there's valid data flow with the chip.
virtual bool hasFlow();
/// Return true if we are connected to a GPS
bool isConnected() const { return hasGPS; }
/// Return true if we are connected to a GPS
bool isConnected() const { return hasGPS; }
bool isPowerSaving() const { return config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED; }
bool isPowerSaving() const { return config.position.gps_mode != meshtastic_Config_PositionConfig_GpsMode_ENABLED; }
// Empty the input buffer as quickly as possible
void clearBuffer();
// Empty the input buffer as quickly as possible
void clearBuffer();
// Creates an instance of the GPS class.
// Returns the new instance or null if the GPS is not present.
static GPS *createGps();
// Creates an instance of the GPS class.
// Returns the new instance or null if the GPS is not present.
static GPS *createGps();
// Wake the GPS hardware - ready for an update
void up();
// Wake the GPS hardware - ready for an update
void up();
// Let the GPS hardware save power between updates
void down();
// Let the GPS hardware save power between updates
void down();
private:
GPS() : concurrency::OSThread("GPS") {}
private:
GPS() : concurrency::OSThread("GPS") {}
/// Record that we have a GPS
void setConnected();
/// Record that we have a GPS
void setConnected();
/** Subclasses should look for serial rx characters here and feed it to their GPS parser
*
* Return true if we received a valid message from the GPS
*/
virtual bool whileActive();
/** Subclasses should look for serial rx characters here and feed it to their GPS parser
*
* Return true if we received a valid message from the GPS
*/
virtual bool whileActive();
/**
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
* Override this method to check for new locations
*
* @return true if we've acquired a time
*/
virtual bool lookForTime();
/**
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
* Override this method to check for new locations
*
* @return true if we've acquired a time
*/
virtual bool lookForTime();
/**
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
* Override this method to check for new locations
*
* @return true if we've acquired a new location
*/
virtual bool lookForLocation();
/**
* Perform any processing that should be done only while the GPS is awake and looking for a fix.
* Override this method to check for new locations
*
* @return true if we've acquired a new location
*/
virtual bool lookForLocation();
GnssModel_t gnssModel = GNSS_MODEL_UNKNOWN;
GnssModel_t gnssModel = GNSS_MODEL_UNKNOWN;
TinyGPSPlus reader;
uint8_t fixQual = 0; // fix quality from GPGGA
uint32_t lastChecksumFailCount = 0;
uint8_t currentStep = 0;
int32_t currentDelay = 2000;
TinyGPSPlus reader;
uint8_t fixQual = 0; // fix quality from GPGGA
uint32_t lastChecksumFailCount = 0;
uint8_t currentStep = 0;
int32_t currentDelay = 2000;
#ifndef TINYGPS_OPTION_NO_CUSTOM_FIELDS
// (20210908) TinyGps++ can only read the GPGSA "FIX TYPE" field
// via optional feature "custom fields", currently disabled (bug #525)
TinyGPSCustom gsafixtype; // custom extract fix type from GPGSA
TinyGPSCustom gsapdop; // custom extract PDOP from GPGSA
uint8_t fixType = 0; // fix type from GPGSA
// (20210908) TinyGps++ can only read the GPGSA "FIX TYPE" field
// via optional feature "custom fields", currently disabled (bug #525)
TinyGPSCustom gsafixtype; // custom extract fix type from GPGSA
TinyGPSCustom gsapdop; // custom extract PDOP from GPGSA
uint8_t fixType = 0; // fix type from GPGSA
#endif
uint32_t fixHoldEnds = 0;
uint32_t rx_gpio = 0;
uint32_t tx_gpio = 0;
uint32_t fixHoldEnds = 0;
uint32_t rx_gpio = 0;
uint32_t tx_gpio = 0;
uint8_t speedSelect = 0;
uint8_t probeTries = 0;
uint8_t speedSelect = 0;
uint8_t probeTries = 0;
/**
* hasValidLocation - indicates that the position variables contain a complete
* GPS location, valid and fresh (< gps_update_interval + position_broadcast_secs)
*/
bool hasValidLocation = false; // default to false, until we complete our first read
/**
* hasValidLocation - indicates that the position variables contain a complete
* GPS location, valid and fresh (< gps_update_interval + position_broadcast_secs)
*/
bool hasValidLocation = false; // default to false, until we complete our first read
bool shouldPublish = false; // If we've changed GPS state, this will force a publish the next loop()
bool shouldPublish = false; // If we've changed GPS state, this will force a publish the next loop()
bool hasGPS = false; // Do we have a GPS we are talking to
bool hasGPS = false; // Do we have a GPS we are talking to
bool GPSInitFinished = false; // Init thread finished?
bool GPSInitStarted = false; // Init thread finished?
bool GPSInitFinished = false; // Init thread finished?
bool GPSInitStarted = false; // Init thread finished?
GPSPowerState powerState = GPS_OFF; // GPS_ACTIVE if we want a location right now
GPSPowerState powerState = GPS_OFF; // GPS_ACTIVE if we want a location right now
uint8_t numSatellites = 0;
uint8_t numSatellites = 0;
CallbackObserver<GPS, void *> notifyDeepSleepObserver = CallbackObserver<GPS, void *>(this, &GPS::prepareDeepSleep);
CallbackObserver<GPS, void *> notifyDeepSleepObserver = CallbackObserver<GPS, void *>(this, &GPS::prepareDeepSleep);
/** If !NULL we will use this serial port to construct our GPS */
/** If !NULL we will use this serial port to construct our GPS */
#if defined(ARCH_RP2040)
static SerialUART *_serial_gps;
static SerialUART *_serial_gps;
#elif defined(ARCH_NRF52)
static Uart *_serial_gps;
static Uart *_serial_gps;
#else
static HardwareSerial *_serial_gps;
static HardwareSerial *_serial_gps;
#endif
// Create a ublox packet for editing in memory
uint8_t makeUBXPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
uint8_t makeCASPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
// Create a ublox packet for editing in memory
uint8_t makeUBXPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
uint8_t makeCASPacket(uint8_t class_id, uint8_t msg_id, uint8_t payload_size, const uint8_t *msg);
// scratch space for creating ublox packets
uint8_t UBXscratch[250] = {0};
// scratch space for creating ublox packets
uint8_t UBXscratch[250] = {0};
int rebootsSeen = 0;
int rebootsSeen = 0;
int getACK(uint8_t *buffer, uint16_t size, uint8_t requestedClass, uint8_t requestedID, uint32_t waitMillis);
GPS_RESPONSE getACK(uint8_t c, uint8_t i, uint32_t waitMillis);
GPS_RESPONSE getACK(const char *message, uint32_t waitMillis);
int getACK(uint8_t *buffer, uint16_t size, uint8_t requestedClass, uint8_t requestedID, uint32_t waitMillis);
GPS_RESPONSE getACK(uint8_t c, uint8_t i, uint32_t waitMillis);
GPS_RESPONSE getACK(const char *message, uint32_t waitMillis);
GPS_RESPONSE getACKCas(uint8_t class_id, uint8_t msg_id, uint32_t waitMillis);
GPS_RESPONSE getACKCas(uint8_t class_id, uint8_t msg_id, uint32_t waitMillis);
/// Prepare the GPS for the cpu entering deep sleep, expect to be gone for at least 100s of msecs
/// always returns 0 to indicate okay to sleep
int prepareDeepSleep(void *unused);
/// Prepare the GPS for the cpu entering deep sleep, expect to be gone for at least 100s of msecs
/// always returns 0 to indicate okay to sleep
int prepareDeepSleep(void *unused);
/** Set power with EN pin, if relevant
*/
void writePinEN(bool on);
/** Set power with EN pin, if relevant
*/
void writePinEN(bool on);
/** Set the value of the STANDBY pin, if relevant
*/
void writePinStandby(bool standby);
/** Set the value of the STANDBY pin, if relevant
*/
void writePinStandby(bool standby);
/** Set GPS power with PMU, if relevant
*/
void setPowerPMU(bool on);
/** Set GPS power with PMU, if relevant
*/
void setPowerPMU(bool on);
/** Set UBLOX power, if relevant
*/
void setPowerUBLOX(bool on, uint32_t sleepMs = 0);
/** Set UBLOX power, if relevant
*/
void setPowerUBLOX(bool on, uint32_t sleepMs = 0);
/**
* Tell users we have new GPS readings
*/
void publishUpdate();
/**
* Tell users we have new GPS readings
*/
void publishUpdate();
virtual int32_t runOnce() override;
virtual int32_t runOnce() override;
GnssModel_t getProbeResponse(unsigned long timeout, const std::vector<ChipInfo> &responseMap, int serialSpeed);
GnssModel_t getProbeResponse(unsigned long timeout, const std::vector<ChipInfo> &responseMap, int serialSpeed);
// Get GNSS model
GnssModel_t probe(int serialSpeed);
// Get GNSS model
GnssModel_t probe(int serialSpeed);
// delay counter to allow more sats before fixed position stops GPS thread
uint8_t fixeddelayCtr = 0;
// delay counter to allow more sats before fixed position stops GPS thread
uint8_t fixeddelayCtr = 0;
};
extern GPS *gps;

View File

@@ -3,116 +3,100 @@
#include "Default.h"
// Mark the time when searching for GPS position begins
void GPSUpdateScheduling::informSearching()
{
searchStartedMs = millis();
}
void GPSUpdateScheduling::informSearching() { searchStartedMs = millis(); }
// Mark the time when searching for GPS is complete,
// then update the predicted lock-time
void GPSUpdateScheduling::informGotLock()
{
searchEndedMs = millis();
LOG_DEBUG("Took %us to get lock", (searchEndedMs - searchStartedMs) / 1000);
updateLockTimePrediction();
void GPSUpdateScheduling::informGotLock() {
searchEndedMs = millis();
LOG_DEBUG("Took %us to get lock", (searchEndedMs - searchStartedMs) / 1000);
updateLockTimePrediction();
}
// Clear old lock-time prediction data.
// When re-enabling GPS with user button.
void GPSUpdateScheduling::reset()
{
searchStartedMs = 0;
searchEndedMs = 0;
searchCount = 0;
predictedMsToGetLock = 0;
void GPSUpdateScheduling::reset() {
searchStartedMs = 0;
searchEndedMs = 0;
searchCount = 0;
predictedMsToGetLock = 0;
}
// How many milliseconds before we should next search for GPS position
// Used by GPS hardware directly, to enter timed hardware sleep
uint32_t GPSUpdateScheduling::msUntilNextSearch()
{
uint32_t now = millis();
uint32_t GPSUpdateScheduling::msUntilNextSearch() {
uint32_t now = millis();
// Target interval (seconds), between GPS updates
uint32_t updateInterval = Default::getConfiguredOrDefaultMs(config.position.gps_update_interval, default_gps_update_interval);
// Target interval (seconds), between GPS updates
uint32_t updateInterval = Default::getConfiguredOrDefaultMs(config.position.gps_update_interval, default_gps_update_interval);
// Check how long until we should start searching, to hopefully hit our target interval
uint32_t dueAtMs = searchEndedMs + updateInterval;
uint32_t compensatedStart = dueAtMs - predictedMsToGetLock;
int32_t remainingMs = compensatedStart - now;
// Check how long until we should start searching, to hopefully hit our target interval
uint32_t dueAtMs = searchEndedMs + updateInterval;
uint32_t compensatedStart = dueAtMs - predictedMsToGetLock;
int32_t remainingMs = compensatedStart - now;
// If we should have already started (negative value), start ASAP
if (remainingMs < 0)
remainingMs = 0;
// If we should have already started (negative value), start ASAP
if (remainingMs < 0)
remainingMs = 0;
return (uint32_t)remainingMs;
return (uint32_t)remainingMs;
}
// How long have we already been searching?
// Used to abort a search in progress, if it runs unacceptably long
uint32_t GPSUpdateScheduling::elapsedSearchMs()
{
// If searching
if (searchStartedMs > searchEndedMs)
return millis() - searchStartedMs;
uint32_t GPSUpdateScheduling::elapsedSearchMs() {
// If searching
if (searchStartedMs > searchEndedMs)
return millis() - searchStartedMs;
// If not searching - 0ms. We shouldn't really consume this value
else
return 0;
// If not searching - 0ms. We shouldn't really consume this value
else
return 0;
}
// Is it now time to begin searching for a GPS position?
bool GPSUpdateScheduling::isUpdateDue()
{
return (msUntilNextSearch() == 0);
}
bool GPSUpdateScheduling::isUpdateDue() { return (msUntilNextSearch() == 0); }
// Have we been searching for a GPS position for too long?
bool GPSUpdateScheduling::searchedTooLong()
{
uint32_t minimumOrConfiguredSecs =
Default::getConfiguredOrMinimumValue(config.position.position_broadcast_secs, default_broadcast_interval_secs);
uint32_t maxSearchMs = Default::getConfiguredOrDefaultMs(minimumOrConfiguredSecs, default_broadcast_interval_secs);
// If broadcast interval set to max, no such thing as "too long"
if (maxSearchMs == UINT32_MAX)
return false;
bool GPSUpdateScheduling::searchedTooLong() {
uint32_t minimumOrConfiguredSecs = Default::getConfiguredOrMinimumValue(config.position.position_broadcast_secs, default_broadcast_interval_secs);
uint32_t maxSearchMs = Default::getConfiguredOrDefaultMs(minimumOrConfiguredSecs, default_broadcast_interval_secs);
// If broadcast interval set to max, no such thing as "too long"
if (maxSearchMs == UINT32_MAX)
return false;
// If we've been searching longer than our position broadcast interval: that's too long
else if (elapsedSearchMs() > maxSearchMs)
return true;
// If we've been searching longer than our position broadcast interval: that's too long
else if (elapsedSearchMs() > maxSearchMs)
return true;
// Otherwise, not too long yet!
else
return false;
// Otherwise, not too long yet!
else
return false;
}
// Updates the predicted time-to-get-lock, by exponentially smoothing the latest observation
void GPSUpdateScheduling::updateLockTimePrediction()
{
void GPSUpdateScheduling::updateLockTimePrediction() {
// How long did it take to get GPS lock this time?
// Duration between down() calls
int32_t lockTime = searchEndedMs - searchStartedMs;
if (lockTime < 0)
lockTime = 0;
// How long did it take to get GPS lock this time?
// Duration between down() calls
int32_t lockTime = searchEndedMs - searchStartedMs;
if (lockTime < 0)
lockTime = 0;
// Ignore the first lock-time: likely to be long, will skew data
// Ignore the first lock-time: likely to be long, will skew data
// Second locktime: likely stable. Use to initialize the smoothing filter
if (searchCount == 1)
predictedMsToGetLock = lockTime;
// Second locktime: likely stable. Use to initialize the smoothing filter
if (searchCount == 1)
predictedMsToGetLock = lockTime;
// Third locktime and after: predict using exponential smoothing. Respond slowly to changes
else if (searchCount > 1)
predictedMsToGetLock = (lockTime * weighting) + (predictedMsToGetLock * (1 - weighting));
// Third locktime and after: predict using exponential smoothing. Respond slowly to changes
else if (searchCount > 1)
predictedMsToGetLock = (lockTime * weighting) + (predictedMsToGetLock * (1 - weighting));
searchCount++; // Only tracked so we can disregard initial lock-times
searchCount++; // Only tracked so we can disregard initial lock-times
LOG_DEBUG("Predict %us to get next lock", predictedMsToGetLock / 1000);
LOG_DEBUG("Predict %us to get next lock", predictedMsToGetLock / 1000);
}
// How long do we expect to spend searching for a lock?
uint32_t GPSUpdateScheduling::predictedSearchDurationMs()
{
return GPSUpdateScheduling::predictedMsToGetLock;
}
uint32_t GPSUpdateScheduling::predictedSearchDurationMs() { return GPSUpdateScheduling::predictedMsToGetLock; }

View File

@@ -3,27 +3,26 @@
#include "configuration.h"
// Encapsulates code responsible for the timing of GPS updates
class GPSUpdateScheduling
{
public:
// Marks the time of these events, for calculation use
void informSearching();
void informGotLock(); // Predicted lock-time is recalculated here
class GPSUpdateScheduling {
public:
// Marks the time of these events, for calculation use
void informSearching();
void informGotLock(); // Predicted lock-time is recalculated here
void reset(); // Reset the prediction - after GPS::disable() / GPS::enable()
bool isUpdateDue(); // Is it time to begin searching for a GPS position?
bool searchedTooLong(); // Have we been searching for too long?
void reset(); // Reset the prediction - after GPS::disable() / GPS::enable()
bool isUpdateDue(); // Is it time to begin searching for a GPS position?
bool searchedTooLong(); // Have we been searching for too long?
uint32_t msUntilNextSearch(); // How long until we need to begin searching for a GPS? Info provided to GPS hardware for sleep
uint32_t elapsedSearchMs(); // How long have we been searching so far?
uint32_t predictedSearchDurationMs(); // How long do we expect to spend searching for a lock?
uint32_t msUntilNextSearch(); // How long until we need to begin searching for a GPS? Info provided to GPS hardware for sleep
uint32_t elapsedSearchMs(); // How long have we been searching so far?
uint32_t predictedSearchDurationMs(); // How long do we expect to spend searching for a lock?
private:
void updateLockTimePrediction(); // Called from informGotLock
uint32_t searchStartedMs = 0;
uint32_t searchEndedMs = 0;
uint32_t searchCount = 0;
uint32_t predictedMsToGetLock = 0;
private:
void updateLockTimePrediction(); // Called from informGotLock
uint32_t searchStartedMs = 0;
uint32_t searchEndedMs = 0;
uint32_t searchCount = 0;
uint32_t predictedMsToGetLock = 0;
const float weighting = 0.2; // Controls exponential smoothing of lock-times prediction. 20% weighting of "latest lock-time".
const float weighting = 0.2; // Controls exponential smoothing of lock-times prediction. 20% weighting of "latest lock-time".
};

View File

@@ -1,402 +1,378 @@
#include "GeoCoord.h"
GeoCoord::GeoCoord()
{
_dirty = true;
GeoCoord::GeoCoord() { _dirty = true; }
GeoCoord::GeoCoord(int32_t lat, int32_t lon, int32_t alt) : _latitude(lat), _longitude(lon), _altitude(alt) { GeoCoord::setCoords(); }
GeoCoord::GeoCoord(float lat, float lon, int32_t alt) : _altitude(alt) {
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
_latitude = int32_t(lat * 1e+7);
_longitude = int32_t(lon * 1e+7);
GeoCoord::setCoords();
}
GeoCoord::GeoCoord(int32_t lat, int32_t lon, int32_t alt) : _latitude(lat), _longitude(lon), _altitude(alt)
{
GeoCoord::setCoords();
}
GeoCoord::GeoCoord(float lat, float lon, int32_t alt) : _altitude(alt)
{
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
_latitude = int32_t(lat * 1e+7);
_longitude = int32_t(lon * 1e+7);
GeoCoord::setCoords();
}
GeoCoord::GeoCoord(double lat, double lon, int32_t alt) : _altitude(alt)
{
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
_latitude = int32_t(lat * 1e+7);
_longitude = int32_t(lon * 1e+7);
GeoCoord::setCoords();
GeoCoord::GeoCoord(double lat, double lon, int32_t alt) : _altitude(alt) {
// Change decimial representation to int32_t. I.e., 12.345 becomes 123450000
_latitude = int32_t(lat * 1e+7);
_longitude = int32_t(lon * 1e+7);
GeoCoord::setCoords();
}
// Initialize all the coordinate systems
void GeoCoord::setCoords()
{
double lat = _latitude * 1e-7;
double lon = _longitude * 1e-7;
GeoCoord::latLongToDMS(lat, lon, _dms);
GeoCoord::latLongToUTM(lat, lon, _utm);
GeoCoord::latLongToMGRS(lat, lon, _mgrs);
GeoCoord::latLongToOSGR(lat, lon, _osgr);
GeoCoord::latLongToOLC(lat, lon, _olc);
_dirty = false;
void GeoCoord::setCoords() {
double lat = _latitude * 1e-7;
double lon = _longitude * 1e-7;
GeoCoord::latLongToDMS(lat, lon, _dms);
GeoCoord::latLongToUTM(lat, lon, _utm);
GeoCoord::latLongToMGRS(lat, lon, _mgrs);
GeoCoord::latLongToOSGR(lat, lon, _osgr);
GeoCoord::latLongToOLC(lat, lon, _olc);
_dirty = false;
}
void GeoCoord::updateCoords(int32_t lat, int32_t lon, int32_t alt)
{
// If marked dirty or new coordinates
if (_dirty || _latitude != lat || _longitude != lon || _altitude != alt) {
_dirty = true;
_latitude = lat;
_longitude = lon;
_altitude = alt;
setCoords();
}
void GeoCoord::updateCoords(int32_t lat, int32_t lon, int32_t alt) {
// If marked dirty or new coordinates
if (_dirty || _latitude != lat || _longitude != lon || _altitude != alt) {
_dirty = true;
_latitude = lat;
_longitude = lon;
_altitude = alt;
setCoords();
}
}
void GeoCoord::updateCoords(const double lat, const double lon, const int32_t alt)
{
int32_t iLat = lat * 1e+7;
int32_t iLon = lon * 1e+7;
// If marked dirty or new coordinates
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
_dirty = true;
_latitude = iLat;
_longitude = iLon;
_altitude = alt;
setCoords();
}
void GeoCoord::updateCoords(const double lat, const double lon, const int32_t alt) {
int32_t iLat = lat * 1e+7;
int32_t iLon = lon * 1e+7;
// If marked dirty or new coordinates
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
_dirty = true;
_latitude = iLat;
_longitude = iLon;
_altitude = alt;
setCoords();
}
}
void GeoCoord::updateCoords(const float lat, const float lon, const int32_t alt)
{
int32_t iLat = lat * 1e+7;
int32_t iLon = lon * 1e+7;
// If marked dirty or new coordinates
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
_dirty = true;
_latitude = iLat;
_longitude = iLon;
_altitude = alt;
setCoords();
}
void GeoCoord::updateCoords(const float lat, const float lon, const int32_t alt) {
int32_t iLat = lat * 1e+7;
int32_t iLon = lon * 1e+7;
// If marked dirty or new coordinates
if (_dirty || _latitude != iLat || _longitude != iLon || _altitude != alt) {
_dirty = true;
_latitude = iLat;
_longitude = iLon;
_altitude = alt;
setCoords();
}
}
/**
* Converts lat long coordinates from decimal degrees to degrees minutes seconds format.
* DD°MM'SS"C DDD°MM'SS"C
*/
void GeoCoord::latLongToDMS(const double lat, const double lon, DMS &dms)
{
if (lat < 0)
dms.latCP = 'S';
else
dms.latCP = 'N';
void GeoCoord::latLongToDMS(const double lat, const double lon, DMS &dms) {
if (lat < 0)
dms.latCP = 'S';
else
dms.latCP = 'N';
double latDeg = lat;
double latDeg = lat;
if (lat < 0)
latDeg = latDeg * -1;
if (lat < 0)
latDeg = latDeg * -1;
dms.latDeg = floor(latDeg);
double latMin = (latDeg - dms.latDeg) * 60;
dms.latMin = floor(latMin);
dms.latSec = (latMin - dms.latMin) * 60;
dms.latDeg = floor(latDeg);
double latMin = (latDeg - dms.latDeg) * 60;
dms.latMin = floor(latMin);
dms.latSec = (latMin - dms.latMin) * 60;
if (lon < 0)
dms.lonCP = 'W';
else
dms.lonCP = 'E';
if (lon < 0)
dms.lonCP = 'W';
else
dms.lonCP = 'E';
double lonDeg = lon;
double lonDeg = lon;
if (lon < 0)
lonDeg = lonDeg * -1;
if (lon < 0)
lonDeg = lonDeg * -1;
dms.lonDeg = floor(lonDeg);
double lonMin = (lonDeg - dms.lonDeg) * 60;
dms.lonMin = floor(lonMin);
dms.lonSec = (lonMin - dms.lonMin) * 60;
dms.lonDeg = floor(lonDeg);
double lonMin = (lonDeg - dms.lonDeg) * 60;
dms.lonMin = floor(lonMin);
dms.lonSec = (lonMin - dms.lonMin) * 60;
}
/**
* Converts lat long coordinates to UTM.
* based on this: https://github.com/walvok/LatLonToUTM/blob/master/latlon_utm.ino
*/
void GeoCoord::latLongToUTM(const double lat, const double lon, UTM &utm)
{
void GeoCoord::latLongToUTM(const double lat, const double lon, UTM &utm) {
const std::string latBands = "CDEFGHJKLMNPQRSTUVWXX";
utm.zone = int((lon + 180) / 6 + 1);
utm.band = latBands[int(lat / 8 + 10)];
double a = 6378137; // WGS84 - equatorial radius
double k0 = 0.9996; // UTM point scale on the central meridian
double eccSquared = 0.00669438; // eccentricity squared
double lonTemp = (lon + 180) - int((lon + 180) / 360) * 360 - 180; // Make sure the longitude is between -180.00 .. 179.9
double latRad = toRadians(lat);
double lonRad = toRadians(lonTemp);
const std::string latBands = "CDEFGHJKLMNPQRSTUVWXX";
utm.zone = int((lon + 180) / 6 + 1);
utm.band = latBands[int(lat / 8 + 10)];
double a = 6378137; // WGS84 - equatorial radius
double k0 = 0.9996; // UTM point scale on the central meridian
double eccSquared = 0.00669438; // eccentricity squared
double lonTemp = (lon + 180) - int((lon + 180) / 360) * 360 - 180; // Make sure the longitude is between -180.00 .. 179.9
double latRad = toRadians(lat);
double lonRad = toRadians(lonTemp);
// Special Zones for Norway and Svalbard
if (lat >= 56.0 && lat < 64.0 && lonTemp >= 3.0 && lonTemp < 12.0) // Norway
utm.zone = 32;
if (lat >= 72.0 && lat < 84.0) { // Svalbard
if (lonTemp >= 0.0 && lonTemp < 9.0)
utm.zone = 31;
else if (lonTemp >= 9.0 && lonTemp < 21.0)
utm.zone = 33;
else if (lonTemp >= 21.0 && lonTemp < 33.0)
utm.zone = 35;
else if (lonTemp >= 33.0 && lonTemp < 42.0)
utm.zone = 37;
}
// Special Zones for Norway and Svalbard
if (lat >= 56.0 && lat < 64.0 && lonTemp >= 3.0 && lonTemp < 12.0) // Norway
utm.zone = 32;
if (lat >= 72.0 && lat < 84.0) { // Svalbard
if (lonTemp >= 0.0 && lonTemp < 9.0)
utm.zone = 31;
else if (lonTemp >= 9.0 && lonTemp < 21.0)
utm.zone = 33;
else if (lonTemp >= 21.0 && lonTemp < 33.0)
utm.zone = 35;
else if (lonTemp >= 33.0 && lonTemp < 42.0)
utm.zone = 37;
}
double lonOrigin = (utm.zone - 1) * 6 - 180 + 3; // puts origin in middle of zone
double lonOriginRad = toRadians(lonOrigin);
double eccPrimeSquared = (eccSquared) / (1 - eccSquared);
double N = a / sqrt(1 - eccSquared * sin(latRad) * sin(latRad));
double T = tan(latRad) * tan(latRad);
double C = eccPrimeSquared * cos(latRad) * cos(latRad);
double A = cos(latRad) * (lonRad - lonOriginRad);
double M =
a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * latRad -
(3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) *
sin(2 * latRad) +
(15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(4 * latRad) -
(35 * eccSquared * eccSquared * eccSquared / 3072) * sin(6 * latRad));
utm.easting = (double)(k0 * N *
(A + (1 - T + C) * pow(A, 3) / 6 +
(5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120) +
500000.0);
utm.northing =
(double)(k0 * (M + N * tan(latRad) *
(A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24 +
(61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720)));
double lonOrigin = (utm.zone - 1) * 6 - 180 + 3; // puts origin in middle of zone
double lonOriginRad = toRadians(lonOrigin);
double eccPrimeSquared = (eccSquared) / (1 - eccSquared);
double N = a / sqrt(1 - eccSquared * sin(latRad) * sin(latRad));
double T = tan(latRad) * tan(latRad);
double C = eccPrimeSquared * cos(latRad) * cos(latRad);
double A = cos(latRad) * (lonRad - lonOriginRad);
double M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * latRad -
(3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(2 * latRad) +
(15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(4 * latRad) -
(35 * eccSquared * eccSquared * eccSquared / 3072) * sin(6 * latRad));
utm.easting = (double)(k0 * N * (A + (1 - T + C) * pow(A, 3) / 6 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120) +
500000.0);
utm.northing = (double)(k0 * (M + N * tan(latRad) *
(A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24 +
(61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720)));
if (lat < 0)
utm.northing += 10000000.0; // 10000000 meter offset for southern hemisphere
if (lat < 0)
utm.northing += 10000000.0; // 10000000 meter offset for southern hemisphere
}
// Converts lat long coordinates to an MGRS.
void GeoCoord::latLongToMGRS(const double lat, const double lon, MGRS &mgrs)
{
const std::string e100kLetters[3] = {"ABCDEFGH", "JKLMNPQR", "STUVWXYZ"};
const std::string n100kLetters[2] = {"ABCDEFGHJKLMNPQRSTUV", "FGHJKLMNPQRSTUVABCDE"};
UTM utm;
latLongToUTM(lat, lon, utm);
mgrs.zone = utm.zone;
mgrs.band = utm.band;
double col = floor(utm.easting / 100000);
mgrs.east100k = e100kLetters[(mgrs.zone - 1) % 3][col - 1];
double row = (int32_t)floor(utm.northing / 100000.0) % 20;
mgrs.north100k = n100kLetters[(mgrs.zone - 1) % 2][row];
mgrs.easting = (int32_t)utm.easting % 100000;
mgrs.northing = (int32_t)utm.northing % 100000;
void GeoCoord::latLongToMGRS(const double lat, const double lon, MGRS &mgrs) {
const std::string e100kLetters[3] = {"ABCDEFGH", "JKLMNPQR", "STUVWXYZ"};
const std::string n100kLetters[2] = {"ABCDEFGHJKLMNPQRSTUV", "FGHJKLMNPQRSTUVABCDE"};
UTM utm;
latLongToUTM(lat, lon, utm);
mgrs.zone = utm.zone;
mgrs.band = utm.band;
double col = floor(utm.easting / 100000);
mgrs.east100k = e100kLetters[(mgrs.zone - 1) % 3][col - 1];
double row = (int32_t)floor(utm.northing / 100000.0) % 20;
mgrs.north100k = n100kLetters[(mgrs.zone - 1) % 2][row];
mgrs.easting = (int32_t)utm.easting % 100000;
mgrs.northing = (int32_t)utm.northing % 100000;
}
/**
* Converts lat long coordinates to Ordnance Survey Grid Reference (UK National Grid Ref).
* Based on: https://www.movable-type.co.uk/scripts/latlong-os-gridref.html
*/
void GeoCoord::latLongToOSGR(const double lat, const double lon, OSGR &osgr)
{
const char letter[] = "ABCDEFGHJKLMNOPQRSTUVWXYZ"; // No 'I' in OSGR
double a = 6377563.396; // Airy 1830 semi-major axis
double b = 6356256.909; // Airy 1830 semi-minor axis
double f0 = 0.9996012717; // National Grid point scale factor on the central meridian
double phi0 = toRadians(49);
double lambda0 = toRadians(-2);
double n0 = -100000;
double e0 = 400000;
double e2 = 1 - (b * b) / (a * a); // eccentricity squared
double n = (a - b) / (a + b);
void GeoCoord::latLongToOSGR(const double lat, const double lon, OSGR &osgr) {
const char letter[] = "ABCDEFGHJKLMNOPQRSTUVWXYZ"; // No 'I' in OSGR
double a = 6377563.396; // Airy 1830 semi-major axis
double b = 6356256.909; // Airy 1830 semi-minor axis
double f0 = 0.9996012717; // National Grid point scale factor on the central meridian
double phi0 = toRadians(49);
double lambda0 = toRadians(-2);
double n0 = -100000;
double e0 = 400000;
double e2 = 1 - (b * b) / (a * a); // eccentricity squared
double n = (a - b) / (a + b);
double osgb_Latitude;
double osgb_Longitude;
convertWGS84ToOSGB36(lat, lon, osgb_Latitude, osgb_Longitude);
double phi = osgb_Latitude; // already in radians
double lambda = osgb_Longitude; // already in radians
double v = a * f0 / sqrt(1 - e2 * sin(phi) * sin(phi));
double rho = a * f0 * (1 - e2) / pow(1 - e2 * sin(phi) * sin(phi), 1.5);
double eta2 = v / rho - 1;
double mA = (1 + n + (5 / 4) * n * n + (5 / 4) * n * n * n) * (phi - phi0);
double mB = (3 * n + 3 * n * n + (21 / 8) * n * n * n) * sin(phi - phi0) * cos(phi + phi0);
// loss of precision in mC & mD due to floating point rounding can cause inaccuracy of northing by a few meters
double mC = (15 / 8 * n * n + 15 / 8 * n * n * n) * sin(2 * (phi - phi0)) * cos(2 * (phi + phi0));
double mD = (35 / 24) * n * n * n * sin(3 * (phi - phi0)) * cos(3 * (phi + phi0));
double m = b * f0 * (mA - mB + mC - mD);
double osgb_Latitude;
double osgb_Longitude;
convertWGS84ToOSGB36(lat, lon, osgb_Latitude, osgb_Longitude);
double phi = osgb_Latitude; // already in radians
double lambda = osgb_Longitude; // already in radians
double v = a * f0 / sqrt(1 - e2 * sin(phi) * sin(phi));
double rho = a * f0 * (1 - e2) / pow(1 - e2 * sin(phi) * sin(phi), 1.5);
double eta2 = v / rho - 1;
double mA = (1 + n + (5 / 4) * n * n + (5 / 4) * n * n * n) * (phi - phi0);
double mB = (3 * n + 3 * n * n + (21 / 8) * n * n * n) * sin(phi - phi0) * cos(phi + phi0);
// loss of precision in mC & mD due to floating point rounding can cause inaccuracy of northing by a few meters
double mC = (15 / 8 * n * n + 15 / 8 * n * n * n) * sin(2 * (phi - phi0)) * cos(2 * (phi + phi0));
double mD = (35 / 24) * n * n * n * sin(3 * (phi - phi0)) * cos(3 * (phi + phi0));
double m = b * f0 * (mA - mB + mC - mD);
double cos3Phi = cos(phi) * cos(phi) * cos(phi);
double cos5Phi = cos3Phi * cos(phi) * cos(phi);
double tan2Phi = tan(phi) * tan(phi);
double tan4Phi = tan2Phi * tan2Phi;
double I = m + n0;
double II = (v / 2) * sin(phi) * cos(phi);
double III = (v / 24) * sin(phi) * cos3Phi * (5 - tan2Phi + 9 * eta2);
double IIIA = (v / 720) * sin(phi) * cos5Phi * (61 - 58 * tan2Phi + tan4Phi);
double IV = v * cos(phi);
double V = (v / 6) * cos3Phi * (v / rho - tan2Phi);
double VI = (v / 120) * cos5Phi * (5 - 18 * tan2Phi + tan4Phi + 14 * eta2 - 58 * tan2Phi * eta2);
double cos3Phi = cos(phi) * cos(phi) * cos(phi);
double cos5Phi = cos3Phi * cos(phi) * cos(phi);
double tan2Phi = tan(phi) * tan(phi);
double tan4Phi = tan2Phi * tan2Phi;
double I = m + n0;
double II = (v / 2) * sin(phi) * cos(phi);
double III = (v / 24) * sin(phi) * cos3Phi * (5 - tan2Phi + 9 * eta2);
double IIIA = (v / 720) * sin(phi) * cos5Phi * (61 - 58 * tan2Phi + tan4Phi);
double IV = v * cos(phi);
double V = (v / 6) * cos3Phi * (v / rho - tan2Phi);
double VI = (v / 120) * cos5Phi * (5 - 18 * tan2Phi + tan4Phi + 14 * eta2 - 58 * tan2Phi * eta2);
double deltaLambda = lambda - lambda0;
double deltaLambda2 = deltaLambda * deltaLambda;
double northing =
I + II * deltaLambda2 + III * deltaLambda2 * deltaLambda2 + IIIA * deltaLambda2 * deltaLambda2 * deltaLambda2;
double easting = e0 + IV * deltaLambda + V * deltaLambda2 * deltaLambda + VI * deltaLambda2 * deltaLambda2 * deltaLambda;
double deltaLambda = lambda - lambda0;
double deltaLambda2 = deltaLambda * deltaLambda;
double northing = I + II * deltaLambda2 + III * deltaLambda2 * deltaLambda2 + IIIA * deltaLambda2 * deltaLambda2 * deltaLambda2;
double easting = e0 + IV * deltaLambda + V * deltaLambda2 * deltaLambda + VI * deltaLambda2 * deltaLambda2 * deltaLambda;
if (easting < 0 || easting > 700000 || northing < 0 || northing > 1300000) // Check if out of boundaries
osgr = {'I', 'I', 0, 0};
else {
uint32_t e100k = floor(easting / 100000);
uint32_t n100k = floor(northing / 100000);
int8_t l1 = (19 - n100k) - (19 - n100k) % 5 + floor((e100k + 10) / 5);
int8_t l2 = (19 - n100k) * 5 % 25 + e100k % 5;
osgr.e100k = letter[l1];
osgr.n100k = letter[l2];
osgr.easting = floor((int)easting % 100000);
osgr.northing = floor((int)northing % 100000);
}
if (easting < 0 || easting > 700000 || northing < 0 || northing > 1300000) // Check if out of boundaries
osgr = {'I', 'I', 0, 0};
else {
uint32_t e100k = floor(easting / 100000);
uint32_t n100k = floor(northing / 100000);
int8_t l1 = (19 - n100k) - (19 - n100k) % 5 + floor((e100k + 10) / 5);
int8_t l2 = (19 - n100k) * 5 % 25 + e100k % 5;
osgr.e100k = letter[l1];
osgr.n100k = letter[l2];
osgr.easting = floor((int)easting % 100000);
osgr.northing = floor((int)northing % 100000);
}
}
/**
* Converts lat long coordinates to Open Location Code.
* Based on: https://github.com/google/open-location-code/blob/main/c/src/olc.c
*/
void GeoCoord::latLongToOLC(double lat, double lon, OLC &olc)
{
char tempCode[] = "1234567890abc";
const char kAlphabet[] = "23456789CFGHJMPQRVWX";
double latitude;
double longitude = lon;
double latitude_degrees = std::min(90.0, std::max(-90.0, lat));
void GeoCoord::latLongToOLC(double lat, double lon, OLC &olc) {
char tempCode[] = "1234567890abc";
const char kAlphabet[] = "23456789CFGHJMPQRVWX";
double latitude;
double longitude = lon;
double latitude_degrees = std::min(90.0, std::max(-90.0, lat));
if (latitude_degrees < 90) // Check latitude less than lat max
latitude = latitude_degrees;
else {
double precision;
if (OLC_CODE_LEN <= 10)
precision = pow_neg(20, floor((OLC_CODE_LEN / -2) + 2));
else
precision = pow_neg(20, -3) / pow(5, OLC_CODE_LEN - 10);
latitude = latitude_degrees - precision / 2;
if (latitude_degrees < 90) // Check latitude less than lat max
latitude = latitude_degrees;
else {
double precision;
if (OLC_CODE_LEN <= 10)
precision = pow_neg(20, floor((OLC_CODE_LEN / -2) + 2));
else
precision = pow_neg(20, -3) / pow(5, OLC_CODE_LEN - 10);
latitude = latitude_degrees - precision / 2;
}
while (longitude < -180) // Normalize longitude
longitude += 360;
while (longitude >= 180)
longitude -= 360;
int64_t lat_val = 90 * 2.5e7;
int64_t lng_val = 180 * 8.192e6;
lat_val += latitude * 2.5e7;
lng_val += longitude * 8.192e6;
size_t pos = OLC_CODE_LEN;
if (OLC_CODE_LEN > 10) { // Compute grid part of code if needed
for (size_t i = 0; i < 5; i++) {
int lat_digit = lat_val % 5;
int lng_digit = lng_val % 4;
int ndx = lat_digit * 4 + lng_digit;
tempCode[pos--] = kAlphabet[ndx];
lat_val /= 5;
lng_val /= 4;
}
while (longitude < -180) // Normalize longitude
longitude += 360;
while (longitude >= 180)
longitude -= 360;
int64_t lat_val = 90 * 2.5e7;
int64_t lng_val = 180 * 8.192e6;
lat_val += latitude * 2.5e7;
lng_val += longitude * 8.192e6;
size_t pos = OLC_CODE_LEN;
} else {
lat_val /= pow(5, 5);
lng_val /= pow(4, 5);
}
if (OLC_CODE_LEN > 10) { // Compute grid part of code if needed
for (size_t i = 0; i < 5; i++) {
int lat_digit = lat_val % 5;
int lng_digit = lng_val % 4;
int ndx = lat_digit * 4 + lng_digit;
tempCode[pos--] = kAlphabet[ndx];
lat_val /= 5;
lng_val /= 4;
}
} else {
lat_val /= pow(5, 5);
lng_val /= pow(4, 5);
}
pos = 10;
pos = 10;
for (size_t i = 0; i < 5; i++) { // Compute pair section of code
int lat_ndx = lat_val % 20;
int lng_ndx = lng_val % 20;
tempCode[pos--] = kAlphabet[lng_ndx];
tempCode[pos--] = kAlphabet[lat_ndx];
lat_val /= 20;
lng_val /= 20;
for (size_t i = 0; i < 5; i++) { // Compute pair section of code
int lat_ndx = lat_val % 20;
int lng_ndx = lng_val % 20;
tempCode[pos--] = kAlphabet[lng_ndx];
tempCode[pos--] = kAlphabet[lat_ndx];
lat_val /= 20;
lng_val /= 20;
if (i == 0)
tempCode[pos--] = '+';
}
if (i == 0)
tempCode[pos--] = '+';
}
if (OLC_CODE_LEN < 9) { // Add padding if needed
for (size_t i = OLC_CODE_LEN; i < 9; i++)
tempCode[i] = '0';
tempCode[9] = '+';
}
if (OLC_CODE_LEN < 9) { // Add padding if needed
for (size_t i = OLC_CODE_LEN; i < 9; i++)
tempCode[i] = '0';
tempCode[9] = '+';
}
size_t char_count = OLC_CODE_LEN;
if (10 > char_count) {
char_count = 10;
}
for (size_t i = 0; i < char_count; i++) {
olc.code[i] = tempCode[i];
}
olc.code[char_count] = '\0';
size_t char_count = OLC_CODE_LEN;
if (10 > char_count) {
char_count = 10;
}
for (size_t i = 0; i < char_count; i++) {
olc.code[i] = tempCode[i];
}
olc.code[char_count] = '\0';
}
// Converts the coordinate in WGS84 datum to the OSGB36 datum.
void GeoCoord::convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude)
{
// Convert lat long to cartesian
double phi = toRadians(lat);
double lambda = toRadians(lon);
double h = 0.0; // No OSTN height data used, some loss of accuracy (up to 5m)
double wgsA = 6378137; // WGS84 datum semi major axis
double wgsF = 1 / 298.257223563; // WGS84 datum flattening
double ecc = 2 * wgsF - wgsF * wgsF;
double vee = wgsA / sqrt(1 - ecc * pow(sin(phi), 2));
double wgsX = (vee + h) * cos(phi) * cos(lambda);
double wgsY = (vee + h) * cos(phi) * sin(lambda);
double wgsZ = ((1 - ecc) * vee + h) * sin(phi);
void GeoCoord::convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude) {
// Convert lat long to cartesian
double phi = toRadians(lat);
double lambda = toRadians(lon);
double h = 0.0; // No OSTN height data used, some loss of accuracy (up to 5m)
double wgsA = 6378137; // WGS84 datum semi major axis
double wgsF = 1 / 298.257223563; // WGS84 datum flattening
double ecc = 2 * wgsF - wgsF * wgsF;
double vee = wgsA / sqrt(1 - ecc * pow(sin(phi), 2));
double wgsX = (vee + h) * cos(phi) * cos(lambda);
double wgsY = (vee + h) * cos(phi) * sin(lambda);
double wgsZ = ((1 - ecc) * vee + h) * sin(phi);
// 7-parameter Helmert transform
double tx = -446.448; // x shift in meters
double ty = 125.157; // y shift in meters
double tz = -542.060; // z shift in meters
double s = 20.4894 / 1e6 + 1; // scale normalized parts per million to (s + 1)
double rx = toRadians(-0.1502 / 3600); // x rotation normalize arcseconds to radians
double ry = toRadians(-0.2470 / 3600); // y rotation normalize arcseconds to radians
double rz = toRadians(-0.8421 / 3600); // z rotation normalize arcseconds to radians
double osgbX = tx + wgsX * s - wgsY * rz + wgsZ * ry;
double osgbY = ty + wgsX * rz + wgsY * s - wgsZ * rx;
double osgbZ = tz - wgsX * ry + wgsY * rx + wgsZ * s;
// 7-parameter Helmert transform
double tx = -446.448; // x shift in meters
double ty = 125.157; // y shift in meters
double tz = -542.060; // z shift in meters
double s = 20.4894 / 1e6 + 1; // scale normalized parts per million to (s + 1)
double rx = toRadians(-0.1502 / 3600); // x rotation normalize arcseconds to radians
double ry = toRadians(-0.2470 / 3600); // y rotation normalize arcseconds to radians
double rz = toRadians(-0.8421 / 3600); // z rotation normalize arcseconds to radians
double osgbX = tx + wgsX * s - wgsY * rz + wgsZ * ry;
double osgbY = ty + wgsX * rz + wgsY * s - wgsZ * rx;
double osgbZ = tz - wgsX * ry + wgsY * rx + wgsZ * s;
// Convert cartesian to lat long
double airyA = 6377563.396; // Airy1830 datum semi major axis
double airyB = 6356256.909; // Airy1830 datum semi minor axis
double airyF = 1 / 299.3249646; // Airy1830 datum flattening
double airyEcc = 2 * airyF - airyF * airyF;
double airyEcc2 = airyEcc / (1 - airyEcc);
double p = sqrt(osgbX * osgbX + osgbY * osgbY);
double R = sqrt(p * p + osgbZ * osgbZ);
double tanBeta = (airyB * osgbZ) / (airyA * p) * (1 + airyEcc2 * airyB / R);
double sinBeta = tanBeta / sqrt(1 + tanBeta * tanBeta);
double cosBeta = sinBeta / tanBeta;
osgb_Latitude = atan2(osgbZ + airyEcc2 * airyB * sinBeta * sinBeta * sinBeta,
p - airyEcc * airyA * cosBeta * cosBeta * cosBeta); // leave in radians
osgb_Longitude = atan2(osgbY, osgbX); // leave in radians
// osgb height = p*cos(osgb.latitude) + osgbZ*sin(osgb.latitude) -
//(airyA*airyA/(airyA / sqrt(1 - airyEcc*sin(osgb.latitude)*sin(osgb.latitude)))); // Not used, no OSTN data
// Convert cartesian to lat long
double airyA = 6377563.396; // Airy1830 datum semi major axis
double airyB = 6356256.909; // Airy1830 datum semi minor axis
double airyF = 1 / 299.3249646; // Airy1830 datum flattening
double airyEcc = 2 * airyF - airyF * airyF;
double airyEcc2 = airyEcc / (1 - airyEcc);
double p = sqrt(osgbX * osgbX + osgbY * osgbY);
double R = sqrt(p * p + osgbZ * osgbZ);
double tanBeta = (airyB * osgbZ) / (airyA * p) * (1 + airyEcc2 * airyB / R);
double sinBeta = tanBeta / sqrt(1 + tanBeta * tanBeta);
double cosBeta = sinBeta / tanBeta;
osgb_Latitude = atan2(osgbZ + airyEcc2 * airyB * sinBeta * sinBeta * sinBeta,
p - airyEcc * airyA * cosBeta * cosBeta * cosBeta); // leave in radians
osgb_Longitude = atan2(osgbY, osgbX); // leave in radians
// osgb height = p*cos(osgb.latitude) + osgbZ*sin(osgb.latitude) -
//(airyA*airyA/(airyA / sqrt(1 -
// airyEcc*sin(osgb.latitude)*sin(osgb.latitude)))); // Not used, no OSTN data
}
/// Ported from my old java code, returns distance in meters along the globe
/// surface (by Haversine formula)
float GeoCoord::latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b)
{
// Don't do math if the points are the same
if (lat_a == lat_b && lng_a == lng_b)
return 0.0;
float GeoCoord::latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b) {
// Don't do math if the points are the same
if (lat_a == lat_b && lng_a == lng_b)
return 0.0;
double a1 = lat_a / DEG_CONVERT;
double a2 = lng_a / DEG_CONVERT;
double b1 = lat_b / DEG_CONVERT;
double b2 = lng_b / DEG_CONVERT;
double cos_b1 = cos(b1);
double cos_a1 = cos(a1);
double t1 = cos_a1 * cos(a2) * cos_b1 * cos(b2);
double t2 = cos_a1 * sin(a2) * cos_b1 * sin(b2);
double t3 = sin(a1) * sin(b1);
double tt = acos(t1 + t2 + t3);
if (std::isnan(tt))
tt = 0.0; // Must have been the same point?
double a1 = lat_a / DEG_CONVERT;
double a2 = lng_a / DEG_CONVERT;
double b1 = lat_b / DEG_CONVERT;
double b2 = lng_b / DEG_CONVERT;
double cos_b1 = cos(b1);
double cos_a1 = cos(a1);
double t1 = cos_a1 * cos(a2) * cos_b1 * cos(b2);
double t2 = cos_a1 * sin(a2) * cos_b1 * sin(b2);
double t3 = sin(a1) * sin(b1);
double tt = acos(t1 + t2 + t3);
if (std::isnan(tt))
tt = 0.0; // Must have been the same point?
return (float)(6366000 * tt);
return (float)(6366000 * tt);
}
/**
@@ -414,14 +390,13 @@ float GeoCoord::latLongToMeter(double lat_a, double lng_a, double lat_b, double
* @return Bearing from point 1 to point 2 in radians. A value of 0 means due
* north.
*/
float GeoCoord::bearing(double lat1, double lon1, double lat2, double lon2)
{
double lat1Rad = toRadians(lat1);
double lat2Rad = toRadians(lat2);
double deltaLonRad = toRadians(lon2 - lon1);
double y = sin(deltaLonRad) * cos(lat2Rad);
double x = cos(lat1Rad) * sin(lat2Rad) - (sin(lat1Rad) * cos(lat2Rad) * cos(deltaLonRad));
return atan2(y, x);
float GeoCoord::bearing(double lat1, double lon1, double lat2, double lon2) {
double lat1Rad = toRadians(lat1);
double lat2Rad = toRadians(lat2);
double deltaLonRad = toRadians(lon2 - lon1);
double y = sin(deltaLonRad) * cos(lat2Rad);
double x = cos(lat1Rad) * sin(lat2Rad) - (sin(lat1Rad) * cos(lat2Rad) * cos(deltaLonRad));
return atan2(y, x);
}
/**
@@ -431,11 +406,10 @@ float GeoCoord::bearing(double lat1, double lon1, double lat2, double lon2)
* The range in meters
* @return range in radians on a great circle
*/
float GeoCoord::rangeMetersToRadians(double range_meters)
{
// 1 nm is 1852 meters
double distance_nm = range_meters * 1852;
return (PI / (180 * 60)) * distance_nm;
float GeoCoord::rangeMetersToRadians(double range_meters) {
// 1 nm is 1852 meters
double distance_nm = range_meters * 1852;
return (PI / (180 * 60)) * distance_nm;
}
/**
@@ -445,25 +419,20 @@ float GeoCoord::rangeMetersToRadians(double range_meters)
* The range in radians
* @return Range in meters on a great circle
*/
float GeoCoord::rangeRadiansToMeters(double range_radians)
{
double distance_nm = ((180 * 60) / PI) * range_radians;
// 1 meter is 0.000539957 nm
return distance_nm * 0.000539957;
float GeoCoord::rangeRadiansToMeters(double range_radians) {
double distance_nm = ((180 * 60) / PI) * range_radians;
// 1 meter is 0.000539957 nm
return distance_nm * 0.000539957;
}
// Find distance from point to passed in point
int32_t GeoCoord::distanceTo(const GeoCoord &pointB)
{
return latLongToMeter(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7,
pointB.getLongitude() * 1e-7);
int32_t GeoCoord::distanceTo(const GeoCoord &pointB) {
return latLongToMeter(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7, pointB.getLongitude() * 1e-7);
}
// Find bearing from point to passed in point
int32_t GeoCoord::bearingTo(const GeoCoord &pointB)
{
return bearing(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7,
pointB.getLongitude() * 1e-7);
int32_t GeoCoord::bearingTo(const GeoCoord &pointB) {
return bearing(this->getLatitude() * 1e-7, this->getLongitude() * 1e-7, pointB.getLatitude() * 1e-7, pointB.getLongitude() * 1e-7);
}
/**
@@ -475,16 +444,15 @@ int32_t GeoCoord::bearingTo(const GeoCoord &pointB)
* range in meters
* @return GeoCoord object of point at bearing and range from initial point
*/
std::shared_ptr<GeoCoord> GeoCoord::pointAtDistance(double bearing, double range_meters)
{
double range_radians = rangeMetersToRadians(range_meters);
double lat1 = this->getLatitude() * 1e-7;
double lon1 = this->getLongitude() * 1e-7;
double lat = asin(sin(lat1) * cos(range_radians) + cos(lat1) * sin(range_radians) * cos(bearing));
double dlon = atan2(sin(bearing) * sin(range_radians) * cos(lat1), cos(range_radians) - sin(lat1) * sin(lat));
double lon = fmod(lon1 - dlon + PI, 2 * PI) - PI;
std::shared_ptr<GeoCoord> GeoCoord::pointAtDistance(double bearing, double range_meters) {
double range_radians = rangeMetersToRadians(range_meters);
double lat1 = this->getLatitude() * 1e-7;
double lon1 = this->getLongitude() * 1e-7;
double lat = asin(sin(lat1) * cos(range_radians) + cos(lat1) * sin(range_radians) * cos(bearing));
double dlon = atan2(sin(bearing) * sin(range_radians) * cos(lat1), cos(range_radians) - sin(lat1) * sin(lat));
double lon = fmod(lon1 - dlon + PI, 2 * PI) - PI;
return std::make_shared<GeoCoord>(double(lat), double(lon), this->getAltitude());
return std::make_shared<GeoCoord>(double(lat), double(lon), this->getAltitude());
}
/**
@@ -493,42 +461,41 @@ std::shared_ptr<GeoCoord> GeoCoord::pointAtDistance(double bearing, double range
* The bearing in string format
* @return Bearing in degrees
*/
unsigned int GeoCoord::bearingToDegrees(const char *bearing)
{
if (strcmp(bearing, "N") == 0)
return 0;
else if (strcmp(bearing, "NNE") == 0)
return 22;
else if (strcmp(bearing, "NE") == 0)
return 45;
else if (strcmp(bearing, "ENE") == 0)
return 67;
else if (strcmp(bearing, "E") == 0)
return 90;
else if (strcmp(bearing, "ESE") == 0)
return 112;
else if (strcmp(bearing, "SE") == 0)
return 135;
else if (strcmp(bearing, "SSE") == 0)
return 157;
else if (strcmp(bearing, "S") == 0)
return 180;
else if (strcmp(bearing, "SSW") == 0)
return 202;
else if (strcmp(bearing, "SW") == 0)
return 225;
else if (strcmp(bearing, "WSW") == 0)
return 247;
else if (strcmp(bearing, "W") == 0)
return 270;
else if (strcmp(bearing, "WNW") == 0)
return 292;
else if (strcmp(bearing, "NW") == 0)
return 315;
else if (strcmp(bearing, "NNW") == 0)
return 337;
else
return 0;
unsigned int GeoCoord::bearingToDegrees(const char *bearing) {
if (strcmp(bearing, "N") == 0)
return 0;
else if (strcmp(bearing, "NNE") == 0)
return 22;
else if (strcmp(bearing, "NE") == 0)
return 45;
else if (strcmp(bearing, "ENE") == 0)
return 67;
else if (strcmp(bearing, "E") == 0)
return 90;
else if (strcmp(bearing, "ESE") == 0)
return 112;
else if (strcmp(bearing, "SE") == 0)
return 135;
else if (strcmp(bearing, "SSE") == 0)
return 157;
else if (strcmp(bearing, "S") == 0)
return 180;
else if (strcmp(bearing, "SSW") == 0)
return 202;
else if (strcmp(bearing, "SW") == 0)
return 225;
else if (strcmp(bearing, "WSW") == 0)
return 247;
else if (strcmp(bearing, "W") == 0)
return 270;
else if (strcmp(bearing, "WNW") == 0)
return 292;
else if (strcmp(bearing, "NW") == 0)
return 315;
else if (strcmp(bearing, "NNW") == 0)
return 337;
else
return 0;
}
/**
@@ -537,60 +504,52 @@ unsigned int GeoCoord::bearingToDegrees(const char *bearing)
* The bearing in degrees
* @return Bearing in string format
*/
const char *GeoCoord::degreesToBearing(unsigned int degrees)
{
if (degrees >= 348 || degrees < 11)
return "N";
else if (degrees >= 11 && degrees < 34)
return "NNE";
else if (degrees >= 34 && degrees < 56)
return "NE";
else if (degrees >= 56 && degrees < 79)
return "ENE";
else if (degrees >= 79 && degrees < 101)
return "E";
else if (degrees >= 101 && degrees < 124)
return "ESE";
else if (degrees >= 124 && degrees < 146)
return "SE";
else if (degrees >= 146 && degrees < 169)
return "SSE";
else if (degrees >= 169 && degrees < 191)
return "S";
else if (degrees >= 191 && degrees < 214)
return "SSW";
else if (degrees >= 214 && degrees < 236)
return "SW";
else if (degrees >= 236 && degrees < 259)
return "WSW";
else if (degrees >= 259 && degrees < 281)
return "W";
else if (degrees >= 281 && degrees < 304)
return "WNW";
else if (degrees >= 304 && degrees < 326)
return "NW";
else if (degrees >= 326 && degrees < 348)
return "NNW";
else
return "N";
const char *GeoCoord::degreesToBearing(unsigned int degrees) {
if (degrees >= 348 || degrees < 11)
return "N";
else if (degrees >= 11 && degrees < 34)
return "NNE";
else if (degrees >= 34 && degrees < 56)
return "NE";
else if (degrees >= 56 && degrees < 79)
return "ENE";
else if (degrees >= 79 && degrees < 101)
return "E";
else if (degrees >= 101 && degrees < 124)
return "ESE";
else if (degrees >= 124 && degrees < 146)
return "SE";
else if (degrees >= 146 && degrees < 169)
return "SSE";
else if (degrees >= 169 && degrees < 191)
return "S";
else if (degrees >= 191 && degrees < 214)
return "SSW";
else if (degrees >= 214 && degrees < 236)
return "SW";
else if (degrees >= 236 && degrees < 259)
return "WSW";
else if (degrees >= 259 && degrees < 281)
return "W";
else if (degrees >= 281 && degrees < 304)
return "WNW";
else if (degrees >= 304 && degrees < 326)
return "NW";
else if (degrees >= 326 && degrees < 348)
return "NNW";
else
return "N";
}
double GeoCoord::pow_neg(double base, double exponent)
{
if (exponent == 0) {
return 1;
} else if (exponent > 0) {
return pow(base, exponent);
}
return 1 / pow(base, -exponent);
double GeoCoord::pow_neg(double base, double exponent) {
if (exponent == 0) {
return 1;
} else if (exponent > 0) {
return pow(base, exponent);
}
return 1 / pow(base, -exponent);
}
double GeoCoord::toRadians(double deg)
{
return deg * PI / 180;
}
double GeoCoord::toRadians(double deg) { return deg * PI / 180; }
double GeoCoord::toDegrees(double r)
{
return r * 180 / PI;
}
double GeoCoord::toDegrees(double r) { return r * 180 / PI; }

View File

@@ -16,133 +16,132 @@
// GeoCoord structs/classes
// A struct to hold the data for a DMS coordinate.
struct DMS {
uint8_t latDeg;
uint8_t latMin;
uint32_t latSec;
char latCP;
uint8_t lonDeg;
uint8_t lonMin;
uint32_t lonSec;
char lonCP;
uint8_t latDeg;
uint8_t latMin;
uint32_t latSec;
char latCP;
uint8_t lonDeg;
uint8_t lonMin;
uint32_t lonSec;
char lonCP;
};
// A struct to hold the data for a UTM coordinate, this is also used when creating an MGRS coordinate.
struct UTM {
uint8_t zone;
char band;
uint32_t easting;
uint32_t northing;
uint8_t zone;
char band;
uint32_t easting;
uint32_t northing;
};
// A struct to hold the data for a MGRS coordinate.
struct MGRS {
uint8_t zone;
char band;
char east100k;
char north100k;
uint32_t easting;
uint32_t northing;
uint8_t zone;
char band;
char east100k;
char north100k;
uint32_t easting;
uint32_t northing;
};
// A struct to hold the data for a OSGR coordinate
struct OSGR {
char e100k;
char n100k;
uint32_t easting;
uint32_t northing;
char e100k;
char n100k;
uint32_t easting;
uint32_t northing;
};
// A struct to hold the data for a OLC coordinate
struct OLC {
char code[OLC_CODE_LEN + 1]; // +1 for null termination
char code[OLC_CODE_LEN + 1]; // +1 for null termination
};
class GeoCoord
{
private:
int32_t _latitude = 0;
int32_t _longitude = 0;
int32_t _altitude = 0;
class GeoCoord {
private:
int32_t _latitude = 0;
int32_t _longitude = 0;
int32_t _altitude = 0;
DMS _dms = {};
UTM _utm = {};
MGRS _mgrs = {};
OSGR _osgr = {};
OLC _olc = {};
DMS _dms = {};
UTM _utm = {};
MGRS _mgrs = {};
OSGR _osgr = {};
OLC _olc = {};
bool _dirty = true;
bool _dirty = true;
void setCoords();
void setCoords();
public:
GeoCoord();
GeoCoord(int32_t lat, int32_t lon, int32_t alt);
GeoCoord(double lat, double lon, int32_t alt);
GeoCoord(float lat, float lon, int32_t alt);
public:
GeoCoord();
GeoCoord(int32_t lat, int32_t lon, int32_t alt);
GeoCoord(double lat, double lon, int32_t alt);
GeoCoord(float lat, float lon, int32_t alt);
void updateCoords(const int32_t lat, const int32_t lon, const int32_t alt);
void updateCoords(const double lat, const double lon, const int32_t alt);
void updateCoords(const float lat, const float lon, const int32_t alt);
void updateCoords(const int32_t lat, const int32_t lon, const int32_t alt);
void updateCoords(const double lat, const double lon, const int32_t alt);
void updateCoords(const float lat, const float lon, const int32_t alt);
// Conversions
static void latLongToDMS(const double lat, const double lon, DMS &dms);
static void latLongToUTM(const double lat, const double lon, UTM &utm);
static void latLongToMGRS(const double lat, const double lon, MGRS &mgrs);
static void latLongToOSGR(const double lat, const double lon, OSGR &osgr);
static void latLongToOLC(const double lat, const double lon, OLC &olc);
static void convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude);
static float latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b);
static float bearing(double lat1, double lon1, double lat2, double lon2);
static float rangeRadiansToMeters(double range_radians);
static float rangeMetersToRadians(double range_meters);
static unsigned int bearingToDegrees(const char *bearing);
static const char *degreesToBearing(unsigned int degrees);
// Conversions
static void latLongToDMS(const double lat, const double lon, DMS &dms);
static void latLongToUTM(const double lat, const double lon, UTM &utm);
static void latLongToMGRS(const double lat, const double lon, MGRS &mgrs);
static void latLongToOSGR(const double lat, const double lon, OSGR &osgr);
static void latLongToOLC(const double lat, const double lon, OLC &olc);
static void convertWGS84ToOSGB36(const double lat, const double lon, double &osgb_Latitude, double &osgb_Longitude);
static float latLongToMeter(double lat_a, double lng_a, double lat_b, double lng_b);
static float bearing(double lat1, double lon1, double lat2, double lon2);
static float rangeRadiansToMeters(double range_radians);
static float rangeMetersToRadians(double range_meters);
static unsigned int bearingToDegrees(const char *bearing);
static const char *degreesToBearing(unsigned int degrees);
// Raises a number to an exponent, handling negative exponents.
static double pow_neg(double base, double exponent);
static double toRadians(double deg);
static double toDegrees(double r);
// Raises a number to an exponent, handling negative exponents.
static double pow_neg(double base, double exponent);
static double toRadians(double deg);
static double toDegrees(double r);
// Point to point conversions
int32_t distanceTo(const GeoCoord &pointB);
int32_t bearingTo(const GeoCoord &pointB);
std::shared_ptr<GeoCoord> pointAtDistance(double bearing, double range);
// Point to point conversions
int32_t distanceTo(const GeoCoord &pointB);
int32_t bearingTo(const GeoCoord &pointB);
std::shared_ptr<GeoCoord> pointAtDistance(double bearing, double range);
// Lat lon alt getters
int32_t getLatitude() const { return _latitude; }
int32_t getLongitude() const { return _longitude; }
int32_t getAltitude() const { return _altitude; }
// Lat lon alt getters
int32_t getLatitude() const { return _latitude; }
int32_t getLongitude() const { return _longitude; }
int32_t getAltitude() const { return _altitude; }
// DMS getters
uint8_t getDMSLatDeg() const { return _dms.latDeg; }
uint8_t getDMSLatMin() const { return _dms.latMin; }
uint32_t getDMSLatSec() const { return _dms.latSec; }
char getDMSLatCP() const { return _dms.latCP; }
uint8_t getDMSLonDeg() const { return _dms.lonDeg; }
uint8_t getDMSLonMin() const { return _dms.lonMin; }
uint32_t getDMSLonSec() const { return _dms.lonSec; }
char getDMSLonCP() const { return _dms.lonCP; }
// DMS getters
uint8_t getDMSLatDeg() const { return _dms.latDeg; }
uint8_t getDMSLatMin() const { return _dms.latMin; }
uint32_t getDMSLatSec() const { return _dms.latSec; }
char getDMSLatCP() const { return _dms.latCP; }
uint8_t getDMSLonDeg() const { return _dms.lonDeg; }
uint8_t getDMSLonMin() const { return _dms.lonMin; }
uint32_t getDMSLonSec() const { return _dms.lonSec; }
char getDMSLonCP() const { return _dms.lonCP; }
// UTM getters
uint8_t getUTMZone() const { return _utm.zone; }
char getUTMBand() const { return _utm.band; }
uint32_t getUTMEasting() const { return _utm.easting; }
uint32_t getUTMNorthing() const { return _utm.northing; }
// UTM getters
uint8_t getUTMZone() const { return _utm.zone; }
char getUTMBand() const { return _utm.band; }
uint32_t getUTMEasting() const { return _utm.easting; }
uint32_t getUTMNorthing() const { return _utm.northing; }
// MGRS getters
uint8_t getMGRSZone() const { return _mgrs.zone; }
char getMGRSBand() const { return _mgrs.band; }
char getMGRSEast100k() const { return _mgrs.east100k; }
char getMGRSNorth100k() const { return _mgrs.north100k; }
uint32_t getMGRSEasting() const { return _mgrs.easting; }
uint32_t getMGRSNorthing() const { return _mgrs.northing; }
// MGRS getters
uint8_t getMGRSZone() const { return _mgrs.zone; }
char getMGRSBand() const { return _mgrs.band; }
char getMGRSEast100k() const { return _mgrs.east100k; }
char getMGRSNorth100k() const { return _mgrs.north100k; }
uint32_t getMGRSEasting() const { return _mgrs.easting; }
uint32_t getMGRSNorthing() const { return _mgrs.northing; }
// OSGR getters
char getOSGRE100k() const { return _osgr.e100k; }
char getOSGRN100k() const { return _osgr.n100k; }
uint32_t getOSGREasting() const { return _osgr.easting; }
uint32_t getOSGRNorthing() const { return _osgr.northing; }
// OSGR getters
char getOSGRE100k() const { return _osgr.e100k; }
char getOSGRN100k() const { return _osgr.n100k; }
uint32_t getOSGREasting() const { return _osgr.easting; }
uint32_t getOSGRNorthing() const { return _osgr.northing; }
// OLC getter
void getOLCCode(char *code) { strncpy(code, _olc.code, OLC_CODE_LEN + 1); } // +1 for null termination
// OLC getter
void getOLCCode(char *code) { strncpy(code, _olc.code, OLC_CODE_LEN + 1); } // +1 for null termination
};

View File

@@ -19,36 +19,32 @@
* -------------------------------------------
*/
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_PositionLite &pos, const char *name, bool isCaltopoMode)
{
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
char type = isCaltopoMode ? 'P' : 'N';
uint32_t len = snprintf(buf, bufsz, "\r\n$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(),
geoCoord.getDMSLonDeg(), (abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6,
geoCoord.getDMSLonCP(), name);
uint32_t chk = 0;
for (uint32_t i = 1; i < len; i++) {
chk ^= buf[i];
}
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
return len;
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_PositionLite &pos, const char *name, bool isCaltopoMode) {
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
char type = isCaltopoMode ? 'P' : 'N';
uint32_t len = snprintf(buf, bufsz, "\r\n$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), name);
uint32_t chk = 0;
for (uint32_t i = 1; i < len; i++) {
chk ^= buf[i];
}
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
return len;
}
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_Position &pos, const char *name, bool isCaltopoMode)
{
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
char type = isCaltopoMode ? 'P' : 'N';
uint32_t len = snprintf(buf, bufsz, "$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(),
geoCoord.getDMSLonDeg(), (abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6,
geoCoord.getDMSLonCP(), name);
uint32_t chk = 0;
for (uint32_t i = 1; i < len; i++) {
chk ^= buf[i];
}
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
return len;
uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_Position &pos, const char *name, bool isCaltopoMode) {
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
char type = isCaltopoMode ? 'P' : 'N';
uint32_t len = snprintf(buf, bufsz, "$G%cWPL,%02d%07.4f,%c,%03d%07.4f,%c,%s", type, geoCoord.getDMSLatDeg(),
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), name);
uint32_t chk = 0;
for (uint32_t i = 1; i < len; i++) {
chk ^= buf[i];
}
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
return len;
}
/* -------------------------------------------
* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
@@ -66,37 +62,36 @@ uint32_t printWPL(char *buf, size_t bufsz, const meshtastic_Position &pos, const
* 8 Horizontal Dilution of precision (meters)
* 9 Antenna Altitude above/below mean-sea-level (geoid) (in meters)
* 10 Units of antenna altitude, meters
* 11 Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid), "-" means mean-sea-level
* below ellipsoid 12 Units of geoidal separation, meters 13 Age of differential GPS data, time in seconds since last SC104 type 1
* or 9 update, null field when DGPS is not used 14 Differential reference station ID, 0000-1023 15 Checksum
* 11 Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid), "-" means
* mean-sea-level below ellipsoid 12 Units of geoidal separation, meters 13 Age of differential GPS data, time in
* seconds since last SC104 type 1 or 9 update, null field when DGPS is not used 14 Differential reference station ID,
* 0000-1023 15 Checksum
* -------------------------------------------
*/
uint32_t printGGA(char *buf, size_t bufsz, const meshtastic_Position &pos)
{
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
time_t timestamp = pos.timestamp;
uint32_t printGGA(char *buf, size_t bufsz, const meshtastic_Position &pos) {
GeoCoord geoCoord(pos.latitude_i, pos.longitude_i, pos.altitude);
time_t timestamp = pos.timestamp;
tm *t = gmtime(&timestamp);
if (getRTCQuality() > 0) { // use the device clock if we got time from somewhere. If not, use the GPS timestamp.
uint32_t rtc_sec = getValidTime(RTCQuality::RTCQualityDevice);
timestamp = rtc_sec;
t = gmtime(&timestamp);
}
tm *t = gmtime(&timestamp);
if (getRTCQuality() > 0) { // use the device clock if we got time from somewhere. If not, use the GPS timestamp.
uint32_t rtc_sec = getValidTime(RTCQuality::RTCQualityDevice);
timestamp = rtc_sec;
t = gmtime(&timestamp);
}
uint32_t len = snprintf(
buf, bufsz, "$GNGGA,%02d%02d%02d.%02d,%02d%07.4f,%c,%03d%07.4f,%c,%u,%02u,%04u,%04d,%c,%04d,%c,%d,%04d", t->tm_hour,
t->tm_min, t->tm_sec, pos.timestamp_millis_adjust, geoCoord.getDMSLatDeg(),
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), pos.fix_quality,
pos.sats_in_view, pos.HDOP, geoCoord.getAltitude(), 'M', pos.altitude_geoidal_separation, 'M', 0, 0);
uint32_t len = snprintf(buf, bufsz, "$GNGGA,%02d%02d%02d.%02d,%02d%07.4f,%c,%03d%07.4f,%c,%u,%02u,%04u,%04d,%c,%04d,%c,%d,%04d", t->tm_hour,
t->tm_min, t->tm_sec, pos.timestamp_millis_adjust, geoCoord.getDMSLatDeg(),
(abs(geoCoord.getLatitude()) - geoCoord.getDMSLatDeg() * 1e+7) * 6e-6, geoCoord.getDMSLatCP(), geoCoord.getDMSLonDeg(),
(abs(geoCoord.getLongitude()) - geoCoord.getDMSLonDeg() * 1e+7) * 6e-6, geoCoord.getDMSLonCP(), pos.fix_quality,
pos.sats_in_view, pos.HDOP, geoCoord.getAltitude(), 'M', pos.altitude_geoidal_separation, 'M', 0, 0);
uint32_t chk = 0;
for (uint32_t i = 1; i < len; i++) {
chk ^= buf[i];
}
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
return len;
uint32_t chk = 0;
for (uint32_t i = 1; i < len; i++) {
chk ^= buf[i];
}
len += snprintf(buf + len, bufsz - len, "*%02X\r\n", chk);
return len;
}
#endif

View File

@@ -12,149 +12,145 @@ uint32_t lastSetFromPhoneNtpOrGps = 0;
static uint32_t lastTimeValidationWarning = 0;
static const uint32_t TIME_VALIDATION_WARNING_INTERVAL_MS = 15000; // 15 seconds
RTCQuality getRTCQuality()
{
return currentQuality;
}
RTCQuality getRTCQuality() { return currentQuality; }
// stuff that really should be in in the instance instead...
static uint32_t
timeStartMsec; // Once we have a GPS lock, this is where we hold the initial msec clock that corresponds to that time
static uint32_t timeStartMsec; // Once we have a GPS lock, this is where we hold the initial msec clock that corresponds
// to that time
static uint64_t zeroOffsetSecs; // GPS based time in secs since 1970 - only updated once on initial lock
/**
* Reads the current date and time from the RTC module and updates the system time.
* @return True if the RTC was successfully read and the system time was updated, false otherwise.
*/
RTCSetResult readFromRTC()
{
struct timeval tv; /* btw settimeofday() is helpful here too*/
RTCSetResult readFromRTC() {
struct timeval tv; /* btw settimeofday() is helpful here too*/
#ifdef RV3028_RTC
if (rtc_found.address == RV3028_RTC) {
uint32_t now = millis();
Melopero_RV3028 rtc;
if (rtc_found.address == RV3028_RTC) {
uint32_t now = millis();
Melopero_RV3028 rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.initI2C();
rtc.initI2C();
#endif
tm t;
t.tm_year = rtc.getYear() - 1900;
t.tm_mon = rtc.getMonth() - 1;
t.tm_mday = rtc.getDate();
t.tm_hour = rtc.getHour();
t.tm_min = rtc.getMinute();
t.tm_sec = rtc.getSecond();
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
tm t;
t.tm_year = rtc.getYear() - 1900;
t.tm_mon = rtc.getMonth() - 1;
t.tm_mday = rtc.getDate();
t.tm_hour = rtc.getHour();
t.tm_min = rtc.getMinute();
t.tm_sec = rtc.getSecond();
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
}
return RTCSetResultInvalidTime;
}
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
}
return RTCSetResultInvalidTime;
}
#endif
LOG_DEBUG("Read RTC time from RV3028 getTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1,
t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
} else {
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
LOG_DEBUG("Read RTC time from RV3028 getTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour,
t.tm_min, t.tm_sec, printableEpoch);
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
} else {
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
}
#elif defined(PCF8563_RTC) || defined(PCF85063_RTC)
#if defined(PCF8563_RTC)
if (rtc_found.address == PCF8563_RTC) {
if (rtc_found.address == PCF8563_RTC) {
#elif defined(PCF85063_RTC)
if (rtc_found.address == PCF85063_RTC) {
if (rtc_found.address == PCF85063_RTC) {
#endif
uint32_t now = millis();
SensorRtcHelper rtc;
uint32_t now = millis();
SensorRtcHelper rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.begin(Wire);
rtc.begin(Wire);
#endif
RTC_DateTime datetime = rtc.getDateTime();
tm t = datetime.toUnixTime();
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
RTC_DateTime datetime = rtc.getDateTime();
tm t = datetime.toUnixTime();
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
#endif
LOG_DEBUG("Read RTC time from %s getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t.tm_year + 1900,
t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
} else {
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
LOG_DEBUG("Read RTC time from %s getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t.tm_year + 1900, t.tm_mon + 1,
t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
} else {
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
}
#elif defined(RX8130CE_RTC)
if (rtc_found.address == RX8130CE_RTC) {
uint32_t now = millis();
if (rtc_found.address == RX8130CE_RTC) {
uint32_t now = millis();
#ifdef MUZI_BASE
ArtronShop_RX8130CE rtc(&Wire1);
ArtronShop_RX8130CE rtc(&Wire1);
#else
ArtronShop_RX8130CE rtc(&Wire);
ArtronShop_RX8130CE rtc(&Wire);
#endif
tm t;
if (rtc.getTime(&t)) {
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
tm t;
if (rtc.getTime(&t)) {
tv.tv_sec = gm_mktime(&t);
tv.tv_usec = 0;
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
LOG_DEBUG("Read RTC time from RX8130CE getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900,
t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
LOG_DEBUG("Read RTC time from RX8130CE getDateTime as %02d-%02d-%02d %02d:%02d:%02d (%ld)", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
t.tm_hour, t.tm_min, t.tm_sec, printableEpoch);
#ifdef BUILD_EPOCH
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
#endif
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
}
#else
if (!gettimeofday(&tv, NULL)) {
uint32_t now = millis();
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
LOG_DEBUG("Read RTC time as %ld", printableEpoch);
return RTCSetResultInvalidTime;
}
#endif
if (currentQuality == RTCQualityNone) {
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
return RTCSetResultSuccess;
currentQuality = RTCQualityDevice;
}
return RTCSetResultSuccess;
}
}
#else
if (!gettimeofday(&tv, NULL)) {
uint32_t now = millis();
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
LOG_DEBUG("Read RTC time as %ld", printableEpoch);
timeStartMsec = now;
zeroOffsetSecs = tv.tv_sec;
return RTCSetResultSuccess;
}
#endif
return RTCSetResultNotSet;
return RTCSetResultNotSet;
}
/**
@@ -166,143 +162,140 @@ RTCSetResult readFromRTC()
*
* If we haven't yet set our RTC this boot, set it from a GPS derived time
*/
RTCSetResult perhapsSetRTC(RTCQuality q, const struct timeval *tv, bool forceUpdate)
{
static uint32_t lastSetMsec = 0;
uint32_t now = millis();
uint32_t printableEpoch = tv->tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
RTCSetResult perhapsSetRTC(RTCQuality q, const struct timeval *tv, bool forceUpdate) {
static uint32_t lastSetMsec = 0;
uint32_t now = millis();
uint32_t printableEpoch = tv->tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv->tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
} else if ((uint64_t)tv->tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
// Calculate max allowed time safely to avoid overflow in logging
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
LOG_WARN("Ignore time (%ld) too far in the future (build epoch: %ld, max allowed: %ld)!", printableEpoch,
(uint32_t)BUILD_EPOCH, maxAllowedPrintable);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
if (tv->tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%ld) before build epoch (%ld)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
} else if ((uint64_t)tv->tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
// Calculate max allowed time safely to avoid overflow in logging
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
LOG_WARN("Ignore time (%ld) too far in the future (build epoch: %ld, max allowed: %ld)!", printableEpoch, (uint32_t)BUILD_EPOCH,
maxAllowedPrintable);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
#endif
bool shouldSet;
if (forceUpdate) {
shouldSet = true;
LOG_DEBUG("Override current RTC quality (%s) with incoming time of RTC quality of %s", RtcName(currentQuality),
RtcName(q));
} else if (q > currentQuality) {
shouldSet = true;
LOG_DEBUG("Upgrade time to quality %s", RtcName(q));
} else if (q == RTCQualityGPS) {
shouldSet = true;
LOG_DEBUG("Reapply GPS time: %ld secs", printableEpoch);
} else if (q == RTCQualityNTP && !Throttle::isWithinTimespanMs(lastSetMsec, (12 * 60 * 60 * 1000UL))) {
// Every 12 hrs we will slam in a new NTP or Phone GPS / NTP time, to correct for local RTC clock drift
shouldSet = true;
LOG_DEBUG("Reapply external time to correct clock drift %ld secs", printableEpoch);
} else {
shouldSet = false;
LOG_DEBUG("Current RTC quality: %s. Ignore time of RTC quality of %s", RtcName(currentQuality), RtcName(q));
bool shouldSet;
if (forceUpdate) {
shouldSet = true;
LOG_DEBUG("Override current RTC quality (%s) with incoming time of RTC quality of %s", RtcName(currentQuality), RtcName(q));
} else if (q > currentQuality) {
shouldSet = true;
LOG_DEBUG("Upgrade time to quality %s", RtcName(q));
} else if (q == RTCQualityGPS) {
shouldSet = true;
LOG_DEBUG("Reapply GPS time: %ld secs", printableEpoch);
} else if (q == RTCQualityNTP && !Throttle::isWithinTimespanMs(lastSetMsec, (12 * 60 * 60 * 1000UL))) {
// Every 12 hrs we will slam in a new NTP or Phone GPS / NTP time, to correct for local RTC clock drift
shouldSet = true;
LOG_DEBUG("Reapply external time to correct clock drift %ld secs", printableEpoch);
} else {
shouldSet = false;
LOG_DEBUG("Current RTC quality: %s. Ignore time of RTC quality of %s", RtcName(currentQuality), RtcName(q));
}
if (shouldSet) {
currentQuality = q;
lastSetMsec = now;
if (currentQuality >= RTCQualityNTP) {
lastSetFromPhoneNtpOrGps = now;
}
if (shouldSet) {
currentQuality = q;
lastSetMsec = now;
if (currentQuality >= RTCQualityNTP) {
lastSetFromPhoneNtpOrGps = now;
}
// This delta value works on all platforms
timeStartMsec = now;
zeroOffsetSecs = tv->tv_sec;
// If this platform has a setable RTC, set it
// This delta value works on all platforms
timeStartMsec = now;
zeroOffsetSecs = tv->tv_sec;
// If this platform has a setable RTC, set it
#ifdef RV3028_RTC
if (rtc_found.address == RV3028_RTC) {
Melopero_RV3028 rtc;
if (rtc_found.address == RV3028_RTC) {
Melopero_RV3028 rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
rtc.initI2C(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.initI2C();
rtc.initI2C();
#endif
tm *t = gmtime(&tv->tv_sec);
rtc.setTime(t->tm_year + 1900, t->tm_mon + 1, t->tm_wday, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
LOG_DEBUG("RV3028_RTC setTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
} else {
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
}
tm *t = gmtime(&tv->tv_sec);
rtc.setTime(t->tm_year + 1900, t->tm_mon + 1, t->tm_wday, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
LOG_DEBUG("RV3028_RTC setTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min,
t->tm_sec, printableEpoch);
} else {
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
}
#elif defined(PCF8563_RTC) || defined(PCF85063_RTC)
#if defined(PCF8563_RTC)
if (rtc_found.address == PCF8563_RTC) {
if (rtc_found.address == PCF8563_RTC) {
#elif defined(PCF85063_RTC)
if (rtc_found.address == PCF85063_RTC) {
if (rtc_found.address == PCF85063_RTC) {
#endif
SensorRtcHelper rtc;
SensorRtcHelper rtc;
#if WIRE_INTERFACES_COUNT == 2
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
rtc.begin(rtc_found.port == ScanI2C::I2CPort::WIRE1 ? Wire1 : Wire);
#else
rtc.begin(Wire);
rtc.begin(Wire);
#endif
tm *t = gmtime(&tv->tv_sec);
rtc.setDateTime(*t);
LOG_DEBUG("%s setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t->tm_year + 1900, t->tm_mon + 1,
t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
} else {
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
}
#elif defined(RX8130CE_RTC)
if (rtc_found.address == RX8130CE_RTC) {
#ifdef MUZI_BASE
ArtronShop_RX8130CE rtc(&Wire1);
#else
ArtronShop_RX8130CE rtc(&Wire);
#endif
tm *t = gmtime(&tv->tv_sec);
if (rtc.setTime(*t)) {
LOG_DEBUG("RX8130CE setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1,
t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec, printableEpoch);
} else {
LOG_WARN("Failed to set time for RX8130CE");
}
}
#elif defined(ARCH_ESP32)
settimeofday(tv, NULL);
#endif
// nrf52 doesn't have a readable RTC (yet - software not written)
#if HAS_RTC
readFromRTC();
#endif
return RTCSetResultSuccess;
tm *t = gmtime(&tv->tv_sec);
rtc.setDateTime(*t);
LOG_DEBUG("%s setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", rtc.getChipName(), t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
t->tm_min, t->tm_sec, printableEpoch);
} else {
return RTCSetResultNotSet; // RTC was already set with a higher quality time
LOG_WARN("RTC not found (found address 0x%02X)", rtc_found.address);
}
#elif defined(RX8130CE_RTC)
if (rtc_found.address == RX8130CE_RTC) {
#ifdef MUZI_BASE
ArtronShop_RX8130CE rtc(&Wire1);
#else
ArtronShop_RX8130CE rtc(&Wire);
#endif
tm *t = gmtime(&tv->tv_sec);
if (rtc.setTime(*t)) {
LOG_DEBUG("RX8130CE setDateTime %02d-%02d-%02d %02d:%02d:%02d (%ld)", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min,
t->tm_sec, printableEpoch);
} else {
LOG_WARN("Failed to set time for RX8130CE");
}
}
#elif defined(ARCH_ESP32)
settimeofday(tv, NULL);
#endif
// nrf52 doesn't have a readable RTC (yet - software not written)
#if HAS_RTC
readFromRTC();
#endif
return RTCSetResultSuccess;
} else {
return RTCSetResultNotSet; // RTC was already set with a higher quality time
}
}
const char *RtcName(RTCQuality quality)
{
switch (quality) {
case RTCQualityNone:
return "None";
case RTCQualityDevice:
return "Device";
case RTCQualityFromNet:
return "Net";
case RTCQualityNTP:
return "NTP";
case RTCQualityGPS:
return "GPS";
default:
return "Unknown";
}
const char *RtcName(RTCQuality quality) {
switch (quality) {
case RTCQualityNone:
return "None";
case RTCQualityDevice:
return "Device";
case RTCQualityFromNet:
return "Net";
case RTCQualityNTP:
return "NTP";
case RTCQualityGPS:
return "GPS";
default:
return "Unknown";
}
}
/**
@@ -312,46 +305,45 @@ const char *RtcName(RTCQuality quality)
* @param t The time to potentially set the RTC to.
* @return True if the RTC was set to the provided time, false otherwise.
*/
RTCSetResult perhapsSetRTC(RTCQuality q, struct tm &t)
{
/* Convert to unix time
The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that have elapsed since January 1, 1970
(midnight UTC/GMT), not counting leap seconds (in ISO 8601: 1970-01-01T00:00:00Z).
*/
// horrible hack to make mktime TZ agnostic - best practise according to
// https://www.gnu.org/software/libc/manual/html_node/Broken_002ddown-Time.html
time_t res = gm_mktime(&t);
struct timeval tv;
tv.tv_sec = res;
tv.tv_usec = 0; // time.centisecond() * (10 / 1000);
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
RTCSetResult perhapsSetRTC(RTCQuality q, struct tm &t) {
/* Convert to unix time
The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that have elapsed since January
1, 1970 (midnight UTC/GMT), not counting leap seconds (in ISO 8601: 1970-01-01T00:00:00Z).
*/
// horrible hack to make mktime TZ agnostic - best practise according to
// https://www.gnu.org/software/libc/manual/html_node/Broken_002ddown-Time.html
time_t res = gm_mktime(&t);
struct timeval tv;
tv.tv_sec = res;
tv.tv_usec = 0; // time.centisecond() * (10 / 1000);
uint32_t printableEpoch = tv.tv_sec; // Print lib only supports 32 bit but time_t can be 64 bit on some platforms
#ifdef BUILD_EPOCH
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%lu) before build epoch (%lu)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
} else if ((uint64_t)tv.tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
// Calculate max allowed time safely to avoid overflow in logging
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
LOG_WARN("Ignore time (%lu) too far in the future (build epoch: %lu, max allowed: %lu)!", printableEpoch,
(uint32_t)BUILD_EPOCH, maxAllowedPrintable);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
if (tv.tv_sec < BUILD_EPOCH) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
LOG_WARN("Ignore time (%lu) before build epoch (%lu)!", printableEpoch, BUILD_EPOCH);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
} else if ((uint64_t)tv.tv_sec > ((uint64_t)BUILD_EPOCH + FORTY_YEARS)) {
if (Throttle::isWithinTimespanMs(lastTimeValidationWarning, TIME_VALIDATION_WARNING_INTERVAL_MS) == false) {
// Calculate max allowed time safely to avoid overflow in logging
uint64_t maxAllowedTime = (uint64_t)BUILD_EPOCH + FORTY_YEARS;
uint32_t maxAllowedPrintable = (maxAllowedTime > UINT32_MAX) ? UINT32_MAX : (uint32_t)maxAllowedTime;
LOG_WARN("Ignore time (%lu) too far in the future (build epoch: %lu, max allowed: %lu)!", printableEpoch, (uint32_t)BUILD_EPOCH,
maxAllowedPrintable);
lastTimeValidationWarning = millis();
}
return RTCSetResultInvalidTime;
}
#endif
// LOG_DEBUG("Got time from GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
if (t.tm_year < 0 || t.tm_year >= 300) {
// LOG_DEBUG("Ignore invalid GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
return RTCSetResultInvalidTime;
} else {
return perhapsSetRTC(q, &tv);
}
// LOG_DEBUG("Got time from GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
if (t.tm_year < 0 || t.tm_year >= 300) {
// LOG_DEBUG("Ignore invalid GPS month=%d, year=%d, unixtime=%ld", t.tm_mon, t.tm_year, tv.tv_sec);
return RTCSetResultInvalidTime;
} else {
return perhapsSetRTC(q, &tv);
}
}
/**
@@ -359,16 +351,15 @@ RTCSetResult perhapsSetRTC(RTCQuality q, struct tm &t)
*
* @return The timezone offset in seconds.
*/
int32_t getTZOffset()
{
int32_t getTZOffset() {
#if MESHTASTIC_EXCLUDE_TZ
return 0;
return 0;
#else
time_t now = getTime(false);
struct tm *gmt;
gmt = gmtime(&now);
gmt->tm_isdst = -1;
return (int32_t)difftime(now, mktime(gmt));
time_t now = getTime(false);
struct tm *gmt;
gmt = gmtime(&now);
gmt->tm_isdst = -1;
return (int32_t)difftime(now, mktime(gmt));
#endif
}
@@ -377,13 +368,12 @@ int32_t getTZOffset()
*
* @return The current time in seconds since the Unix epoch.
*/
uint32_t getTime(bool local)
{
if (local) {
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs + getTZOffset();
} else {
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs;
}
uint32_t getTime(bool local) {
if (local) {
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs + getTZOffset();
} else {
return (((uint32_t)millis() - timeStartMsec) / 1000) + zeroOffsetSecs;
}
}
/**
@@ -392,49 +382,45 @@ uint32_t getTime(bool local)
* @param minQuality The minimum quality of the RTC time required for it to be considered valid.
* @return The current time from the RTC if it meets the minimum quality requirement, or 0 if the time is not valid.
*/
uint32_t getValidTime(RTCQuality minQuality, bool local)
{
return (currentQuality >= minQuality) ? getTime(local) : 0;
}
uint32_t getValidTime(RTCQuality minQuality, bool local) { return (currentQuality >= minQuality) ? getTime(local) : 0; }
time_t gm_mktime(struct tm *tm)
{
time_t gm_mktime(struct tm *tm) {
#if !MESHTASTIC_EXCLUDE_TZ
time_t result = 0;
time_t result = 0;
// First, get us to the start of tm->year, by calcuating the number of days since the Unix epoch.
int year = 1900 + tm->tm_year; // tm_year is years since 1900
int year_minus_one = year - 1;
int days_before_this_year = 0;
days_before_this_year += year_minus_one * 365;
// leap days: every 4 years, except 100s, but including 400s.
days_before_this_year += year_minus_one / 4 - year_minus_one / 100 + year_minus_one / 400;
// subtract from 1970-01-01 to get days since epoch
days_before_this_year -= 719162; // (1969 * 365 + 1969 / 4 - 1969 / 100 + 1969 / 400);
// First, get us to the start of tm->year, by calcuating the number of days since the Unix epoch.
int year = 1900 + tm->tm_year; // tm_year is years since 1900
int year_minus_one = year - 1;
int days_before_this_year = 0;
days_before_this_year += year_minus_one * 365;
// leap days: every 4 years, except 100s, but including 400s.
days_before_this_year += year_minus_one / 4 - year_minus_one / 100 + year_minus_one / 400;
// subtract from 1970-01-01 to get days since epoch
days_before_this_year -= 719162; // (1969 * 365 + 1969 / 4 - 1969 / 100 + 1969 / 400);
// Now, within this tm->year, compute the days *before* this tm->month starts.
int days_before_month[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; // non-leap year
int days_this_year_before_this_month = days_before_month[tm->tm_mon]; // tm->tm_mon is 0..11
// Now, within this tm->year, compute the days *before* this tm->month starts.
int days_before_month[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; // non-leap year
int days_this_year_before_this_month = days_before_month[tm->tm_mon]; // tm->tm_mon is 0..11
// If this is a leap year, and we're past February, add a day:
if (tm->tm_mon >= 2 && (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) {
days_this_year_before_this_month += 1;
}
// If this is a leap year, and we're past February, add a day:
if (tm->tm_mon >= 2 && (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) {
days_this_year_before_this_month += 1;
}
// And within this month:
int days_this_month_before_today = tm->tm_mday - 1; // tm->tm_mday is 1..31
// And within this month:
int days_this_month_before_today = tm->tm_mday - 1; // tm->tm_mday is 1..31
// Now combine them all together, and convert days to seconds:
result += (days_before_this_year + days_this_year_before_this_month + days_this_month_before_today);
result *= 86400L;
// Now combine them all together, and convert days to seconds:
result += (days_before_this_year + days_this_year_before_this_month + days_this_month_before_today);
result *= 86400L;
// Finally, add in the hours, minutes, and seconds of today:
result += tm->tm_hour * 3600;
result += tm->tm_min * 60;
result += tm->tm_sec;
// Finally, add in the hours, minutes, and seconds of today:
result += tm->tm_hour * 3600;
result += tm->tm_min * 60;
result += tm->tm_sec;
return result;
return result;
#else
return mktime(tm);
return mktime(tm);
#endif
}

View File

@@ -10,29 +10,29 @@
enum RTCQuality {
/// We haven't had our RTC set yet
RTCQualityNone = 0,
/// We haven't had our RTC set yet
RTCQualityNone = 0,
/// We got time from an onboard peripheral after boot.
RTCQualityDevice = 1,
/// We got time from an onboard peripheral after boot.
RTCQualityDevice = 1,
/// Some other node gave us a time we can use
RTCQualityFromNet = 2,
/// Some other node gave us a time we can use
RTCQualityFromNet = 2,
/// Our time is based on NTP
RTCQualityNTP = 3,
/// Our time is based on NTP
RTCQualityNTP = 3,
/// Our time is based on our own GPS
RTCQualityGPS = 4
/// Our time is based on our own GPS
RTCQualityGPS = 4
};
/// The RTC set result codes
/// Used to indicate the result of an attempt to set the RTC.
enum RTCSetResult {
RTCSetResultNotSet = 0, ///< RTC was set successfully
RTCSetResultSuccess = 1, ///< RTC was set successfully
RTCSetResultInvalidTime = 3, ///< The provided time was invalid (e.g., before the build epoch)
RTCSetResultError = 4 ///< An error occurred while setting the RTC
RTCSetResultNotSet = 0, ///< RTC was set successfully
RTCSetResultSuccess = 1, ///< RTC was set successfully
RTCSetResultInvalidTime = 3, ///< The provided time was invalid (e.g., before the build epoch)
RTCSetResultError = 4 ///< An error occurred while setting the RTC
};
RTCQuality getRTCQuality();

View File

@@ -1,13 +1,13 @@
static const char *failMessage = "Unable to %s";
#define SEND_UBX_PACKET(TYPE, ID, DATA, ERRMSG, TIMEOUT) \
do { \
msglen = makeUBXPacket(TYPE, ID, sizeof(DATA), DATA); \
_serial_gps->write(UBXscratch, msglen); \
if (getACK(TYPE, ID, TIMEOUT) != GNSS_RESPONSE_OK) { \
LOG_WARN(failMessage, #ERRMSG); \
} \
} while (0)
#define SEND_UBX_PACKET(TYPE, ID, DATA, ERRMSG, TIMEOUT) \
do { \
msglen = makeUBXPacket(TYPE, ID, sizeof(DATA), DATA); \
_serial_gps->write(UBXscratch, msglen); \
if (getACK(TYPE, ID, TIMEOUT) != GNSS_RESPONSE_OK) { \
LOG_WARN(failMessage, #ERRMSG); \
} \
} while (0)
// Power Management
@@ -337,8 +337,8 @@ static const uint8_t _message_SAVE_10[] = {
// As the M10 has no flash, the best we can do to preserve the config is to set it in RAM and BBR.
// BBR will survive a restart, and power off for a while, but modules with small backup
// batteries or super caps will not retain the config for a long power off time.
// for all configurations using sleep / low power modes, V_BCKP needs to be hooked to permanent power for fast aquisition after
// sleep
// for all configurations using sleep / low power modes, V_BCKP needs to be hooked to permanent power for fast
// aquisition after sleep
// VALSET Commands for M10
// Please refer to the M10 Protocol Specification:
@@ -370,11 +370,13 @@ EXTINTACTIVITY U4 0 no ext ints
LIMITPEAKCURRENT L 1
// Ram layer config message:
// b5 62 06 8a 26 00 00 01 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01 10 00 d0
// b5 62 06 8a 26 00 00 01 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01
10 00 d0
// 10 01 8b de
// BBR layer config message:
// b5 62 06 8a 26 00 00 02 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01 10 00 d0
// b5 62 06 8a 26 00 00 02 00 00 01 00 d0 20 02 02 00 d0 40 05 00 00 00 05 00 d0 30 01 00 08 00 d0 10 01 09 00 d0 10 01
10 00 d0
// 10 01 8c 03
*/
static const uint8_t _message_VALSET_PM_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0xd0, 0x20, 0x02, 0x02, 0x00, 0xd0, 0x40,
@@ -396,21 +398,21 @@ CFG-ITFM replaced by 5 valset messages which can be combined into one for RAM an
b5 62 06 8a 0e 00 00 01 00 00 0d 00 41 10 01 13 00 41 10 01 63 c6
*/
static const uint8_t _message_VALSET_ITFM_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x0d, 0x00, 0x41,
0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
static const uint8_t _message_VALSET_ITFM_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x0d, 0x00, 0x41,
0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
static const uint8_t _message_VALSET_ITFM_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x0d, 0x00, 0x41, 0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
static const uint8_t _message_VALSET_ITFM_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x0d, 0x00, 0x41, 0x10, 0x01, 0x13, 0x00, 0x41, 0x10, 0x01};
// Turn off all NMEA messages:
// Ram layer config message:
// b5 62 06 8a 22 00 00 01 00 00 c0 00 91 20 00 ca 00 91 20 00 c5 00 91 20 00 ac 00 91 20 00 b1 00 91 20 00 bb 00 91 20 00 40 8f
// b5 62 06 8a 22 00 00 01 00 00 c0 00 91 20 00 ca 00 91 20 00 c5 00 91 20 00 ac 00 91 20 00 b1 00 91 20 00 bb 00 91 20
// 00 40 8f
// Disable GLL, GSV, VTG messages in BBR layer
// BBR layer config message:
// b5 62 06 8a 13 00 00 02 00 00 ca 00 91 20 00 c5 00 91 20 00 b1 00 91 20 00 f8 4e
static const uint8_t _message_VALSET_DISABLE_NMEA_RAM[] = {
/*0x00, 0x01, 0x00, 0x00, 0xca, 0x00, 0x91, 0x20, 0x00, 0xc5, 0x00, 0x91, 0x20, 0x00, 0xb1, 0x00, 0x91, 0x20, 0x00 */
/*0x00, 0x01, 0x00, 0x00, 0xca, 0x00, 0x91, 0x20, 0x00, 0xc5, 0x00, 0x91, 0x20, 0x00, 0xb1, 0x00, 0x91, 0x20, 0x00
*/
0x00, 0x01, 0x00, 0x00, 0xc0, 0x00, 0x91, 0x20, 0x00, 0xca, 0x00, 0x91, 0x20, 0x00, 0xc5, 0x00, 0x91,
0x20, 0x00, 0xac, 0x00, 0x91, 0x20, 0x00, 0xb1, 0x00, 0x91, 0x20, 0x00, 0xbb, 0x00, 0x91, 0x20, 0x00};
@@ -437,14 +439,10 @@ static const uint8_t _message_VALSET_DISABLE_NMEA_BBR[] = {0x00, 0x02, 0x00, 0x0
static const uint8_t _message_VALSET_DISABLE_TXT_INFO_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x07, 0x00, 0x92, 0x20, 0x03};
static const uint8_t _message_VALSET_DISABLE_TXT_INFO_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x07, 0x00, 0x92, 0x20, 0x03};
static const uint8_t _message_VALSET_ENABLE_NMEA_RAM[] = {0x00, 0x01, 0x00, 0x00, 0xbb, 0x00, 0x91,
0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
static const uint8_t _message_VALSET_ENABLE_NMEA_BBR[] = {0x00, 0x02, 0x00, 0x00, 0xbb, 0x00, 0x91,
0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
static const uint8_t _message_VALSET_DISABLE_SBAS_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x20, 0x00, 0x31,
0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
static const uint8_t _message_VALSET_DISABLE_SBAS_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x20, 0x00, 0x31,
0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
static const uint8_t _message_VALSET_ENABLE_NMEA_RAM[] = {0x00, 0x01, 0x00, 0x00, 0xbb, 0x00, 0x91, 0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
static const uint8_t _message_VALSET_ENABLE_NMEA_BBR[] = {0x00, 0x02, 0x00, 0x00, 0xbb, 0x00, 0x91, 0x20, 0x01, 0xac, 0x00, 0x91, 0x20, 0x01};
static const uint8_t _message_VALSET_DISABLE_SBAS_RAM[] = {0x00, 0x01, 0x00, 0x00, 0x20, 0x00, 0x31, 0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
static const uint8_t _message_VALSET_DISABLE_SBAS_BBR[] = {0x00, 0x02, 0x00, 0x00, 0x20, 0x00, 0x31, 0x10, 0x00, 0x05, 0x00, 0x31, 0x10, 0x00};
/*
Operational issues with the M10: